Skip to main content

Advertisement

Log in

Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Transcription factors (TFs) are crucial modulators of gene expression during the development and progression of gastric carcinoma. Helicobacter pylori (H. pylori) is one of the most significant risk factors of gastric carcinoma, and it is widely known that chronic inflammation with H. pylori infection triggers gastric carcinogenesis through inflammation-carcinoma chain [gastric carcinogenesis stages: non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric carcinoma (GC)], but its mechanism regarding changed TFs remains unknown. In this study, we investigated the expressional profiles of 345 transcription factors in gastric mucosa of healthy volunteers and patients at different gastric carcinogenesis stages using protein/DNA array-based approach. The data demonstrated the up-regulated TFs such as GATA-3, AP4, c-Myc and Pbx1 in the gastric mucosa of GC patients compared with the healthy volunteers, while other TFs, particularly CCAAT and CACC, showed the consistently decreasing trend along the gastric carcinogenesis. The increased expressions of AP4, Pbx1 and C/EBPα were further validated by quantitative real-time PCR and Western blot in various H. pylori-infected models such as clinical gastric tissues, gastric epithelial cell lines and Mongolian gerbils. This study provides insights into and potential laws for gene transcriptional regulation by identifying potential TFs targets against the development of H. pylori-associated gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

H. pylori :

Helicobacter pylori

TFs:

Transcription factors

NGM:

Normal gastric mucosa

NAG:

Non-atrophic gastritis

CAG:

Chronic atrophic gastritis

IM:

Intestinal metaplasia

DYS:

Dysplasia

PLGC:

Precancerous lesions of gastric cancer

GC:

Gastric carcinoma

CagA:

Cytotoxin-associated gene A

VacA:

Vacuolating cytotoxin gene A

GATA-3:

GATA-binding protein 3

AP4:

Activator protein 4 binding element

Pbx1:

Pre-B-cell leukemia transcription factor 1

C/EBP α:

CCAAT/enhancer-binding protein α

CCAAT-BP:

CCAAT-binding protein

CACC-BP:

CACC-binding protein

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Gorrell RJ, Guan J, Xin Y, Tafreshi MA, Hutton ML, McGuckin MA, et al. A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system. Cell Microbiol. 2013;15(4):554–70.

    Article  CAS  PubMed  Google Scholar 

  3. Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol. 2012;2:92.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kim MH, Yoo HS, Kim MY, Jang HJ, Baek MK, Kim HR, et al. Helicobacter pylori stimulates urokinase plasminogen activator receptor expression and cell invasiveness through reactive oxygen species and NF-kappaB signaling in human gastric carcinoma cells. Int J Mol Med. 2007;19(4):689–97.

    CAS  PubMed  Google Scholar 

  5. Tabassam FH, Graham DY, Yamaoka Y. Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cell Microbiol. 2009;11(1):70–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nagy TA, Frey MR, Yan F, Israel DA, Polk DB, Peek RJ. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J Infect Dis. 2009;199(5):641–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB, et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA. 2005;102(30):10646–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Liu X, Cao K, Xu C, Hu T, Zhou L, Cao D, et al. GATA-3 augmentation down-regulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis. Cancer Biol Ther. 2015;16(6):987–96.

    Article  PubMed  Google Scholar 

  9. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–first american cancer society award lecture on cancer epidemiology and prevention. Cancer Res. 1992;52(24):6735–40.

    CAS  PubMed  Google Scholar 

  10. Correa P. Chronic gastritis: a clinico-pathological classification. Am J Gastroenterol. 1988;83(5):504–9.

    CAS  PubMed  Google Scholar 

  11. Latchman DS. Transcription factors as potential targets for therapeutic drugs. Curr Pharm Biotechnol. 2000;1(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  12. Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev. 2002;12(4):416–22.

    Article  CAS  PubMed  Google Scholar 

  13. Ting CN, Olson MC, Barton KP, Leiden JM. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature. 1996;384(6608):474–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem. 1997;272(34):21597–603.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89(4):587–96.

    Article  CAS  PubMed  Google Scholar 

  16. Furusawa J, Moro K, Motomura Y, Okamoto K, Zhu J, Takayanagi H, et al. Critical role of p38 and GATA3 in natural helper cell function. J Immunol. 2013;191(4):1818–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37(4):634–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Klein WR, Serafini N, van Nimwegen M, Vosshenrich CA, de Bruijn MJ, Fonseca PD, et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA. 2013;110(25):10240–5.

    Article  Google Scholar 

  19. Jacquemier J, Charafe-Jauffret E, Monville F, Esterni B, Extra JM, Houvenaeghel G, et al. Association of GATA3, P53, Ki67 status and vascular peritumoral invasion are strongly prognostic in luminal breast cancer. Breast Cancer Res. 2009;11(2):R23.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138(1):57–64.

