Skip to main content

Advertisement

Log in

Magnesium Lithospermate B Suppresses Lipopolysaccharide-Induced Neuroinflammation in BV2 Microglial Cells and Attenuates Neurodegeneration in Lipopolysaccharide-Injected Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronic inflammation in the brain plays a critical role in major neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Microglia, the resident macrophages and intrinsic components of the central nervous system (CNS), appear to be the main effectors in this pathological process. Magnesium lithospermate B (MLB) is one of the major bioactive components of Radix Salviae miltiorrhizae, which has been documented to protect neurons against multiple types of neuronal injury. However, its functions on microglia and the related neuroinflammation remain unknown. In the present study, BV2 microglial cells were used to assess the anti-neuroinflammatory capacity of MLB. Our data show that treatment with MLB could not only suppress lipopolysaccharide (LPS)-induced proliferation and morphological changes, but also interfere with cell cycle progression in BV2 cells. More strikingly, it attenuated the production of the inflammatory mediator nitric oxide (NO) and a panel of pro-inflammatory cytokine in LPS-stimulated BV2 cells, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1α, IL-1β, and IL-6, and also promoted a phenotypic switch from the M1 to the M2 phenotype. Additionally, an in vivo study showed that the administration of MLB could ameliorate lipopolysaccharide-induced neurodegeneration and microglial activation in the hippocampus of adult mice. Mechanistically, MLB blocked the activation of the NF-κB pathway upon LPS stimulation, indicating that the effects of MLB on microglia may be mediated by the NK-κB pathway. These results suggest the therapeutic potential of MLB as a novel anti-inflammatory and microglia-modulating drug for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

All authors thank Dr. Jeffery Zheng, Aardvark Therapeutics Inc., and Ms. Rebekah A. Burdyshaw, Cleveland State University, for their critical proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Bao.

Ethics declarations

The animal study protocol was approved by the animal ethics committee of the corresponding author’s institution. All animal care and use were performed in accordance with institutional guidelines.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, Y., Qiu, Y. & Bao, Z. Magnesium Lithospermate B Suppresses Lipopolysaccharide-Induced Neuroinflammation in BV2 Microglial Cells and Attenuates Neurodegeneration in Lipopolysaccharide-Injected Mice. J Mol Neurosci 64, 80–92 (2018). https://doi.org/10.1007/s12031-017-1007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-1007-9

Keywords

Navigation