Skip to main content
Log in

Paeonol Ameliorates Cuprizone-Induced Hippocampal Demyelination and Cognitive Deficits through Inhibition of Oxidative and Inflammatory Events

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic and inflammatory disorder of the central nervous system with autoimmune nature that is typified by varying degrees of demyelination and axonal damage. Paeonol is an active ingredient in some medicinal plants with anti-inflammatory and neuroprotective property. This study was conducted to reveal whether paeonol can alleviate hippocampal demyelination and cognitive deficits in cuprizone-induced murine model of demyelination as a model of MS. C57BL/6 mice received oral cuprizone (400 mg/kg) for 6 weeks, and paeonol was administered p.o. at two doses of 25 or 100 mg/kg, starting from the second week post-cuprizone for 5 weeks. After assessment of learning and memory in different tasks, oxidative stress and inflammation were evaluated besides immunohistochemical assessment of hippocampal myelin basic protein (MBP). Paeonol (100 mg/kg) properly ameliorated cognitive deficits in Y maze, novel object discrimination (NOD) test, and Barnes maze with no significant improvement of performance in passive avoidance task. In addition, paeonol treatment at the higher dose was also associated with partial restoration of hippocampal level of oxidative stress and inflammatory markers including MDA, ROS, GSH, SOD, catalase, NF-kB, and TNF. Besides, paeonol improved MMP as an index of mitochondrial integrity and health and reduced MPO as a factor of neutrophil infiltration. Furthermore, paeonol treatment prevented hippocampal MBP immunoreactivity, indicating its prevention of demyelination. In conclusion, the current study showed the preventive effect of paeonol against cuprizone-induced demyelination and cognitive deficits through reversing most oxidative stress- and inflammation-related parameters in addition to its improvement of mitochondrial health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

GSH:

Glutathione (reduced form)

IL-1β:

Interleukin 1β

MBP:

Myelin basic protein

MDA:

Malondialdehyde

MMP:

Mitochondrial membrane potential

MPO:

Myeloperoxidase

MS:

Multiple sclerosis

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NOD:

Novel object discrimination

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TLR4:

Toll-like receptor 4

TNFα:

Tumor necrosis factor α

References

  • Abd El Aziz AE, Sayed RH, Sallam NA, El Sayed NS (2021) Neuroprotective effects of telmisartan and nifedipine against cuprizone-induced demyelination and behavioral dysfunction in mice: roles of NF-κB and Nrf2. Inflammation 44(4):1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Abo Taleb HA, Alghamdi BS (2020) Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J Mol Neurosci 70(3):386–402

    Article  CAS  PubMed  Google Scholar 

  • Adki KM, Kulkarni YA (2021) Neuroprotective effect of paeonol in streptozotocin-induced diabetes in rats. Life Sci 271:119202

  • Albazal A, Delshad AA, Roghani M (2021) Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J Chem Neuroanat 112:101902

  • Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212

    CAS  PubMed  Google Scholar 

  • Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Rinaldi L, Perini P, Gallo P, Filippi M (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66(9):1144–1150

    Article  PubMed  Google Scholar 

  • Cristiano E, Patrucco L, Miguez J, Giunta D, Peroni J, Rojas JI (2016) Increasing incidence of multiple sclerosis among women in Buenos Aires: a 22 year health maintenance organization based study. Neurol Sci 37(10):1621–1626

    Article  CAS  PubMed  Google Scholar 

  • Denny L, Al Abadey A, Robichon K, Templeton N, Prisinzano TE, Kivell BM, La Flamme AC (2021) Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clin Transl Immunology 10(1):e1234

  • Ding J, Yu HL, Ma WW, Xi YD, Zhao X, Yuan LH, Feng JF, Xiao R (2013) Soy isoflavone attenuates brain mitochondrial oxidative stress induced by beta-amyloid peptides 1–42 injection in lateral cerebral ventricle. J Neurosci Res 91(4):562–567

    Article  CAS  PubMed  Google Scholar 

  • Faizi M, Salimi A, Seydi E, Naserzadeh P, Kouhnavard M, Rahimi A, Pourahmad J (2016) Toxicity of cuprizone a Cu(2+) chelating agent on isolated mouse brain mitochondria: a justification for demyelination and subsequent behavioral dysfunction. Toxicol Mech Methods 26(4):276–283

