Skip to main content
Log in

Differentiation of benign and malignant focal liver lesions: value of virtual touch tissue quantification of acoustic radiation force impulse elastography

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the value of virtual tissue quantification (VTQ) of acoustic radiation force impulse elastography for the differential diagnosis of benign and malignant focal liver lesions (FLLs). Thus, a total of 134 FLLs in 134 patients were included. VTQ measurement was performed for each lesion in which the shear wave velocity (SWV) was measured. The difference in SWV and SWV ratio of FLL to surrounding liver between malignant and benign FLLs was evaluated, and the cutoff value was investigated. Receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic performance. A total of 134 lesions including 55 (41.0 %) malignant FLLs and 79 (59.0 %) benign ones were analyzed. The SWV of malignant and benign FLLs was 2.95 ± 1.00 m/s and 1.69 ± 0.89 m/s, respectively. Significant difference in SWV was presented between malignant and benign FLLs (p < 0.001). The SWV ratio of each FLL to the surrounding liver parenchyma was 1.83 ± 1.32 for malignant and 1.26 ± 0.78 for benign FLLs (p < 0.001). The area under the ROC curve in distinguishing malignant from benign lesions was 0.824 for SWV and 0.660 for SWV ratio. The cutoff value for differential diagnosis was 2.13 m/s for SWV and 1.37 for SWV ratio. The associated sensitivity and specificity were 83.3 and 77.9 % for SWV and 59.6 and 77.3 % for SWV ratio, respectively. In conclusion, VTQ provides quantitative stiffness information of FLLs and is helpful in the differential diagnosis between malignant and benign FLLs, particularly for the patients who are not candidates for contrast-enhanced imaging such as CT, MRI or contrast-enhanced ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trillaud H, Bruel JM, Valette PJ, Vilgrain V, Schmutz G, Oyen R, Jakubowski W, Danes J, Valek V, Greis C. Characterization of focal liver lesions with SonoVue to enhanced sonography: international multicenter to study in comparison to CT and MRI. World J Gastroenterol. 2009;15:3748–56.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging. 2001;13:397–401.

    Article  CAS  PubMed  Google Scholar 

  3. Hohmann J, Albrecht T, Hoffmann CW, Wolf KJ. Ultrasonographic detection of focal liver lesions: increased sensitivity and specificity with microbubble contrast agents. Eur J Radiol. 2003;46:147–59.

    Article  CAS  PubMed  Google Scholar 

  4. Xu HX, Lu MD, Liu LN, Zhang YF, Guo LH, Xu JM, Liu C. Discrimination between neoplastic and nonneoplastic lesions in cirrhotic liver using contrast-enhanced ultrasound. Br J Radiol. 2012;85:1376–84.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol. 2011;197:547–55.

    Article  PubMed  Google Scholar 

  6. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson SR, Greenbaum LD, Goldberg BB. Contrast-enhanced ultrasound: What is the evidence and what are the obstacles? AJR Am J Roentgenol. 2009;193:55–60.

    Article  PubMed  Google Scholar 

  8. Urban MW, Nenadic IZ, Chen S, Greenleaf JF. Discrepancies in reporting tissue material properties. J Ultrasound Med. 2013;32:886–8.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24:1419–35.

    Article  CAS  PubMed  Google Scholar 

  10. Zhai L, Palmeri ML, Bouchard RR, Nightingale RW, Nightingale KR. An integrated indenter-ARFI imaging system for tissue stiffness quantification. Ultrason Imaging. 2008;30:95–111.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gallotti A, D’Onofrio M, Pozzi Mucelli R. Acoustic radiation force impulse (ARFI) technique in ultrasound with virtual touch tissue quantification of the upper abdomen. Radiol Med. 2010;115:889–97.

    Article  CAS  PubMed  Google Scholar 

  12. Yu H, Wilson SR. Differentiation of benign from malignant liver masses with acoustic radiation force impulse technique. Ultrasound Q. 2011;27:217–23.

    Article  PubMed  Google Scholar 

  13. Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2001;28:227–35.

    Article  Google Scholar 

  14. Palmeri ML, Wang MH, Dahl JJ, Frinkley KD, Nightingale KR. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34:546–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yoon KT, Lim SM, Park JY, Kim do Y, Ahn SH, Han KH, Chon CY, Cho M, Lee JW, Kim SU. Liver stiffness measurement using acoustic radiation force impulse (ARFI) elastography and effect of necroinflammation. Dig Dis Sci. 2012;57:1682–91.

    Article  PubMed  Google Scholar 

  16. D’Onofrio M, Gallotti A, Mucelli RP. Tissue quantification with acoustic radiation force impulse imaging: measurement repeatability and normal values in the healthy liver. AJR Am J Roentgenol. 2010;195:132–6.

    Article  PubMed  Google Scholar 

  17. Meng W, Zhang G, Wu C, Wu G, Song Y, Lu Z. Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound Med Biol. 2011;37:1436–43.

    Article  PubMed  Google Scholar 

  18. Zhang YF, Xu HX, He Y, Liu C, Guo LH, Liu LN, Xu JM. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules. PLoS One. 2012;7:e49094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang YF, He Y, Xu HX, Xu XH, Liu C, Guo LH, Liu LN, Xu JM. Virtual touch tissue imaging of acoustic radiation force impulse: a new technique in the differential diagnosis between benign and malignant thyroid nodules. J Ultrasound Med. 2014;33:585–95.

