Skip to main content
Log in

Adrenergic targets for the treatment of cognitive deficits in schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The cognitive functions of the prefrontal cortex (PFC) are profoundly impaired in schizophrenic patients. Although dopamine has been the major focus of schizophrenia research, norepinephrine (NE) also has marked influences on PFC cognitive functioning.

Objective

This review aims to identify the adrenergic receptors which may be appropriate targets for therapeutic actions in schizophrenia.

Methods

Studies of adrenergic mechanisms influencing PFC function in animals and humans were reviewed.

Results

Modest levels of NE engage postsynaptic α2A-adrenergic receptors and strengthen working memory. These beneficial effects have been observed at both the behavioral and cellular levels in animals, and have translated to the clinic in patients with PFC impairments. Thus, the α2A-adrenergic receptor is a proven molecular target. In contrast, high levels of NE released during stress impair PFC cognitive function via activation of protein kinase C intracellular signaling, a pathway increasingly associated with the etiology of schizophrenia. Blockade of α1 adrenoceptors or inhibition of protein kinase C helps to protect PFC cognitive function in animals, and may have similar therapeutic actions in humans. Blockade of the α2C receptor may also be helpful in enhancing catecholamine release while blocking detrimental DA actions in striatum.

Conclusion

Highly selective adrenergic agents may be useful for enhancing PFC function in schizophrenic patients

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aoki C, Go C-G, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of alpha2A-adrenergic receptor-like immunoreactivity. Brain Res 650:181–204

    Article  CAS  PubMed  Google Scholar 

  • Aoki C, Venkatesan C, Go C-G, Forman R, Kurose H (1998) Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex 8:269–277

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AFT (1997) Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11:151–162

    Google Scholar 

  • Arnsten AFT (1998) Catecholamine modulation of prefrontal cortical cognitive function. Trends Cognit Sci 2:436–447

    Article  Google Scholar 

  • Arnsten AFT, Cai JX (1993) Postsynaptic alpha-2 receptor stimulation improves working memory in aged monkeys: indirect effects of yohimbine vs. direct effects of clonidine. Neurobiol Aging 14:597–603

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AFT, Contant TA (1992) Alpha-2 adrenergic agonists decrease distractability in aged monkeys performing a delayed response task. Psychopharmacology 108:159–169

    CAS  PubMed  Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1985) Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230:1273–1276

    CAS  PubMed  Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1986) Reversal of stress-induced delayed response deficits in rhesus monkeys by clonidine and naloxone. Soc Neurosci Abstr 12:1464

    Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–369

    CAS  PubMed  Google Scholar 

  • Arnsten AFT, Robbins TW (2002) Neurochemical modulation of prefrontal cortical function in humans and animals. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, New York, pp 51–84

  • Arnsten AFT, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects. J Neurosci 8:4287–4298

    CAS  PubMed  Google Scholar 

  • Arnsten AFT, Steere JC, Hunt RD (1996) The contribution of alpha-2 noradrenergic mechanisms to prefrontal cortical cognitive function: potential significance to attention deficit hyperactivity disorder. Arch Gen Psychiatry 53:448–455

    Google Scholar 

  • Arnsten AFT, Mathew R, Ubriani R, Taylor JR, Li B-M (1999) Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 45:26–31

    Article  CAS  PubMed  Google Scholar 

  • Baldessarini RJ, Huston-Lyons D, Campbell A, Marsh E, Cohen BM (1992) Do central antiadrenergic actions contribute to the atypical properties of clozapine? Br J Psychiatry 160:12–16

    PubMed  Google Scholar 

  • Birnbaum SG, Gobeske KT, Auerbach J, Taylor JR, Arnsten AFT (1999) A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptor mediation in prefrontal cortex. Biol Psychiatry 46:1266–1274

    CAS  PubMed  Google Scholar 

  • Brozoski T, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–931

    CAS  PubMed  Google Scholar 

  • Cai JX, Arnsten AFT (1997) Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 282:1–7

    PubMed  Google Scholar 

  • Cai JX, Ma Y, Xu L, Hu X (1993) Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha-2 adrenergic agonist clonidine. Brain Res 614:191–196

    CAS  PubMed  Google Scholar 

  • Carlson S, Tanila H, Rama P, Mecke E, Pertovaara A (1992) Effects of medetomidine, an alpha-2 adrenoceptor agonist, and atipamezole, an alpha-2 antagonist, on spatial memory performance in adult and aged rats. Behav Neural Biol 58:113–119

