Skip to main content

Studying Hepatic Stellate Cell Senescence

  • Protocol
  • First Online:
Hepatic Stellate Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2669))

  • 1106 Accesses

Abstract

Hepatic stellate cells (HSCs) are the key effector cells in liver fibrosis. They are the main producers of excessive amounts of extracellular matrix components during fibrogenesis and therefore a potential target for the treatment of liver fibrosis. Induction of senescence in HSCs may be a promising strategy to slow down, stop, or even reverse fibrogenesis. Senescence is a complex and heterogeneous process linked to fibrosis and cancer, but the exact mechanism and relevant markers can be cell-type dependent. Therefore, many markers of senescence have been proposed, and many methods to detect senescence have been developed. In this chapter, we review relevant methods and biomarkers to detect cellular senescence in hepatic stellate cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

36B4:

Ribosomal phosphoprotein P0

AMV:

Avian myeloblastosis virus

ARF:

ADP-ribosylation factor

Bcl2:

B cell lymphoma 2

BrdU:

5′-bromo-2′-deoxyuridine

CDK:

Cyclin-dependent kinase

CDKN1a/P21CIP1:

Cyclin-dependent kinase inhibitor 1a

Cip:

CDK interacting protein

CT:

Threshold cycle

CXCL1:

Chemokine ligand 1

CXCL10:

Chemokine ligand 10

DAPI:

4′,6-diamidino-2-phenylindole

DcR2:

Decoy receptor 2

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DNA:

Desoxyribonucleic acid

ELISA:

Enzyme-linked immunosorbent assays

EVs:

Extracellular vesicles

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFAP:

Glial fibrillar acid protein

H3K9:

Histone H3 lysine 9

HRP:

Horseradish peroxidase

HSCs:

Hepatic stellate cells

IGF:

Insulin growth factor

IL6:

Interleukin 6

IL8:

Interleukin 8

INK4:

Cyclin-dependent kinase inhibitors 4

Ki67:

Antigen K167

Kip:

Kinase inhibitory protein

LMNB1:

Lamin B1

LRAT:

Lecithin retinol acyltransferase

Mg:

Milligrams

M-MLV:

Moloney murine leukemia virus

MMP3:

Metalloproteinase 3

MMP9:

Metalloproteinase 9

MMPs:

Metalloproteinases

P53:

Tumor suppressor protein

PBS:

Phosphate-buffered saline

PDGF:

Platelet-derived growth factor

PFA:

Paraformaldehyde

PI:

Propidium iodide

qPCR:

Quantitative polymerase chain reaction

Rb:

Retinoblastoma

RIPA:

Ratio immunoprecipitation assay

RNA:

Ribonucleic acid

Rpm:

Revolutions per minute

RTCA:

Real-time cell analysis

RT-qPCR:

Real-time quantitative polymerase chain reaction

SAHF:

Senescence-associated heterochromatin foci

SASP:

Senescence-associated secretory phenotype

SA-β-Gal:

Senescence-associated b galactosidase

SDS:

Sodium dodecyl sulfate

TEMED:

Tetramethylethylenediamine

TMB:

3,3′,5,5′-Tetramethylbenzidine

V:

Volts

VEGF:

Vascular endothelial growth factor

WB:

Western blot

αSMA:

Alpha-smooth muscle actin

γH2AX:

Gamma-histone family member X

References

  1. Zhang M et al (2021) Hepatic stellate cell senescence in liver fibrosis: characteristics, mechanisms and perspectives. Mech Ageing Dev 199:111572. https://doi.org/10.1016/j.mad.2021.111572

    Article  CAS  PubMed  Google Scholar 

  2. Serna-Salas SA et al (2022) α-1 adrenergic receptor antagonist doxazosin reverses hepatic stellate cells activation via induction of senescence. Mech Ageing Dev 201:111617. https://doi.org/10.1016/j.mad.2021.111617

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad R, Ahmad A (2012) Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches. Saudi J Gastroenterol 18(3):155. https://doi.org/10.4103/1319-3767.96445

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shang L et al (2018) Human hepatic stellate cell isolation and characterization. J Gastroenterol 53(1):6–17. https://doi.org/10.1007/s00535-017-1404-4

    Article  CAS  PubMed  Google Scholar 

  5. Rippe RA, Brenner DA (2004) From quiescence to activation: gene regulation in hepatic stellate cells. Gastroenterology 127(4):1260–1262. https://doi.org/10.1053/j.gastro.2004.08.028

    Article  PubMed  Google Scholar 

  6. Hernandez-Gea V et al (2011) Mechanism of hepatic fibrogenesis. Annu Rev Pathol 14(3):181–194. https://doi.org/10.1016/j.bpg.2011.02.005.Mechanisms

    Article  Google Scholar 

  7. Campisi J (2001) Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11(11):27–31. https://doi.org/10.1016/S0962-8924(01)02151-1

    Article  Google Scholar 

  8. Campisi J, DAdda Di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740. https://doi.org/10.1038/nrm2233

    Article  CAS  PubMed  Google Scholar 

  9. Herranz N, Gil J (2018) Mechanisms and functions of cellular senescence. J Clin Investig 128(4):1238–1246. https://doi.org/10.1172/JCI95148

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jin H et al (2016) Activation of PPARγ/p53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis 7(4):1–11. https://doi.org/10.1038/cddis.2016.92

    Article  CAS  Google Scholar 

  11. Krizhanovsky V et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667. https://doi.org/10.1016/j.cell.2008.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soto-Gamez A et al (2022) Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist. Cancer Lett 525:67–75. https://doi.org/10.1016/j.canlet.2021.10.038

    Article  CAS  PubMed  Google Scholar 

  13. Coppé J et al (2010) The senescence-associated secretory: the dark side of tumor suppression. Annu Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.The