    Article  PubMed  Google Scholar 

  21. Higgins JP, Kaygusuz G, Wang L, Montgomery K, Mason V, Zhu SX, et al. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray. Am J Surg Pathol. 2007;31(5):673–80.

    Article  PubMed  Google Scholar 

  22. Ellis CL, Chang AG, Cimino-Mathews A, Argani P, Youssef RF, Kapur P, et al. GATA-3 immunohistochemistry in the differential diagnosis of adenocarcinoma of the urinary bladder. Am J Surg Pathol. 2013;37(11):1756–60.

    Article  PubMed  Google Scholar 

  23. Gulmann C, Paner GP, Parakh RS, Hansel DE, Shen SS, Ro JY, et al. Immunohistochemical profile to distinguish urothelial from squamous differentiation in carcinomas of urothelial tract. Hum Pathol. 2013;44(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  24. Bayly R, Murase T, Hyndman BD, Savage R, Nurmohamed S, Munro K, et al. Critical role for a single leucine residue in leukemia induction by E2A-PBX1. Mol Cell Biol. 2006;26(17):6442–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS, et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development. 2001;128(18):3543–57.

    CAS  PubMed  Google Scholar 

  26. DiMartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R, et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood. 2001;98(3):618–26.

    Article  CAS  PubMed  Google Scholar 

  27. Schnabel CA, Godin RE, Cleary ML. Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol. 2003;254(2):262–76.

    Article  CAS  PubMed  Google Scholar 

  28. Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, Jacobs Y, et al. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet. 2002;30(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  29. Tomoeda M, Yuki M, Kubo C, Yoshizawa H, Kitamura M, Nagata S, et al. Role of Meis1 in mitochondrial gene transcription of pancreatic cancer cells. Biochem Biophys Res Commun. 2011;410(4):798–802.

    Article  CAS  PubMed  Google Scholar 

  30. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood. 1991;77(4):687–93.

    CAS  PubMed  Google Scholar 

  31. Mo ML, Chen Z, Zhou HM, Li H, Hirata T, Jablons DM, et al. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer. J Exp Clin Cancer Res. 2013;32:29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Morgan R, Pirard PM, Shears L, Sohal J, Pettengell R, Pandha HS. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res. 2007;67(12):5806–13.

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez LC, Errico MC, Bottero L, Penkov D, Resnati M, Blasi F, et al. Oncogenic HoxB7 requires TALE cofactors and is inactivated by a dominant-negative Pbx1 mutant in a cell-specific manner. Cancer Lett. 2008;266(2):144–55.

    Article  CAS  PubMed  Google Scholar 

  34. Shah N, Wang J, Selich-Anderson J, Graham G, Siddiqui H, Li X, et al. PBX1 is a favorable prognostic biomarker as it modulates 13-cis retinoic acid-mediated differentiation in neuroblastoma. Clin Cancer Res. 2014;20(16):4400–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Andeol Y, Nardeux PC, Daya-Grosjean L, Brison O, Cebrian J, Suarez H. Both N-ras and c-myc are activated in the SHAC human stomach fibrosarcoma cell line. Int J Cancer. 1988;41(5):732–7.

    Article  CAS  PubMed  Google Scholar 

  36. Craanen ME, Blok P, Top B, Boerrigter L, Dekker W, Offerhaus GJ, et al. Absence of ras gene mutations in early gastric carcinomas. Gut. 1995;37(6):758–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Victor T, Du Toit R, Jordaan AM, Bester AJ, van Helden PD. No evidence for point mutations in codons 12, 13, and 61 of the ras gene in a high-incidence area for esophageal and gastric cancers. Cancer Res. 1990;50(16):4911–4.

    CAS  PubMed  Google Scholar 

  38. Hao Y, Zhang J, Lu Y, Yi C, Qian W, Cui J. The role of ras gene mutation in gastric cancer and precancerous lesions. J Tongji Med Univ. 1998;18(3):141–4.

    Article  CAS  PubMed  Google Scholar 

  39. Nishida J, Kobayashi Y, Hirai H, Takaku F. A point mutation at codon 13 of the N-ras oncogene in a human stomach cancer. Biochem Biophys Res Commun. 1987;146(1):247–52.