    CAS  PubMed  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1977) Catecholamine receptors on locus coeruleus neurons: pharmacological characterization. Eur J Pharmacol 44:375–385

    CAS  PubMed  Google Scholar 

  • Cohen BM, Lipinski JF (1986) In vivo potencies of antipsychotic drugs in blocking alpha-1 noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sci 39:2571–2580

    Article  CAS  PubMed  Google Scholar 

  • Coull JT (1994) Pharmacological manipulations of the a-2 noradrenergic system: effects on cognition. Drugs Aging 5:116–126

    CAS  PubMed  Google Scholar 

  • Coull JT, Middleton HC, Robbins TW, Sahakian BJ (1995) Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology 120:311–321

    CAS  PubMed  Google Scholar 

  • Coull JT, Frith CD, Dolan RJ, Frackowiak RS, Grasby PM (1997) The neural correlates of the noradrenergic modulation of human attention, arousal and learning. Eur J Neurosci 9:589–598

    CAS  PubMed  Google Scholar 

  • Darracq L, Blanc G, Glowinski J, Tassin J-P (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of d-amphetamine. J Neurosci 18:2729–2739

    CAS  PubMed  Google Scholar 

  • Duman RS, Nestler EJ (1995) Signal transduction pathways for catecholamine receptors. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, N.Y., pp 303–320

  • Ferry B, Roozendaal B, McGaugh JL (1999) Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between beta- and alpha-1-adrenoceptors. J Neurosci 19:5119–5123

    CAS  PubMed  Google Scholar 

  • Fields RB, Van Kammen DP, Peters JL, Rosen J, Van Kammen WB, Nugent A, Stipetic M, Linnoila M (1988) Clonidine improves memory function in schizophrenia independently from change in psychosis. Schizophr Res 1:417–423

    Article  CAS  PubMed  Google Scholar 

  • Franowicz JCS, Arnsten AFT (1998) The alpha2A noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136:8–14

    CAS  PubMed  Google Scholar 

  • Franowicz JS, Kessler L, Dailey-Borja CM, Kobilka BK, Limbird LE, Arnsten AFT (2002) Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 22:8771–8777

    CAS  PubMed  Google Scholar 

  • Friedman JI, Adler DN, Temporini HD, Kemether E, Harvey PD, White L, Parrella M, Davis KL (2001) Guanfacine treatment of cognitive impairment in schizophrenia: a pilot study. Neuropsychopharmacology (in press)

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    CAS  PubMed  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  Google Scholar 

  • Haroutunian V, Kanof PD, Tsuboyama G, Davis KL (1990) Restoration of cholinomimetic activity by clonidine in cholinergic plus noradrenergic lesioned rats. Brain Res 507:261–266

    Article  CAS  PubMed  Google Scholar 

  • Hertel P, Fagerquist MV, Svensson TH (1999) Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286:105–107

    Article  CAS  PubMed  Google Scholar 

  • Hunt RD, Mindera RB, Cohen DJ (1985) Clonidine benefits children with attention deficit disorder and hyperactivity: reports of a double-blind placebo-crossover therapeutic trial. J Am Acad Child Psychiatry 24:617–629

    CAS  PubMed  Google Scholar 

  • Jackson WJ, Buccafusco JJ (1991) Clonidine enhances delayed matching-to-sample performance by young and aged monkeys. Pharmacol Biochem Behav 39:79–84

    CAS  PubMed  Google Scholar 

  • Jakala P, Riekkinen M, Sirvio J, Koivisto E, Kejonen K, Vanhanen M, Riekkinen PJ (1999a) Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20:460–470

    CAS  PubMed  Google Scholar 

  • Jakala P, Sirvio J, Riekkinen M, Koivisto E, Kejonen K, Vanhanen M, Riekkinen PJ (1999b) Guanfacine and clonidine, alpha-2 agonists, improve paired associates learning, but not delayed matching to sample, in humans. Neuropsychopharmacology 20:119–130

    Article  CAS  PubMed  Google Scholar 

  • Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatry 60:311–319

    Article  CAS  PubMed  Google Scholar 

  • Lezcano N, Mrzljak L, Eubanks S, Levenson R, Goldman-Rakic PS, Bergson C (2000) Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. Science 287:1660–1664