    Article  CAS  PubMed  Google Scholar 

  20. Guo LH, Xu HX, Fu HJ, Peng A, Zhang YF, Liu LN. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013;8:e68925.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yashima Y, Sasahira N, Isayama H, Kogure H, Ikeda H, Hirano K, Mizuno S, Yagioka H, Kawakubo K, Sasaki T, Nakai Y, Tada M, Yoshida H, Omata M, Koike K. Acoustic radiation force impulse elastography for noninvasive assessment of chronic pancreatitis. J Gastroenterol. 2012;47:427–32.

    Article  PubMed  Google Scholar 

  22. Piscaglia F, Salvatore V, Di Donato R, D’Onofrio M, Gualandi S, Gallotti A, Peri E, Borghi A, Conti F, Fattovich G, Sagrini E, Cucchetti A, Andreone P, Bolondi L. Accuracy of virtual touch acoustic radiation force impulse (ARFI) imaging for the diagnosis of cirrhosis during liver ultrasonography. Ultraschall Med. 2011;32:167–75.

    Article  CAS  PubMed  Google Scholar 

  23. Palmeri ML, Wang MH, Rouze NC, Abdelmalek MF, Guy CD, Moser B, Diehl AM, Nightingale KR. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol. 2011;55:666–72.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Sporea I, Sirli R, Popescu A, Danilã M. Acoustic radiation force impulse (ARFI)—a new modality for the evaluation of liver fibrosis. Med Ultrason. 2010;12:26–31.

    PubMed  Google Scholar 

  25. Lupsor M, Badea R, Stefanescu H, Sparchez Z, Branda H, Serban A, Maniu A. Performance of a new elastographic method (ARFI technology) compared to unidimensional transient elastography in the noninvasive assessment of chronic hepatitis C. Preliminary results. J Gastrointestin Liver Dis. 2009;18:303–10.

    PubMed  Google Scholar 

  26. Friedrich-Rust M, Wunder K, Kriener S, Sotoudeh F, Richter S, Bojunga J, Herrmann E, Poynard T, Dietrich CF, Vermehren J, Zeuzem S, Sarrazin C. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology. 2009;252:595–604.

    Article  PubMed  Google Scholar 

  27. Cho SH, Lee JY, Han JK, Choi BI. Acoustic radiation force impulse elastography for the evaluation of focal solid hepatic lesions: preliminary findings. Ultrasound Med Biol. 2010;36:202–8.

    Article  PubMed  Google Scholar 

  28. Davies G, Koenen M. Acoustic radiation force impulse elastography in distinguishing hepatic haemangiomata from metastases: preliminary observations. Br J Radiol. 2011;84:939–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shuang-Ming T, Ping Z, Ying Q, Li-Rong C, Ping Z, Rui-Zhen L. Usefulness of acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant liver lesions. Acad Radiol. 2011;18:810–5.

    Article  PubMed  Google Scholar 

  30. Zhang P, Zhou P, Tian SM, Qian Y, Deng J, Zhang L. Application of acoustic radiation force impulse imaging for the evaluation of focal liver lesion elasticity. Hepatobiliary Pancreat Dis Int. 2013;12:165–70.

    Article  PubMed  Google Scholar 

  31. Heide R, Strobel D, Bernatik T, Goertz RS. Characterization of focal liver lesions (FLL) with acoustic radiation force impulse (ARFI) elastometry. Ultraschall Med. 2010;31:405–9.

    Article  CAS  PubMed  Google Scholar 

  32. Park H, Park JY, Kim do Y, Ahn SH, Chon CY, Han KH, Kim SU. Characterization of focal liver masses using acoustic radiation force impulse elastography. World J Gastroenterol. 2013;19:219–26.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Kim JE, Lee JY, Bae KS, Han JK, Choi BI. Acoustic radiation force impulse elastography for focal hepatic tumors: usefulness for differentiating hemangiomas from malignant tumors. Korean J Radiol. 2013;14:743–53.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  PubMed  Google Scholar 

  35. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hanafusa K, Ohashi I, Himeno Y, Suzuki S, Shibuya H. Hepatic hemangioma: findings with two-phase CT. Radiology. 1995;196:465–9.

    Article  CAS  PubMed  Google Scholar 

  37. Burns PN, Wilson SR. Focal liver masses: enhancement patterns on contrast-enhanced images-concordance of US scans with CT scans and MR images. Radiology. 2007;242:162–74.

    Article  PubMed  Google Scholar 

  38. Mattison GR, Glazer GM, Quint LE, Francis IR, Bree RL, Ensminger WD. MR imaging of hepatic focal nodular hyperplasia: characterization and distinction from primary malignant hepatic tumors. AJR Am J Roentgenol. 1987;148:711–5.

    Article  CAS  PubMed  Google Scholar 

  39. Fahey BJ, Nelson RC, Bradway DP, Hsu SJ, Dumont DM, Trahey GE. In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol. 2008;53:279–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. DeWall RJ, Bharat S, Varghese T, Hanson ME, Agni RM, Kliewer MA. Characterizing the compression-dependent viscoelastic properties of human hepatic pathologies using dynamic compression testing. Phys Med Biol. 2012;57:2273–86.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant 81371570 from National Natural Scientific Foundation of China, Grant 20114003 of Key Project from Shanghai Health Bureau and Grant 2012045 of Shanghai Talent Development Project from Shanghai Human Resource and Social Security Bureau.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Xiong Xu or Xiao-Hong Xu.

Additional information

Le-Hang Guo and Shu-Jun Wang have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, LH., Wang, SJ., Xu, HX. et al. Differentiation of benign and malignant focal liver lesions: value of virtual touch tissue quantification of acoustic radiation force impulse elastography. Med Oncol 32, 68 (2015). https://doi.org/10.1007/s12032-015-0543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0543-9

Keywords

Navigation