Skip to main content
Log in

Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Decreased epithelial cadherin (E-cadherin) gene expression, a hallmark of epithelial–mesenchymal transition (EMT), is essential for triggering metastatic advantage of the colon cancer. Genetic mechanisms underlying the regulation of E-cadherin expression in EMT have been extensively investigated; however, much is unknown about the epigenetic mechanism underlying this process. Here, we identified ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase involved in demethylating di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), as a positive regulator for the expression of E-cadherin in the colon cancer cell line HCT-116. We showed that inactivation of UTX down-regulated E-cadherin gene expression, while overexpression of UTX did the opposite. Notably, overexpression of UTX inhibited migration and invasion of HCT-116 cells. Moreover, UTX demethylated H3K27me3, a histone transcriptional repressive mark, leading to decreased H3K27me3 at the E-cadherin promoter. Further, UTX interacted with the histone acetyltransferase (HAT) protein CBP and recruited it to the E-cadherin promoter, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulates E-cadherin expression through coordinated regulation of H3K27 demethylation and acetylation, switching the transcriptional repressive state to the transcriptional active state at the E-cadherin promoter. We conclude that UTX may play a role in regulation of E-cadherin gene expression in HCT-116 cells and that UTX may serve as a therapeutic target against the metastasis in the treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  3. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42. doi:10.1038/nrm1835.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. doi:10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Wang H, Zhao Q, Xia Y, Hu X, Guo J. PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol. 2015;32(8):212. doi:10.1007/s12032-015-0655-2.

    Article  PubMed  Google Scholar 

  6. Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 2007;67(23):11254–62. doi:10.1158/0008-5472.CAN-07-2253.

    Article  CAS  PubMed  Google Scholar 

  7. Ullmann U, In’t Veld P, Gilles C, Sermon K, De Rycke M, Van de Velde H, et al. Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod. 2007;13(1):21–32. doi:10.1093/molehr/gal091.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang X, Wang J, Zhang K, Tang S, Ren C, Chen Y. The role of CD29-ILK-Akt signaling-mediated epithelial-mesenchymal transition of liver epithelial cells and chemoresistance and radioresistance in hepatocellular carcinoma cells. Med Oncol. 2015;32(5):141. doi:10.1007/s12032-015-0595-x.

    Article  PubMed  Google Scholar 

  9. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22(6):709–24. doi:10.1016/j.ccr.2012.10.012.

    Article  CAS  PubMed  Google Scholar 

  10. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22(6):725–36. doi:10.1016/j.ccr.2012.09.022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. doi:10.1038/nrm3758.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40. doi:10.1038/nature05919.

    Article  CAS  PubMed  Google Scholar 

  13. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92. doi:10.1016/j.cell.2007.01.029.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Backdahl L, Bushell A, Beck S. Inflammatory signalling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int J Biochem Cell Biol. 2009;41(1):176–84. doi:10.1016/j.biocel.2008.08.023.

    Article  CAS  PubMed  Google Scholar 

  15. Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520(7546):243–7. doi:10.1038/nature14176.

    Article  CAS  PubMed  Google Scholar 

  16. Dambacher S, Hahn M, Schotta G. Epigenetic regulation of development by histone lysine methylation. Heredity. 2010;105(1):24–37. doi:10.1038/hdy.2010.49.

    Article  CAS  PubMed  Google Scholar 

  17. Wong SH, Goode DL, Iwasaki M, Wei MC, Kuo HP, Zhu L, et al. The H3K4-methyl epigenome regulates leukemia stem cell oncogenic potential. Cancer Cell. 2015;28(2):198–209. doi:10.1016/j.ccell.2015.06.003.

    Article  CAS  PubMed  Google Scholar 

  18. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12. doi:10.1038/nature11606.

    Article  CAS  PubMed  Google Scholar 

  19. Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene. 2013;32(11):1351–62. doi:10.1038/onc.2012.169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Investig. 2012;122(4):1469–86. doi:10.1172/JCI57349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Benoit YD, Laursen KB, Witherspoon MS, Lipkin SM, Gudas LJ. Inhibition of PRC2 histone methyltransferase activity increases TRAIL-mediated apoptosis sensitivity in human colon cancer cells. J Cell Physiol. 2013;228(4):764–72. doi:10.1002/jcp.24224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wang C, Liu X, Chen Z, Huang H, Jin Y, Kolokythas A, et al. Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Mol Carcinog. 2013;52(3):229–36. doi:10.1002/mc.21848.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lee SC, Miller S, Hyland C, Kauppi M, Lebois M, Di Rago L, et al. Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood. 2015;126(2):167–75. doi:10.1182/blood-2014-12-615898.