    Article  CAS  PubMed  Google Scholar 

  • Li B-M, Mei Z-T (1994) Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol 62:134–139

    CAS  PubMed  Google Scholar 

  • Li B-M, Mao Z-M, Wang M, Mei Z-T (1999) Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology 21:601–610

    CAS  PubMed  Google Scholar 

  • Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Rev (in press)

    Google Scholar 

  • MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting—homing in on alpha-2-adrenoceptor subtype function. Trends Pharmacol Sci 18:211–219

    CAS  PubMed  Google Scholar 

  • Mair RG, McEntree WJ (1986) Cognitive enhancement in Korsakoff’s psychosis by clonidine: a comparison with 1-dopa and ephedrine. Psychopharmacology 88:374–380

    CAS  PubMed  Google Scholar 

  • Manji HK, Lenox RH (1999) Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 46:1328–1351

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Lenox RH (2000) Signaling: cellular insights into the pathophysiology of bipolar disorder. Biol Psychiatry 48:518–30

    Article  CAS  PubMed  Google Scholar 

  • Manji HK et al. (2004) Psychopharmacology (in press)

  • Mao Z-M, Arnsten AFT, Li B-M (1999) Local infusion of alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry 46:1259–1265

    CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1998) 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by mu-opiate receptor activation. Neuroscience 86:485–497

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1999) 5-HT2A receptor or alpha1-adrenoceptor activation induces EPSCs in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367:197–206

    CAS  PubMed  Google Scholar 

  • Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100:6186–6191

    Article  CAS  PubMed  Google Scholar 

  • Mazure CM (1995) Does stress cause psychiatric illness? In: Spiegel D (ed) Progress in psychiatry. American Psychiatric Press, Washington, D.C., p 270

  • Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 6:293–301

    Article  CAS  PubMed  Google Scholar 

  • Moffoot A, O’Carroll RE, Murray C, Dougall N, Ebmeier K, Goodwin GM (1994) Clonidine infusion increases uptake of Tc-exametazime in anterior cingulate cortex in Korsakoff’s psychosis. Psychol Med 24:53–61

    CAS  PubMed  Google Scholar 

  • Murphy BL, Arnsten AFT, Goldman-Rakic PS, Roth RH (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93:1325–1329

    CAS  PubMed  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology:106–118

  • Rama P, Linnankoski I, Tanila H, Pertovaara A, Carlson S (1996) Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacol Biochem Behav 54:1–7

    Article  Google Scholar 

  • Riekkinen P, Riekkinen M (1999) THA improves word priming and clonidine enhances fluency and working memory in Alzheimer’s disease. Neuropsychopharmacology 20:357–364

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T (1998) Attenuation of delay-period activity of monkey prefrontal cortical neurons by an alpha-2 adrenergic antagonist during an oculomotor delayed-response task. J Neurophysiol 80:2200–2205

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    CAS  PubMed  Google Scholar 

  • Scahill L, Chappell PB, Kim YS, Schultz RT, Katsovich L, Shepherd E, Arnsten AFT, Cohen DJ, Leckman JF (2001) Guanfacine in the treatment of children with tic disorders and ADHD: a placebo-controlled study. Am J Psychiatry 158:1067–1074

    CAS  PubMed  Google Scholar 

  • Tanila H, Rama P, Carlson S (1996) The effects of prefrontal intracortical microinjections of an alpha-2 agonist, alpha-2 antagonist and lidocaine on the delayed alternation performance of aged rats. Brain Res Bull 40:117–119

    CAS  PubMed  Google Scholar 

  • Taylor FB, Russo J (2001) Comparing guanfacine and dextroamphetamine for the treatment of adult attention deficit-hyperactivity disorder. J Clin Psychopharmacol 21:223–228

    Article  CAS  PubMed  Google Scholar 

  • van Kammen DP, Kelley M (1991) Dopamine and norepinephrine activity in schizophrenia. An integrative perspective. Schizophr Res 4:173–191

    Article  PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Blockade of dopamine D1 receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 376:572–575

    CAS  PubMed  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AFT (1997) Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by MERIT Award AG06036 and P50mH068789.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy F. T. Arnsten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnsten, A.F.T. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology 174, 25–31 (2004). https://doi.org/10.1007/s00213-003-1724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1724-3

Keywords

Navigation