Skip to main content

Advertisement

Log in

Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury?

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI), a leading cause of morbidity and mortality throughout the world, will probably become the third cause of death in the world by the year 2020. Lack of effective treatments approved for TBI is a major health problem. TBI is a heterogeneous disease due to the different mechanisms of injury. Therefore, it requires combination therapies or multipotential therapy that can affect multiple targets. In recent years, mesenchymal stem cells (MSCs) transplantation has considered one of the most promising therapeutic strategies to repair of brain injuries including TBI. In these studies, it has been shown that MSCs can migrate to the site of injury and differentiate into the cells secreting growth factors and anti-inflammatory cytokines. The reduction in brain edema, neuroinflammation, microglia accumulation, apoptosis, ischemia, the improvement of motor and cognitive function, and the enhancement in neurogenesis, angiogenesis, and neural stem cells survival, proliferation, and differentiation have been indicated in these studies. However, translation of MSCs research in TBI into a clinical setting will require additional preclinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    CAS  PubMed  Google Scholar 

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayir H, Kagan VE, Borisenko GG, Tyurina YY, Janesko KL, Vagni VA, Billiar TR, Williams DL, Kochanek PM (2005) Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS. J Cereb Blood Flow Metab 25:673–684

    CAS  PubMed  Google Scholar 

  • Butovsky O, Bukshpan S, Kunis G, Jung S, Schwartz M (2007) Microglia can be induced by IFN-γ or IL-4 to express neural or dendritic-like markers. Mol Cell Neurosci 35:490–500

    CAS  PubMed  Google Scholar 

  • Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC (2007) Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 204:220–233

    CAS  PubMed  Google Scholar 

  • Chang C-P, Chio C-C, Cheong C-U, Chao C-M, Cheng B-C, Lin M-T (2012) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci 124:165–176

    Google Scholar 

  • Chang C-P, Chio C-C, Cheong C-U, Chao C-M, Cheng B-C, Lin M-T (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci 124:165–176

    CAS  PubMed  Google Scholar 

  • Chen DY, Wei HJ, Lin KJ, Huang CC, Wang CC, Wu CT, Chao KT, Chen KJ, Chang Y, Sung HW (2013) Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials 34:1995–2004

    CAS  PubMed  Google Scholar 

  • Chen Q, Long Y, Yuan X, Zou L, Sun J, Chen S, Perez-Polo JR, Yang K (2005) Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 80:611–619

    CAS  PubMed  Google Scholar 

  • Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood 118:330–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246

    CAS  PubMed  Google Scholar 

  • Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E (2006) Incidence and lifetime costs of injuries in the United States. Injury Prevention 12:212–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CS Jr (2018) Cellular therapy for traumatic neurological injury. Pediatr Res 83:325–332

    CAS  PubMed  Google Scholar 

  • Czigner A, Mihály A, Farkas O, Büki A, Krisztin-Péva B, Dobó E, Barzó P (2007) Kinetics of the cellular immune response following closed head injury. Acta Neurochir 149:281–289

    CAS  PubMed  Google Scholar 

  • da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Google Scholar 

  • Dang B, Chen W, He W, Chen G (2017) Rehabilitation treatment and progress of traumatic brain injury dysfunction. Neural plasticity 2017:1–6

    Google Scholar 

  • Das M, Mayilsamy K, Mohapatra SS, Mohapatra S (2019) Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 30:839–855

    PubMed  Google Scholar 

  • Dehghan F, Shahrokhi N, Khaksari M, Soltani Z, Asadikorom G, Najafi A, Shahrokhi N (2018) Does the administration of melatonin during post-traumatic brain injury affect cytokine levels? Inflammopharmacology 26:1017–1023

    CAS  PubMed  Google Scholar 

  • DeWitt DS, Prough DS (2003) Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 20:795–825

    PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    CAS  PubMed  Google Scholar 

  • Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, Rhoads RP, Soret B, Reecy JM, Velleman SG, Jiang Z (2010) Skeletal muscle stem cells from animals I. Basic cell biology. International Journal of Biological Sciences 6:465–474

    PubMed  PubMed Central  Google Scholar 

  • Du Y, Zhou SH, Zhou T, Su H, Pan HW, Du WH, Liu B, Liu QM (2008) Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction. Cytotherapy 10:469–478

    CAS  PubMed  Google Scholar 

  • Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, Lauritzen M (2005) Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129:778–790

    PubMed  Google Scholar 

  • Floyd CL, Gorin FA, Lyeth BG (2005) Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51:35–46

    PubMed  PubMed Central  Google Scholar 

  • Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    PubMed  Google Scholar 

  • Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurology research international 2011:1–9

    Google Scholar 

  • Gennai G (2005) Lessico interculturale. EMI-Editrice Missionaria Italiana

    Google Scholar 

  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 12:564–574

    CAS  Google Scholar 

  • Ghajar J (2000) Traumatic brain injury. Lancet 356:923–929

    CAS  PubMed  Google Scholar 

  • Ghosh M, Xu Y, Pearse DD (2016) Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. J Neuroinflammation 13(9):1–14

    Google Scholar 

  • Gibb SL, Zhao Y, Potter D, Hylin MJ, Bruhn R, Baimukanova G, Zhao J, Xue H, Abdel-Mohsen M, Pillai SK, Moore AN, Johnson EM, Cox CS Jr, Dash PK, Pati S (2015) TIMP3 attenuates the loss of neural stem cells, mature neurons and neurocognitive dysfunction in traumatic brain injury. Stem Cells 33:3530–3544

    CAS  PubMed  Google Scholar 

  • Gincberg G, Shohami E, Trembovler V, Alexandrovich AG, Lazarovici P, Elchalal U (2018) Nerve growth factor plays a role in the neurotherapeutic effect of a CD45+ pan-hematopoietic subpopulation derived from human umbilical cord blood in a traumatic brain injury model. Cytotherapy 20:245–261

    CAS  PubMed  Google Scholar 

  • Goforth PB, Ellis EF, Satin LS (1999) Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 19:7367–7374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine: A Journal of Translational and Personalized Medicine 76:97–104

    Google Scholar 

  • Guo S, Zhen Y, Wang A (2017) Transplantation of bone mesenchymal stem cells promotes angiogenesis and improves neurological function after traumatic brain injury in mouse. Neuropsychiatr Dis Treat 13:2757–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    CAS  PubMed  Google Scholar 

  • Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7:51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herson PS, Lee K, Pinnock RD, Hughes J, Ashford ML (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833–841

    CAS  PubMed  Google Scholar 

  • Higuchi M, Tomioka M, Takano J, Shirotani K, Iwata N, Masumoto H, Maki M, Itohara S, Saido TC (2005) Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J Biol Chem 280:15229–15237

    CAS  PubMed  Google Scholar 

  • Hlatky R, Furuya Y, Valadka AB, Gonzalez J, Chacko A, Mizutani Y, Contant CF, Robertson CS (2002) Dynamic autoregulatory response after severe head injury. J Neurosurg 97:1054–1061

    PubMed  Google Scholar 

  • Hofer HR, Tuan RS (2016) Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 7:131–144

    PubMed  PubMed Central  Google Scholar 

  • Itoh T, Satou T, Hashimoto S, Ito H (2005) Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury. Neuroreport 16:1687–1691

    PubMed  Google Scholar 

  • Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42

    PubMed  PubMed Central  Google Scholar 

  • Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S (2004) Major depression following traumatic brain injury. Arch Gen Psychiatry 61:42–50

    PubMed  Google Scholar 

  • Khaksari M, Rajizadeh MA, Bejeshk MA, Soltani Z, Motamedi S, Moramdi F, Islami M, Shafa S, Khosravi (2018a) Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury? Iranian journal of basic medical sciences 21:615–620

  • Khaksari M, Soltani Z, Shahrokhi N (2018b) Effects of female sex steroids administration on pathophysiologic mechanisms in traumatic brain injury. Transl Stroke Res 9:393–416

    CAS  PubMed  Google Scholar 

  • Kim C, Park J-M, Kong T, Lee S, Seo KW, Choi Y, Sook Song Y, Moon J (2018) Double-injected human stem cells enhance rehabilitation in TBI mice via modulation of survival and inflammation. Mol Neurobiol 55:4870–4884

    CAS  PubMed  Google Scholar 

  • Kim H-J, Lee J-H, Kim S-H (2010) Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma 27:131–138

    PubMed  Google Scholar 

  • Kobeissy F (2015) Stem cell therapy in brain trauma: implications for repair and regeneration of injured brain in experimental TBI models--Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects.Chapter 42

  • Konsman JP, Drukarch B, Van Dam A-M (2007) (Peri) vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci 112:1–25

    CAS  PubMed  Google Scholar 

  • Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q, DiCarlo B, Smith P, Triolo F, Wenzel PL, Cox CS Jr, Olson SD (2017) Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury. Stem Cells 35:1416–1430

    CAS  PubMed  Google Scholar 

  • Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Mats R (2016) Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 64:763–779

    PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    CAS  PubMed  Google Scholar 

  • Kubes P, Ward PA (2000) Leukocyte recruitment and the acute inflammatory response. Brain Pathol 10:127–135

    CAS  PubMed  Google Scholar 

  • Kwon YW, Heo SC, Jeong GO, Yoon JW, Mo WM, Lee MJ, Jang Il-H, won SM, Lee JS, Kim JH (2013) Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1832:2136–2144

  • Landeghem FKV, Weiss T, Oehmichen M, Deimling AV (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 23:1518–1528

    PubMed  Google Scholar 

  • Lang EW, Czosnyka M, Mehdorn HM (2003) Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit Care Med 31:267–271

    CAS  PubMed  Google Scholar 

  • Lee J-Y, Acosta S, Tuazon JP, Xu K, Nguyen H, Lippert T, Liska MG, Semechkin A, Garitaonandia I, Gonzalez R, Kern R, Borlongan CV (2019) Human parthenogenetic neural stem cell grafts promote multiple regenerative processes in a traumatic brain injury model. Theranostics 9:1029–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Yang Y, Dong H, Lin L (2017) The research progress of mesenchymal stem cells in the treatment of traumatic brain injury. Turk Neurosurg 28:696–702

    Google Scholar 

  • Liao Y, Liu P, Guo F, Zhang Z-Y, Zhang Z (2013) Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS One 8:1–13

    Google Scholar 

  • Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-α in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cellular & molecular immunology 6:207–213

    Google Scholar 

  • Longhi L, Perego C, Ortolano F, Aresi S, Fumagalli S, Zanier ER, Stocchetti N, De Simoni MG (2013) Tumor necrosis factor in traumatic brain injury: effects of genetic deletion of p55 or p75 receptor. J Cereb Blood Flow Metab 33:1182–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lumpkins K, Bochicchio GV, Zagol B, Ulloa K, Simard JM, Schaub S, Meyer W, Scalea T (2008) Plasma levels of the beta chemokine regulated upon activation, normal T cell expressed, and secreted (RANTES) correlate with severe brain injury. J Trauma Acute Care Surg 64:358–361

    Google Scholar 

  • Maas AI, Roozenbeek B, Manley GT (2010) Clinical trials in traumatic brain injury: past experience and current developments. Neurotherapeutics 7:115–126

    PubMed  PubMed Central  Google Scholar 

  • Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:1–10

    Google Scholar 

  • Marmarou A, Fatouros PP, Barzó P, Portella G, Yoshihara M, Tsuji O, Yamamoto T, Laine F, Signoretti S, Ward JD, Bullock MR, Young HF (2000) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93:183–193

    CAS  PubMed  Google Scholar 

  • Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR (2006) Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg 104:720–730

    PubMed  Google Scholar 

  • Marshall LF (2000) Head injury: recent past, present, and future. Oxford University Press

  • Mastro-Martínez I, Pérez-Suárez E, Melen G, González-Murillo Á, Casco F, Lozano-Carbonero N, Gutiérrez-Fernández M, Díez-Tejedor E, Casado-Flores J, Ramírez-Orellana M, Serrano-González A (2015) Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Inj 29:1497–1510

    PubMed  Google Scholar 

  • Menge T, Zhao Y, Zhao J, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS Jr, Khakoo AY, Holcomb JB, Dash PK, Pati S (2012) Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Science translational medicine 4:161ra150-161ra171

  • Meymandi MS, Soltani Z, Sepehri G, Amiresmaili S, Farahani F, Aghtaei MM (2018) Effects of pregabalin on brain edema, neurologic and histologic outcomes in experimental traumatic brain injury. Brain Res Bull 140:169–175

    Google Scholar 

  • Morganti-Kossmann C, Semple B, Ziebell J, Yan E, Bye N, Kossmann T (2010) Modulation of immune response by head injury. New Insights to Neuroimmune Biology:193–220

  • Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T (2001) Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16:165–177

    CAS  PubMed  Google Scholar 

  • Mustafa AG, Alshboul OA (2013) Pathophysiology of traumatic brain injury. Neurosciences 18:222–234

    PubMed  Google Scholar 

  • Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuss S, Becher E, Wöltje M, Tietze L, Jahnen-Dechent W (2004) Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22:405–414

    CAS  PubMed  Google Scholar 

  • Ni H, Yang S, Siaw-Debrah F, Hu J, Wu K, He Z, Yang J, Pan S, Lin X, Ye H, Xu Z, Wang F, Jin K, Zhuge Q, Huang L (2019) Exosomes derived from mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front Neurosci 13:1–14

    Google Scholar 

  • Nortje J, Menon DK (2004) Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17:711–718

    PubMed  Google Scholar 

  • O’Connor WT, Smyth A, Gilchrist MD (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther 130:106–113

    PubMed  Google Scholar 

  • O’Phelan KH, Park D, Efird JT, Johnson K, Albano M, Beniga J, Green DM, Chang CW (2009) Patterns of increased intracranial pressure after severe traumatic brain injury. Neurocrit Care 10:280–286

    PubMed  Google Scholar 

  • Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, Israf DA, Vidyadaran S (2010) Bone marrow-derived mesenchymal stem cells modulate BV2 microglia responses to lipopolysaccharide. Int Immunopharmacol 10:1532–1540

    CAS  PubMed  Google Scholar 

  • Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci 104:11002–11007

    CAS  PubMed  Google Scholar 

  • Paschen W, Doutheil J (1999) Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab 19:1–18

    CAS  PubMed  Google Scholar 

  • Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745

    CAS  PubMed  Google Scholar 

  • Qi L, Xue X, Sun J, Wu Q, Wang H, Guo Y, Sun B (2018) The promising effects of transplanted umbilical cord mesenchymal stem cells on the treatment in traumatic brain injury. J Craniofac Surg 29:1689–1692

    PubMed  PubMed Central  Google Scholar 

  • Racay P, Tatarkova Z, Chomova M, Hatok J, Kaplan P, Dobrota D (2009) Mitochondrial calcium transport and mitochondrial dysfunction after global brain ischemia in rat hippocampus. Neurochem Res 34:1469–1478

    CAS  PubMed  Google Scholar 

  • Reis C, Gospodarev V, Reis H, Wilkinson M, Gaio J, Araujo C, Chen S, Zhang JH (2017a) Traumatic brain injury and stem cell: pathophysiology and update on recent treatment modalities. Stem Cells Int 2017:1–13

    Google Scholar 

  • Reis C, Wilkinson M, Reis H, Akyol O, Gospodarev V, Araujo C, Chen S, Zhang JH (2017b) A look into stem cell therapy: exploring the options for treatment of ischemic stroke. Stem Cells Int 2017:1–14

    Google Scholar 

  • Rhodes JK, Sharkey J, Andrews PJ (2009) The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma 26:507–525

    PubMed  Google Scholar 

  • Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, Lenzlinger PM, Lifshitz J, Boockvar J, Neugebauer E, Snyder EY, McIntosh TK (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1054

    PubMed  Google Scholar 

  • Rosová I, Dao M, Capoccia B, Link D, Nolta JA (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182

    PubMed  PubMed Central  Google Scholar 

  • Rossetti MF, Cambiasso MJ, Holschbach M, Cabrera R (2016) Oestrogens and progestagens: synthesis and action in the brain. J Neuroendocrinol 28:1–11

    Google Scholar 

  • Russo MV, McGavern DB (2016) Inflammatory neuroprotection following traumatic brain injury. Science 353:783–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato A, Ohtaki H, Tsumuraya T, Song D, Ohara K, Asano M, Iwakura Y, Atsumi T, Shioda S (2012) Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. J Neuroinflammation 9:65–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt EA, Czosnyka M, Steiner LA, Balestreri M, Smielewski P, Piechnik SK, Matta BF, Pickard JD (2003) Asymmetry of pressure autoregulation after traumatic brain injury. J Neurosurg 99:991–998

    PubMed  Google Scholar 

  • Schneider CM, Jackson ML, Bedi SS, Cox CS Jr (2019) Stem cells for traumatic brain injury. Principles of Regenerative Medicine:369–389

  • Schouten JW (2007) Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 13:134–142

    PubMed  Google Scholar 

  • Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC (2010) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab 30:769–782

    PubMed  Google Scholar 

  • Shao C, Roberts KN, Markesbery WR, Scheff SW, Lovell MA (2006) Oxidative stress in head trauma in aging. Free Radic Biol Med 41:77–85

    CAS  PubMed  Google Scholar 

  • Shear DA, Tate CC, Tate MC, Archer DR, LaPlaca MC, Stein DG, Dunbar GL (2011) Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 29:215–225