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Li D, Guan X, Yang Y, Yan J, Shi J, Ma R, Shu Q (2020) MsrA suppresses inflammatory activation of microglia and oxidative stress to prevent demyelination via inhibition of the NOX2-MAPKs/NF-κB signaling pathway. Drug Des Devel Ther 14:1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan HB, Chen LX, Qu XB, Ren CL, Wu XX, Dong FX, Zhang BL, Gao DS, Yao RQ (2017) Transplanted miR-219-overexpressing oligodendrocyte precursor cells promoted remyelination and improved functional recovery in a chronic demyelinated model. Sci Rep 7:41407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman E (2019) Thiobarbituric acid reactive substances (TBARS) Assay. Protocols. IO

  • Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA (2017) Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study. Mol Neurobiol 54(5):3219–3229

    Article  CAS  PubMed  Google Scholar 

  • Ghalami J, Baluchnejad Mojarad T, Mansouri M, Khamse S, Roghani M (2021) Paeonol protection against intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease. Basic and Clinical Neuroscience Journal 12(1):43–56

    Article  CAS  Google Scholar 

  • Ghobadi M, Arji Roodsari B, Yadegari M, Homayouni-Moghadam F, Rezvani ME (2017) The effect of ferulic acid on cognitive disorder and brain structural deficit in mice in cuprizone induced animal model of multiple sclerosis. J Rafsanjan Univ Med Sci 16(6):541–552

  • Ghoneum MH, El Sayed NS (2021) Protective effect of biobran/MGN-3 against sporadic Alzheimer’s disease mouse model: possible role of oxidative stress and apoptotic pathways. Oxid Med Cell Longev 2021:8845064

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Du Y, Xie L, Pu Y, Yuan J, Wang Z, Zhang T, Wang B (2020) Effects of paeonol and gastroretention tablets of paeonol on experimental gastric ulcers and intestinal flora in rats. Inflammation 43(6):2178–2190

    Article  CAS  PubMed  Google Scholar 

  • Han F, Xu H, Shen JX, Pan C, Yu ZH, Chen JJ, Zhu XL, Cai YF, Lu YP (2020) RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D-galactose and aluminum-induced Alzheimer’s disease-like rat model. Acta Neurobiol Exp 80(3):225–244

    Article  Google Scholar 

  • Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN Neuro 4(6):393–408

    Article  CAS  PubMed  Google Scholar 

  • Hu JR, Chun YS, Kim JK, Cho IJ, Ku SK (2019) Ginseng berry aqueous extract prevents scopolamine-induced memory impairment in mice. Exp Ther Med 18(6):4388–4396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Wang M, Wang J, Cao H, Niu W, Du L (2020) Paeonol attenuates isoflurane anesthesia-induced hippocampal neurotoxicity via modulation of JNK/ERK/P38MAPK pathway and regulates histone acetylation in neonatal rat. J Matern Fetal Neonatal Med 33(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Khosravi Z, Sedaghat R, Baluchnejadmojarad T, Roghani M (2019) Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int Immunopharmacol 70:37–46

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chang L, Weinstock-Guttman B, Gandhi S, Jakimovski D, Carl E, Zivadinov R, Ramanathan M (2018) Complementary and alternative medicine usage by multiple sclerosis patients: results from a prospective clinical study. J Altern Complement Med (new York, NY) 24(6):596–602

    Article  Google Scholar 

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736

    Article  PubMed  Google Scholar 

  • Kong D, Chen L, Huang W, Zhang Z, Wang L, Zhang F, Zheng S (2020) Combined therapy with ligustrazine and paeonol mitigates hepatic fibrosis through destroying mitochondrial integrity of stellate cell. Am J Transl Res 12(4):1255–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DH, Agbo E, Zhang SH, Zhu JL (2019) Anticonvulsant and neuroprotective effects of paeonol in epileptic rats. Neurochem Res 44(11):2556–2565

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Lv HW, Yang S, He YQ, Ma QR, Liu J (2020) NEP1–40 alleviates behavioral phenotypes and promote oligodendrocyte progenitor cell differentiation in the hippocampus of cuprizone-induced demyelination mouse model. Neurosci Lett 725:134872

  • Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413–419

    Article  CAS  PubMed  Google Scholar 

  • Marzan DE, Brügger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL (2021) Activated microglia drive demyelination via CSF1R signaling. Glia 69(6):1583–1604