    Article  CAS  PubMed  Google Scholar 

  24. Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell. 2013;24(4):466–80. doi:10.1016/j.ccr.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer. 2011;30(9):603–11. doi:10.5732/cjc.011.10226.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ge K. Epigenetic regulation of adipogenesis by histone methylation. Biochim Biophys Acta. 2012;1819(7):727–32. doi:10.1016/j.bbagrm.2011.12.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA. 2007;104(47):18439–44. doi:10.1073/pnas.0707292104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zha L, Li F, Wu R, Artinian L, Rehder V, Yu L, et al. The histone demethylase UTX promotes brown adipocyte thermogenic program via coordinated regulation of H3K27 demethylation and acetylation. J Biol Chem. 2015;290(41):25151–63. doi:10.1074/jbc.M115.662650.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol. 2005;25(19):8456–64. doi:10.1128/MCB.25.19.8456-8464.2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yang X, Wang X, Liu D, Yu L, Xue B, Shi H. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol. 2014;28(4):565–74. doi:10.1210/me.2013-1293.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ou J, Peng Y, Deng J, Miao H, Zhou J, Zha L, et al. Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition. Carcinogenesis. 2014;35(7):1661–70. doi:10.1093/carcin/bgu090.

    Article  CAS  PubMed  Google Scholar 

  32. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Investig. 2006;116(11):3015–25. doi:10.1172/JCI28898.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shi H, Tzameli I, Bjorbaek C, Flier JS. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem. 2004;279(33):34733–40. doi:10.1074/jbc.M403886200.

    Article  CAS  PubMed  Google Scholar 

  34. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA. 2012;109(52):21360–5. doi:10.1073/pnas.1210371110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, et al. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science. 2012;337(6097):971–5. doi:10.1126/science.1225237.

    Article  CAS  PubMed  Google Scholar 

  36. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373–7. doi:10.1126/science.1259037.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Das C, Roy S, Namjoshi S, Malarkey CS, Jones DN, Kutateladze TG, et al. Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci USA. 2014;111(12):E1072–81. doi:10.1073/pnas.1319122111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sebti S, Prebois C, Perez-Gracia E, Bauvy C, Desmots F, Pirot N, et al. BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy. Proc Natl Acad Sci USA. 2014;111(11):4115–20. doi:10.1073/pnas.1313618111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tie F, Banerjee R, Conrad PA, Scacheri PC, Harte PJ. Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol Cell Biol. 2012;32(12):2323–34. doi:10.1128/MCB.06392-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Edwards TM, Myers JP. Environmental exposures and gene regulation in disease etiology. Environ Health Perspect. 2007;115(9):1264–70. doi:10.1289/ehp.9951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab TEM. 2010;21(4):214–22. doi:10.1016/j.tem.2009.12.007.

    Article  CAS  PubMed  Google Scholar 

  42. Cho HS, Kang JG, Lee JH, Lee JJ, Jeon SK, Ko JH, et al. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells. Oncotarget. 2015;6(27):23837–44.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi:10.1038/nrg2540.

    Article  CAS  PubMed  Google Scholar 

  44. Stancheva I. Caught in conspiracy: cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin. Biochem Cell Biol. 2005;83(3):385–95. doi:10.1139/o05-043.

    Article  CAS  PubMed  Google Scholar 

  45. Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H. The role of DNA methylation in setting up chromatin structure during development. Nat Genet. 2003;34(2):187–92. doi:10.1038/ng1158.

    Article  CAS  PubMed  Google Scholar 

  46. Xu C, Hou Z, Zhan P, Zhao W, Chang C, Zou J, et al. EZH2 regulates cancer cell migration through repressing TIMP-3 in non-small cell lung cancer. Med Oncol. 2013;30(4):713. doi:10.1007/s12032-013-0713-6.

    Article  PubMed  Google Scholar 

  47. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9. doi:10.1038/nature09784.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tang B, Du J, Li Y, Tang F, Wang Z, He S. EZH2 elevates the proliferation of human cholangiocarcinoma cells through the downregulation of RUNX3. Med Oncol. 2014;31(11):271. doi:10.1007/s12032-014-0271-6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institutes of Health Grants (R01HL107500 to B.X., R01DK084172 to H.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houjie Liang, Bingzhong Xue or Hang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, L., Cao, Q., Cui, X. et al. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Med Oncol 33, 21 (2016). https://doi.org/10.1007/s12032-016-0734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0734-z

Keywords

Navigation