    Article  CAS  PubMed  Google Scholar 

  40. Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14(39):5962–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ninomiya I, Yonemura Y, Matsumoto H, Sugiyama K, Kamata T, Miwa K, et al. Expression of c-myc gene product in gastric carcinoma. Oncology. 1991;48(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  42. Calcagno DQ, Leal MF, Seabra AD, Khayat AS, Chen ES, Demachki S, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006;12(38):6207–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Sanz-Ortega J, Steinberg SM, Moro E, Saez M, Lopez JA, Sierra E, et al. Comparative study of tumor angiogenesis and immunohistochemistry for p53, c-ErbB2, c-myc and EGFr as prognostic factors in gastric cancer. Histol Histopathol. 2000;15(2):455–62.

    CAS  PubMed  Google Scholar 

  44. Costa RL, Figueira SE, Mendes DFD, Leal MF, Guimaraes AC, Calcagno DQ, et al. Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet. 2008;181(1):31–5.

    Article  Google Scholar 

  45. Kim SS, Meitner P, Konkin TA, Cho YS, Resnick MB, Moss SF. Altered expression of Skp2, c-Myc and p27 proteins but not mRNA after H. pylori eradication in chronic gastritis. Mod Pathol. 2006;19(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  46. Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA. 1997;94(10):5172–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jung P, Menssen A, Mayr D, Hermeking H. AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci USA. 2008;105(39):15046–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jung P, Hermeking H. The c-MYC-AP4-p21 cascade. Cell Cycle. 2009;8(7):982–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hu BS, Zhao G, Yu HF, Chen K, Dong JH, Tan JW. High expression of AP-4 predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. Tumour Biol. 2013;34(1):271–6.

    Article  CAS  PubMed  Google Scholar 

  50. Xinghua L, Bo Z, Yan G, Lei W, Changyao W, Qi L, et al. The overexpression of AP-4 as a prognostic indicator for gastric carcinoma. Med Oncol. 2012;29(2):871–7.

    Article  PubMed  Google Scholar 

  51. Nerlov C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 2007;17(7):318–24.

    Article  CAS  PubMed  Google Scholar 

  52. Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA. 2004;101(36):13312–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Halmos B, Huettner CS, Kocher O, Ferenczi K, Karp DD, Tenen DG. Down-regulation and antiproliferative role of C/EBPalpha in lung cancer. Cancer Res. 2002;62(2):528–34.

    CAS  PubMed  Google Scholar 

  54. Zhu S, Oh HS, Shim M, Sterneck E, Johnson PF, Smart RC. C/EBPbeta modulates the early events of keratinocyte differentiation involving growth arrest and keratin 1 and keratin 10 expression. Mol Cell Biol. 1999;19(10):7181–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sterneck E, Zhu S, Ramirez A, Jorcano JL, Smart RC. Conditional ablation of C/EBP beta demonstrates its keratinocyte-specific requirement for cell survival and mouse skin tumorigenesis. Oncogene. 2006;25(8):1272–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Regalo G, Resende C, Wen X, Gomes B, Duraes C, Seruca R, et al. C/EBP alpha expression is associated with homeostasis of the gastric epithelium and with gastric carcinogenesis. Lab Invest. 2010;90(8):1132–9.

    Article  CAS  PubMed  Google Scholar 

  57. Regalo G, Canedo P, Suriano G, Resende C, Campos ML, Oliveira MJ, et al. C/EBPbeta is over-expressed in gastric carcinogenesis and is associated with COX-2 expression. J Pathol. 2006;210(4):398–404.

    Article  CAS  PubMed  Google Scholar 

  58. Sankpal NV, Moskaluk CA, Hampton GM, Powell SM. Overexpression of CEBPbeta correlates with decreased TFF1 in gastric cancer. Oncogene. 2006;25(4):643–9.

    CAS  PubMed  Google Scholar 

  59. Cooper C, Henderson A, Artandi S, Avitahl N, Calame K. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators. Nucleic Acids Res. 1995;23(21):4371–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Parkin SE, Baer M, Copeland TD, Schwartz RC, Johnson PF. Regulation of CCAAT/enhancer-binding protein (C/EBP) activator proteins by heterodimerization with C/EBPgamma (Ig/EBP). J Biol Chem. 2002;277(26):23563–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by a Grant from the National Natural Science Foundation of China (No. 81172301).

Author contributions

Hu T analyzed the data and wrote the manuscript; Huang L guided the analysis and manuscript writing; Xu CX designed the study, performed the endoscopic procedures, collected specimens and revised the manuscript; Liu X, Xiao J and Zhou L conducted the cell and Helicobacter pylori experiments; Wang Y collected and sent the specimens for array analysis; Luo L and Jiang X performed the experiment of Mongolian gerbils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-Xia Xu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, TZ., Huang, LH., Xu, CX. et al. Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis. Med Oncol 32, 265 (2015). https://doi.org/10.1007/s12032-015-0711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0711-y

Keywords

Navigation