    Article  CAS  PubMed  Google Scholar 

  • McGinley MP, Goldschmidt CH, Rae-Grant AD (2021) Diagnosis and treatment of multiple sclerosis: a review. JAMA 325(8):765–779

    Article  CAS  PubMed  Google Scholar 

  • Mohd Sairazi NS, Sirajudeen KNS (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Based Complementary Altern Med 2020:6565396

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasri S, Roghani M, Baluchnejadmojarad T, Balvardi M, Rabani T (2012) Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats. Phytother Res 26(8):1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Nellessen A, Nyamoya S, Zendedel A, Slowik A, Wruck C, Beyer C, Fragoulis A, Clarner T (2020) Nrf2 deficiency increases oligodendrocyte loss, demyelination, neuroinflammation and axonal damage in an MS animal model. Metab Brain Dis 35(2):353–362

    Article  PubMed  Google Scholar 

  • Ogunlade B, Fidelis OP, Afolayan OO, Agie JA (2021) Neurotherapeutic and antioxidant response of D-ribose-L-Cysteine nutritional dietary supplements on Alzheimer-type hippocampal neurodegeneration induced by cuprizone in adult male wistar rat model. Food Chem Toxicol 147:111862

  • Ojha S, Javed H, Azimullah S, Abul Khair SB, Haque ME (2015) Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Devel Ther 9:5499–5510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA (2018a) Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis. Anat Cell Biol 51(2):119–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Omotoso GO, Olajide OJ, Gbadamosi IT, Adebayo JO, Enaibe BU, Akinola OB, Owoyele BV (2019) Cuprizone toxicity and Garcinia kola biflavonoid complex activity on hippocampal morphology and neurobehaviour. Heliyon 5(7):e02102

  • Omotoso GO, Ukwubile II, Arietarhire L, Sulaimon F, Gbadamosi IT (2018b) Kolaviron protects the brain in cuprizone-induced model of experimental multiple sclerosis via enhancement of intrinsic antioxidant mechanisms: Possible therapeutic applications? Pathophysiology 25(4):299–306

    Article  CAS  PubMed  Google Scholar 

  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    Article  CAS  PubMed  Google Scholar 

  • Pulli B, Ali M, Forghani R, Schob S, Hsieh KL, Wojtkiewicz G, Linnoila JJ, Chen JW (2013) Measuring myeloperoxidase activity in biological samples. PLoS One 8(7):e67976

  • Qiu C, Yang LD, Yu W, Tian DD, Gao MR, Wang WJ, Li XB, Wu YM, Wang M (2021) Paeonol ameliorates CFA-induced inflammatory pain by inhibiting HMGB1/TLR4/NF-κB p65 pathway. Metab Brain Dis 36(2):273–283

    Article  CAS  PubMed  Google Scholar 

  • Ramazi S, Fahanik-Babaei J, Mohamadi-Zarch SM, Tashakori-Miyanroudi M, Nourabadi D, Nazari-Serenjeh M, Roghani M, Baluchnejadmojarad T (2020) Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: involvement of oxidative stress, inflammation and pyroptosis. J Chem Neuroanat 108:101800

  • Rinaldi F, Perini P, Atzori M, Favaretto A, Seppi D, Gallo P (2015) Disease-modifying drugs reduce cortical lesion accumulation and atrophy progression in relapsing-remitting multiple sclerosis: results from a 48-month extension study. Mult Scler Int 2015:369348

  • Samie A, Sedaghat R, Baluchnejadmojarad T, Roghani M (2018) Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci 210:132–139

    Article  CAS  PubMed  Google Scholar 

  • Sen MK, Mahns DA, Coorssen JR, Shortland PJ (2019) Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 107:23–46

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Peng H, Huang Q, Kong J, Xu H (2015) Quetiapine mitigates the neuroinflammation and oligodendrocyte loss in the brain of C57BL/6 mouse following cuprizone exposure for one week. Eur J Pharmacol 765:249–257

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Chen YH, Liu H, Qu HD (2016) Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson’s disease in mice. Mol Med Rep 14(3):2397–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su SY, Cheng CY, Tsai TH, Hsieh CL (2012) Paeonol protects memory after ischemic stroke via inhibiting β-secretase and apoptosis. Evid Based Complementary Altern Med 2012:932823

  • Tseng YT, Hsu YY, Shih YT, Lo YC (2012) Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock 37(3):312–318

    Article  CAS  PubMed  Google Scholar 

  • Vassall KA, Bamm VV, Harauz G (2015) MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 472(1):17–32