    Article  PubMed  PubMed Central  Google Scholar 

  14. Davalli P et al (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016:2016. https://doi.org/10.1155/2016/3565127

    Article  CAS  Google Scholar 

  15. MacIel-Barón LÁ et al (2018) Cellular senescence, neurological function, and redox state. Antioxid Redox Signal 28(18):1704–1723. https://doi.org/10.1089/ars.2017.7112

    Article  CAS  PubMed  Google Scholar 

  16. Lee BY et al (2006) Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5(2):187–195. https://doi.org/10.1111/j.1474-9726.2006.00199.x

    Article  CAS  PubMed  Google Scholar 

  17. Kojima H et al (2013) IL-6-STAT3 signaling and premature senescence. Jak-Stat 2(4):e25763. https://doi.org/10.4161/jkst.25763

    Article  PubMed  PubMed Central  Google Scholar 

  18. Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496. https://doi.org/10.1038/nrm3823

    Article  CAS  PubMed  Google Scholar 

  19. Byun HO et al (2015) From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep 48(10):549–558. https://doi.org/10.5483/BMBRep.2015.48.10.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soto-Gamez A, Demaria M (2017) Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today. Elsevier Ltd, 786–795. https://doi.org/10.1016/j.drudis.2017.01.004

  21. Bruce JL et al (2000) Requirements for cell cycle arrest by p16(INK4a). Mol Cell 6(3):737–742. https://doi.org/10.1016/S1097-2765(00)00072-1

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi A, Ohtani N, Hara E (2007) Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Div 2:1–5. https://doi.org/10.1186/1747-1028-2-10

    Article  CAS  Google Scholar 

  23. Hoeferlin LA et al (2011) Activation of p21-dependent G1/G2 arrest in the absence of DNA damage as an antiapoptotic response to metabolic stress. Genes Cancer 2(9):889–899. https://doi.org/10.1177/1947601911432495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panebianco C et al (2017) Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings. Clin Exp Med 17(3):269–280. https://doi.org/10.1007/s10238-016-0438-x

    Article  CAS  PubMed  Google Scholar 

  25. Adams G (2020) A beginners guide to RT-PCR, qPCR and RT-qPCR, y Portland Press Limited under the Creative Commons Attribution Licen [Preprint]. https://doi.org/10.1042/BIO20200034/884464/bio20200034.pdf

  26. Soto-Gamez A, Quax WJ, Demaria M (2019) Regulation of survival networks in senescent cells: from mechanisms to interventions. J Mol Biol. Academic Press, 2629–2643. https://doi.org/10.1016/j.jmb.2019.05.036

  27. Kurien BT, Hal Scofield R (2015) Western blotting: an introduction. In: Western blotting: methods and protocols. Springer, New York, pp 17–30. https://doi.org/10.1007/978-1-4939-2694-7_5

    Chapter  Google Scholar 

  28. Martinez-Serra J et al (2014) xCELLcelligence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies. Onco Targets Ther 7:985–994. https://doi.org/10.2147/OTT.S62887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamidi H, Lilja J, Ivaska J (2017) Using xCELLigence RTCA instrument to measure cell adhesion. Bio Protoc 7(24). https://doi.org/10.21769/bioprotoc.2646

  30. Kilgas S, Kiltie AE, Ramadan K (2021) Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells. STAR Protoc 2(4):100978. https://doi.org/10.1016/j.xpro.2021.100978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freund A et al (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075. https://doi.org/10.1091/mbc.E11-10-0884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernandez-Segura A, Rubingh R, Demaria M (2019) Identification of stable senescence-associated reference genes. Aging Cell. Blackwell Publishing Ltd 18:e12911. https://doi.org/10.1111/acel.12911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92(September):9363–9367

    Google Scholar 

  34. Cheng N, Kim KH, Lau LF (2022) Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 7(14). https://doi.org/10.1172/jci.insight.158207

  35. Narita M, Nuñez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 13:703–716. https://doi.org/10.1016/s0092-8674(03)00401-x

    Article  Google Scholar 

  36. Sagiv A et al (2016) NKG2D ligands mediate immunosurveillance of senescent cells. Aging 2(2):328–344

    Article  Google Scholar 

  37. Sadaie M et al (2015) Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell 26(17):2971–2985. https://doi.org/10.1091/mbc.E15-01-0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Madsen SD et al (2017) Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 8(1):201. https://doi.org/10.1186/s13287-017-0649-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sagiv A et al (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32(15):1971–1977. https://doi.org/10.1038/onc.2012.206

    Article  CAS  PubMed  Google Scholar 

  40. Ferreira-Gonzalez S et al (2018) Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-03299-5

  41. Itahana K, Campisi J, Dimri GP (2007) Methods to detect biomarkers of cellular senescence: the senescence-associated β-galactosidase assay. Methods Mol Biol 371:21–31. https://doi.org/10.1385/1-59745-361-7:21

    Article  CAS  PubMed  Google Scholar 

  42. Coppé JP et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853. https://doi.org/10.1371/journal.pbio.0060301

    Article  CAS  PubMed  Google Scholar 

  43. Im K et al. (2019) An introduction to performing immunofluorescence staining. Methods Mol Biol. Humana Press Inc., 1897:299–311. https://doi.org/10.1007/978-1-4939-8935-5_26

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Moshage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serna-Salas, S.A., Soto-Gámez, A.A., Wu, Z., Klaver, M., Moshage, H. (2023). Studying Hepatic Stellate Cell Senescence. In: Weiskirchen, R., Friedman, S.L. (eds) Hepatic Stellate Cells. Methods in Molecular Biology, vol 2669. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3207-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3207-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3206-2

  • Online ISBN: 978-1-0716-3207-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics