Skip to main content
Log in

Repair of Spinal Cord Injury by Inhibition of PLK4 Expression Through Local Delivery of siRNA-Loaded Nanoparticles

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Polo-like kinase 4 (PLK4) is one of the key regulators of centrosomal replication. However, its role and mechanism in spinal cord injury (SCI) are still unclear. The SCI model on rats was constructed and the expression and localization of PLK4 in the spinal cord are analyzed with Western blot and immunofluorescence, respectively. Then the specific siRNAs were encapsulated in nanoparticles for the inhibition of PLK4 expression. Afterward, the role of PLK4 on astrocytes was investigated by knocking down its expression in the primary astrocytes. Moreover, siRNA-loaded nanoparticles were injected into the injured spinal cord of rats, and the motor function recovery of rats after SCI was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale method. Notably, the siRNA-loaded nanoparticles effectively transfect primary astrocytes and significantly inhibit PLK4 expression, together with the expression of PCNA with significance. After treatment, restoration of the motor function following SCI was significantly improved in the PLK4 knockdown group compared with the control group. Therefore, we speculate that inhibition of Plk4 may inhibit the proliferation of astrocytes and decrease the inflammatory response mediated by astrocytes, so as to promote the functional recovery of SCI. In conclusion, inhibition of PLK4 expression via siRNA-loaded nanoparticles may be a potential treatment for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  • Ambrozaitis KV, Kontautas E, Spakauskas B, Vaitkaitis D (2006) Pathophysiology of acute spinal cord injury. Medicina (kaunas) 42(3):255–261

    Google Scholar 

  • Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200

    Article  CAS  Google Scholar 

  • Bai G, Jiang L, Meng P, Li J, Han C, Wang Y et al (2021) LncRNA Neat1 promotes regeneration after spinal cord injury by targeting miR-29b. J Mol Neurosci 71(6):1174–1184

    Article  CAS  Google Scholar 

  • Bailey AW, Suri A, Chou PM, Pundy T, Gadd S, Raimondi SL et al (2018) Polo-like kinase 4 (PLK4) is overexpressed in central nervous system neuroblastoma (CNS-NB). Bioengineering (Basel) 5(4)

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139(2):244–256

    Article  CAS  Google Scholar 

  • Branco F, Cardenas DD, Svircev JN (2007) Spinal cord injury: a comprehensive review. Phys Med Rehabil Clin N Am 18(4):651–79, v

  • Bulaklak K, Gersbach CA (2020) The once and future gene therapy. Nat Commun 11(1):5820

    Article  CAS  Google Scholar 

  • Cajanek L, Glatter T, Nigg EA (2015) The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis. J Cell Sci 128(9):1674–1682

    CAS  PubMed  Google Scholar 

  • Detloff MR, Fisher LC, Deibert RJ, Basso DM (2012) Acute and chronic tactile sensory testing after spinal cord injury in rats. J Vis Exp (62):e3247

  • Eckert MJ, Martin MJ (2017) Trauma: spinal cord injury. Surg Clin North Am 97(5):1031–1045

    Article  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24(9):2143–2155

    Article  CAS  Google Scholar 

  • Frydas IS, Kermenidou M, Tsave O, Salifoglou A, Sarigiannis DA (2020) Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air. Toxicol Rep 7:1469–1479

    Article  CAS  Google Scholar 

  • Gaudet AD, Fonken LK (2018) Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15(3):554–577

    Article  CAS  Google Scholar 

  • Gemble S, Basto R (2018) Fast and furious … or not, Plk4 dictates the pace. J Cell Biol 217(4):1169–1171

    Article  Google Scholar 

  • Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW (2010) Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J Cell Biol 188(2):191–198

    Article  CAS  Google Scholar 

  • Jiang B, Xiang Z, Ai Z, Wang H, Li Y, Ji W et al (2015) Generation of cardiac spheres from primate pluripotent stem cells in a small molecule-based 3D system. Biomaterials 65:103–114

    Article  CAS  Google Scholar 

  • Kawakami M, Mustachio LM, Zheng L, Chen Y, Rodriguez-Canales J, Mino B et al (2018) Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers. Proc Natl Acad Sci USA 115(8):1913–1918

    Article  CAS  Google Scholar 

  • Kelleher FC, Kroes J, Lewin J (2019) Targeting the centrosome and polo-like kinase 4 in osteosarcoma. Carcinogenesis 40(4):493–499

    Article  CAS  Google Scholar 

  • Kerschner-Morales SL, Kuhne M, Becker S, Beck JF, Sonnemann J (2020) Anticancer effects of the PLK4 inhibitors CFI-400945 and centrinone in Ewing’s sarcoma cells. J Cancer Res Clin Oncol 146(11):2871–2883

    Article  CAS  Google Scholar 

  • Kim YH, Ha KY, Kim SI (2017) Spinal cord injury and related clinical trials. Clin Orthop Surg 9(1):1–9

    Article  Google Scholar 

  • Kirshblum S, Waring W, 3rd (2014) Updates for the International Standards for Neurological Classification of Spinal Cord Injury. Phys Med Rehabil Clin N Am 25(3):505–17, vi

  • Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A et al (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34(6):535–546

    Article  Google Scholar 

  • Ko MA, Rosario CO, Hudson JW, Kulkarni S, Pollett A, Dennis JW et al (2005) Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet 37(8):883–888

