Skip to main content

Advertisement

Log in

The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Emerging evidence suggests that G9a, a histone methyltransferase, is involved in tumor progression and metastasis. However, the functional significance of G9a in endometrial carcinogenesis has not been defined.

Methods

The differential expression of G9a in cancer and normal tissues was assessed using an array of 28 paired samples. Tissue specimens from 94 patients with endometrial cancer who underwent primary surgery were immunohistochemically evaluated for G9a and E-cadherin expression. To assess the biologic role of G9a in endometrial cancer, G9a was either stably knocked down or knocked down using a tetracycline-controllable system in endometrial cancer cells, followed by functional assays.

Results

Increased G9a expression was identified in endometrial cancer tissues, and its expression was specifically correlated with deep myometrial invasion. Cell invasiveness was inhibited by an RNAi-mediated knockdown of G9a in invasive endometrial cancer cells in vitro and in vivo. An important mediator of G9a-induced tumor invasion is the epigenetic silencing of E-cadherin. Knockdown of G9a restored E-cadherin expression by reducing H3K9me2 levels and decreasing CDH1 promoter DNA methyltransferase recruitment. Knockdown of RNAi-mediated E-cadherin substantially relieved the invasion suppression imposed by G9a suppression. A significant negative correlation between G9a and E-cadherin expression was observed in endometrial cancer (Spearman’s rho, −0.27; P = 0.02).

Conclusions

This study provides the first clear evidence that G9a contributes to endometrial cancer progression. Mechanistic investigations suggest that E-cadherin repression mediates the effects of G9a. Targeting G9a-mediated epigenetic pathway dysregulation may be a therapeutic strategy for endometrial cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lachner M, O’Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci. 2003;116:2117–24.

    Article  PubMed  CAS  Google Scholar 

  2. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001;276:25309–17.

    Article  PubMed  CAS  Google Scholar 

  3. Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. Embo J. 2008;27:2681–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 2011;25:781–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Huang J, Dorsey J, Chuikov S, et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem. 2010;285:9636–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR, Issa JP. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. Plos One. 2008;3:e2037.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

    Article  PubMed  CAS  Google Scholar 

  8. Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6:622–34.

    Article  PubMed  CAS  Google Scholar 

  9. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251:1451–5.

    Article  PubMed  CAS  Google Scholar 

  10. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4:118–32.

    Article  PubMed  CAS  Google Scholar 

  11. Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest. 2002;109:987–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Sakuragi N, Nishiya M, Ikeda K, et al. Decreased E-cadherin expression in endometrial carcinoma is associated with tumor dedifferentiation and deep myometrial invasion. Gynecol Oncol. 1994;53:183–9.

    Article  PubMed  CAS  Google Scholar 

  13. Holcomb K, Delatorre R, Pedemonte B, McLeod C, Anderson L, Chambers J. E-cadherin expression in endometrioid, papillary serous, and clear cell carcinoma of the endometrium. Obstet Gynecol. 2002;100:1290–5.

    Article  PubMed  CAS  Google Scholar 

  14. Mell LK, Meyer JJ, Tretiakova M, et al. Prognostic significance of E-cadherin protein expression in pathological stage I–III endometrial cancer. Clin Cancer Res. 2004;10:5546–53.

    Article  PubMed  CAS  Google Scholar 

  15. Dong C, Wu Y, Yao J, et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 2012;122:1469–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chen MW, Hua KT, Kao HJ, et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res. 2010;70:7830–40.

    Article  PubMed  CAS  Google Scholar 

  17. Liu YN, Lee WW, Wang CY, et al. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene. 2005;24:8277–90.

    Article  PubMed  CAS  Google Scholar 

  18. Yeramian A, Moreno-Bueno G, Dolcet X, et al. Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene. 2013;32:403–13.

    Article  PubMed  CAS  Google Scholar 

  19. Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 5-Aza-2’-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene. 2007;26:77–90.

    Article  PubMed  CAS  Google Scholar 

  20. Tao MH, Freudenheim JL. DNA methylation in endometrial cancer. Epigenetics. 2010;5:491–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Wright JD, Barrena Medel NI, Sehouli J, Fujiwara K, Herzog TJ. Contemporary management of endometrial cancer. Lancet. 2012;379:1352–60.

    Article  PubMed  Google Scholar 

  22. Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer: a Gynecologic Oncology Group study. Cancer. 1987;60:2035–41.

    Article  PubMed  CAS  Google Scholar 

  23. Morrow CP, Bundy BN, Kurman RJ, Creasman WT, Heller P, Homesley HD, Graham JE. Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: a Gynecologic Oncology Group study. Gynecol Oncol. 1991;40:55–65.

    Article  PubMed  CAS  Google Scholar 

  24. Montserrat N, Mozos A, Llobet D, et al. Epithelial-to-mesenchymal transition in early-stage endometrioid endometrial carcinoma. Hum Pathol. 2012;43:632–43.

    Article  PubMed  Google Scholar 

  25. Yi TZ, Guo J, Zhou L, et al. Prognostic value of E-cadherin expression and CDH1 promoter methylation in patients with endometrial carcinoma. Cancer Invest. 2011;29:86–92.

    Article  PubMed  CAS  Google Scholar 

  26. Saito T, Nishimura M, Yamasaki H, Kudo R. Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer. 2003;97:1002–9.

    Article  PubMed  CAS  Google Scholar 

  27. Risinger JI, Berchuck A, Kohler MF, Boyd J. Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet. 1994;7:98–102.

    Article  PubMed  CAS  Google Scholar 

  28. Blechschmidt K, Kremmer E, Hollweck R, Mylonas I, Höfler H, Kremer M, Becker KF. The E-cadherin repressor Snail plays a role in tumor progression of endometrioid adenocarcinomas. Diagn Mol Pathol. 2007;16:222–8.

    Article  PubMed  CAS  Google Scholar 

  29. Singh M, Spoelstra NS, Jean A, et al. ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol. 2008;21:912–23.

    Article  PubMed  CAS  Google Scholar 

  30. McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009;15:3927–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Fujii S, Ochiai A. Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci. 2008;99:738–46.

    Article  PubMed  CAS  Google Scholar 

  32. Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA. Dnmt3 and G9a cooperate for tissue-specific development in zebra fish. J Biol Chem. 2010;285:4110–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Esteve PO, Chin HG, Smallwood A, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006;20:3089–103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.

    Article  PubMed  CAS  Google Scholar 

  36. Taghavi P, van Lohuizen M. Developmental biology: two paths to silence merge. Nature. 2006;439:794–5.

    Article  PubMed  CAS  Google Scholar 

  37. Epsztejn-Litman S, Feldman N, Abu-Remaileh M, et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol. 2008;15:1176–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell. 2003;3:89–95.

    Article  PubMed  CAS  Google Scholar 

  39. Feldman N, Gerson A, Fang J, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol. 2006;8:188–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Pao-Ling Torng for technical assistance. They also are grateful for the financial support from the National Health Research Institutes of Taiwan, NHRI-EX102-10133BI; the National Science Council, 99-2314-B-002-008-MY; and Far Eastern Memorial Hospital, FEMH-2011-D-008.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Hung Wei MD, PhD.

Additional information

Sheng-Mou Hsiao and Min-Wei Chen have contributed equally.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, SM., Chen, MW., Chen, CA. et al. The H3K9 Methyltransferase G9a Represses E-cadherin and is Associated with Myometrial Invasion in Endometrial Cancer. Ann Surg Oncol 22 (Suppl 3), 1556–1565 (2015). https://doi.org/10.1245/s10434-015-4379-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4379-5

Keywords

Navigation