    PubMed  Google Scholar 

  • Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED (2013) Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 33:593–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skendelas JP, Muccigrosso M, Eiferman DS, Godbout JP (2015) Chronic inflammation after TBI and associated behavioral sequelae. Current Physical Medicine and Rehabilitation Reports 3:115–123

    Google Scholar 

  • Soltani Z, Khaksari M, Jafari E, Iranpour M, Shahrokhi N (2015) Is genistein neuroprotective in traumatic brain injury? Physiol Behav 152:26–31

    CAS  PubMed  Google Scholar 

  • Soltani Z, Shahrokhi N, Karamouzian S, Khaksari M, Mofid B, Nakhaee N, Reihani H (2017) Does progesterone improve outcome in diffuse axonal injury? Brain Inj 31:16–23

    PubMed  Google Scholar 

  • Stiefel MF, Tomita Y, Marmarou A (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg 103:707–714

    PubMed  Google Scholar 

  • Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    CAS  PubMed  Google Scholar 

  • Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir 148:255–268

    CAS  PubMed  Google Scholar 

  • Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M, Hernandez-Ontiveros D, Kim DW, Metcalf C, Staples M, Dailey T, Vasconcellos J, Franyuti G, Gould L, Patel N, Cooper D, Kaneko Y, Borlongan CV, Bickford PC (2014) Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci 34:313–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV (2013) Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 8:1–12

    Google Scholar 

  • Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726

    CAS  PubMed  Google Scholar 

  • Torrente D, Avila M, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Human & experimental toxicology 33:673–684

    CAS  Google Scholar 

  • Unterberg A, Stover J, Kress B, Kiening K (2004) Edema and brain trauma. Neuroscience 129:1019–1027

    Google Scholar 

  • Wan J, Cai Q, Liu Y (2012) Effect of intramuscular bone marrow-derived mesenchymal stem cell transplantation in the leg for treatment of diabetic foot ulcers in rats. Nan fang yi ke da xue xue bao= Journal of Southern Medical University 32:1730-1736

  • Wang S, Kan Q, Sun Y, Han R, Zhang G, Peng T, Jia Y (2013) Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating notch signaling. Int J Dev Neurosci 31:30–35

    PubMed  Google Scholar 

  • Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD (2017) Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 14(1):10–26

    PubMed  PubMed Central  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. BJA: British Journal of Anaesthesia 99:4–9

    CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    CAS  PubMed  Google Scholar 

  • Wu J, Li H, Wang D, Xu D, Wang W (2016) Intravenous adipose-derived stem cells transplantation ameliorates memory impairment in moderate traumatic brain injury rats via the phosphorylation of extracellular signal-regulated kinase 1/2. Int J Clin Exp Med 9:12649–12658

    CAS  Google Scholar 

  • Xiong Y, Mahmood A, Lu D, Qu C, Kazmi H, Goussev A, Zhang ZG, Noguchi CT, Schallert T, Chopp M (2008) Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res 1230:247–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z-G, Zhu X-M, Chu X-P, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    CAS  PubMed  Google Scholar 

  • Yin Y, Sun G, Li E, Kiselyov K, Sun D (2017) ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Res Rev 34:3–14

    CAS  PubMed  Google Scholar 

  • Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10:106–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Changsheng Q, Ali M, Mahmood A, Xiong Y (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111:69–81

    CAS  PubMed  Google Scholar 

  • Zhao K, Li R, Gu C, Zhao K, Li R, Gu Jia Y, Guo X, Zhang W, Pei C, Tian L, Li B, Jia J, Cheng H, Xu H, Li L (2017) Intravenous administration of adipose-derived stem cell protein extracts improves neurological deficits in a rat model of stroke. Stem Cells Int 2017:1–11

    Google Scholar 

  • Zhao Y, Gibb SL, Zhao J, Moore AN, Hylin MJ, Menge T, Xue H, Baimukanova G, Potter D, Johnson EM, Holcomb JB, Cox CS Jr, Dash PK, Pati S (2016) Wnt3a, a protein secreted by mesenchymal stem cells is neuroprotective and promotes neurocognitive recovery following traumatic brain injury. Stem Cells 34:1263–1272

    CAS  PubMed  Google Scholar 

  • Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7:22–30

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Soltani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghanian, F., Soltani, Z. & Khaksari, M. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury?. J Mol Neurosci 70, 677–688 (2020). https://doi.org/10.1007/s12031-019-01475-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01475-w

Keywords

Navigation