    Article  CAS  Google Scholar 

  • Kratz AS, Barenz F, Richter KT, Hoffmann I (2015) Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol Open 4(3):370–377

    Article  Google Scholar 

  • Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R et al (2018) PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 22(1):59–73

    Article  CAS  Google Scholar 

  • Mohammadi H, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F (2021) Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep 8:331–336

    Article  CAS  Google Scholar 

  • Montenegro Gouveia S, Zitouni S, Kong D, Duarte P, Ferreira Gomes B, Sousa AL et al (2018) PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation. J Cell Sci 132(4)

  • Moyer TC, Holland AJ (2019) PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. Elife 8

  • O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127(9):3259–3270

    Article  Google Scholar 

  • Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43

    Article  Google Scholar 

  • Park JE, Zhang L, Bang JK, Andresson T, DiMaio F, Lee KS (2019) Phase separation of polo-like kinase 4 by autoactivation and clustering drives centriole biogenesis. Nat Commun 10(1):4959

    Article  Google Scholar 

  • Peters N, Perez DE, Song MH, Liu Y, Muller-Reichert T, Caron C et al (2010) Control of mitotic and meiotic centriole duplication by the Plk4-related kinase ZYG-1. J Cell Sci 123(Pt 5):795–805

    Article  CAS  Google Scholar 

  • Press MF, Xie B, Davenport S, Zhou Y, Guzman R, Nolan GP et al (2019) Role for polo-like kinase 4 in mediation of cytokinesis. Proc Natl Acad Sci USA 116(23):11309–11318

    Article  CAS  Google Scholar 

  • Rosario CO, Kazazian K, Zih FS, Brashavitskaya O, Haffani Y, Xu RS et al (2015) A novel role for Plk4 in regulating cell spreading and motility. Oncogene 34(26):3441–3451

    Article  CAS  Google Scholar 

  • Shinmura K, Kato H, Kawanishi Y, Yoshimura K, Tsuchiya K, Takahara Y et al (2019) POLQ overexpression is associated with an increased somatic mutation load and PLK4 overexpression in lung adenocarcinoma. Cancers (Basel) 11(5)

  • Sredni ST, Bailey AW, Suri A, Hashizume R, He X, Louis N et al (2017) Inhibition of polo-like kinase 4 (PLK4): a new therapeutic option for rhabdoid tumors and pediatric medulloblastoma. Oncotarget 8(67):111190–111212

    Article  Google Scholar 

  • Sung YK, Kim SW (2019a) Recent advances in the development of bio-reducible polymers for efficient cancer gene delivery systems. Cancer Med J 2(1):6–13

    Article  Google Scholar 

  • Sung YK, Kim SW (2019b) Recent advances in the development of gene delivery systems. Biomater Res 23:8

    Article  CAS  Google Scholar 

  • Taghizadehghalehjoughi A, Hacimuftuoglu A, Cetin M, Ugur AB, Galateanu B, Mezhuev Y et al (2018) Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. Nanomedicine 13(13):1595–1606

    Article  Google Scholar 

  • Thu KL, Soria-Bretones I, Mak TW, Cescon DW (2018) Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle 17(15):1871–1885

    Article  CAS  Google Scholar 

  • Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Vakonaki E et al (2019) Association of nutraceutical supplements with longer telomere length. Int J Mol Med 44(1):218–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Jiang B, Niu Y, Wang H, Li E, Yan Y et al (2018) Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discov 5:28

    Google Scholar 

  • Yang XD, Li W, Zhang S, Wu D, Jiang X, Tan R et al (2020) PLK4 deubiquitination by Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the centrosome. EMBO J 39(2):e102201

  • Yuan YM, He C (2013) The glial scar in spinal cord injury and repair. Neurosci Bull 29(4):421–435

    Article  Google Scholar 

  • Zeng H, Liu N, Yang YY, Xing HY, Liu XX, Li F et al (2019) Lentivirus-mediated downregulation of alpha-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflammation 16(1):283

    Article  CAS  Google Scholar 

  • Zhang M, Wang L, Huang S, He X (2020) MicroRNA-223 targets NLRP3 to relieve inflammation and alleviate spinal cord injury. Life sciences 254:117796

  • Zhao Y, Wang X (2019) PLK4: a promising target for cancer therapy. J Cancer Res Clin Oncol 145(10):2413–2422

    Article  Google Scholar 

  • Zheng Q, Zhang J, Zuo X, Sun J, Liang Z, Hu X et al (2021) Photobiomodulation promotes neuronal axon regeneration after oxidative stress and induces a change in polarization from M1 to M2 in macrophages via stimulation of CCL2 in neurons: relevance to spinal cord injury. J Mol Neurosci 71(6):1290–1300

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Affiliated Hospital of Nantong University and the grant to Prof. Xiangdong Chen (MS12019028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You Lang Zhou or Xiangdong Chen.

Ethics declarations

Ethical Approval

All the Ethics and protocols for Animal housing, care, and application of experimental procedures were approved by the ethic committee of Affiliated Hospital of Nantong University and keep in accordance with their ethical guidelines.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Zhang, R., Jiang, B. et al. Repair of Spinal Cord Injury by Inhibition of PLK4 Expression Through Local Delivery of siRNA-Loaded Nanoparticles. J Mol Neurosci 72, 544–554 (2022). https://doi.org/10.1007/s12031-021-01871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01871-1

Keywords

Navigation