    Article  CAS  PubMed  Google Scholar 

  • Walker JM (1996) The Bicinchoninic Acid (BCA) Assay for protein quantitation. In: Walker JM (ed) The Protein Protocols Handbook. Humana Press, Totowa, NJ, pp 11–14

    Chapter  Google Scholar 

  • Wang X, Zhu G, Yang S, Wang X, Cheng H, Wang F, Li X, Li Q (2011) Paeonol prevents excitotoxicity in rat pheochromocytoma PC12 cells via downregulation of ERK activation and inhibition of apoptosis. Planta Med 77(15):1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Yang CT, Lu GL, Hsu SF, MacDonald I, Chiou LC, Hung SY, Chen YH (2018) Paeonol promotes hippocampal synaptic transmission: the role of the Kv2.1 potassium channel. Eur J Pharmacol 827(227–237)

  • Yang L, Tan D, Piao H (2016) Myelin basic protein citrullination in multiple sclerosis: a potential therapeutic target for the pathology. Neurochem Res 41(8):1845–1856

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Yi Y, Wu S, Zhou Y, Zhao D (2017) Role of paeonol in an astrocyte model of Parkinson’s disease. Med Sci Monit 23:4740–4748

    Article  PubMed  PubMed Central  Google Scholar 

  • Zappa Villar MF, López Hanotte J, Falomir Lockhart E, Trípodi LS, Morel GR, Reggiani PC (2018) Intracerebroventricular streptozotocin induces impaired Barnes maze spatial memory and reduces astrocyte branching in the CA1 and CA3 hippocampal regions. J Neural Transm (Vienna, Austria : 1996) 125(12):1787–1803

  • Zappa Villar MF, López Hanotte J, Pardo J, Morel GR, Mazzolini G, García MG, Reggiani PC (2020) Mesenchymal stem cells therapy improved the streptozotocin-induced behavioral and hippocampal impairment in rats. Mol Neurobiol 57(2):600–615

    Article  CAS  PubMed  Google Scholar 

  • Zarezadeh M, Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Roghani M (2017) Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: Possible involved mechanisms. Eur J Pharmacol 795:13–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jiang M, Zhao H, Han L, Jin Y, Chen W, Wang J, Zhang Z, Peng C (2020) Synthesis of paeonol-ozagrel conjugate: structure characterization and in vivo anti-ischemic stroke potential. Front Pharmacol 11:608221

  • Zhao B, Shi QJ, Zhang ZZ, Wang SY, Wang X, Wang H (2018) Protective effects of paeonol on subacute/chronic brain injury during cerebral ischemia in rats. Exp Ther Med 15(4):3836–3846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen W, Liu A, Lu J, Zhang W, Tattersall D, Wang J (2017) An alternative cuprizone-induced demyelination and remyelination mouse model. ASN Neuro 9(4):1759091417725174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong S-Z, Ge Q-H, Qu R, Li Q, Ma S-P (2009) Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. 277(1–2):58–64

Download references

Funding

This research study was the results of Ph.D. student thesis project that was approved by Faculty of Basic Sciences (Shahed University, Tehran, Iran) in 2020. Shahed University,1399.041,Mehrdad Roghani

Author information

Authors and Affiliations

Authors

Contributions

S.P. conducted the experiments and helped in the data analysis and manuscript preparation. Z.K. and M.R. designed the study, supervised conductance of the experiments, and prepared the manuscript. M.R. performed statistical analysis of data and M.Kh. helped in designing the experiments and preparation of the manuscript.

Corresponding author

Correspondence to Mehrdad Roghani.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental procedures of this study were conducted under ethical committee supervision of Shahed University (Tehran, Iran) that was in accordance to NIH guidelines for the care and use of laboratory animals. All efforts were made to minimize number of animals and to lower their sufferings. The present study was approved by Institutional Ethics Committee of the Shahed University (Approval ID: IR.SHAHED.REC.1399.041).

Consent for Publication

All the authors have read the manuscript and approved its submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmohammadi, S., Roghani, M., Kiasalari, Z. et al. Paeonol Ameliorates Cuprizone-Induced Hippocampal Demyelination and Cognitive Deficits through Inhibition of Oxidative and Inflammatory Events. J Mol Neurosci 72, 748–758 (2022). https://doi.org/10.1007/s12031-021-01951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01951-2

Keywords

Navigation