Skip to main content

Advertisement

Log in

MiR-93 Targeting EphA4 Promotes Neurite Outgrowth from Spinal Cord Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The failure of neurite outgrowth in the adult mammalian spinal cord injury is thought to be attributed to the intrinsic growth ability of mature neurons. Ephrin/Eph system is a major growth regulator of many axonal guidance processes. EphA4 is expressed specifically in traumatic central nervous system (CNS) and dynamically regulate target gene expression, suggesting that it may be associated with neural regeneration. Here, we found an alteration in temporal expression of miR-93 following a contusive spinal cord injury (SCI) in adult rats. The messenger RNA (mRNA) expression level of miR-93 was upregulated and the protein expression levels of EphA4, p-Ephexin, and active RhoA were all decreased in traumatic spinal cord relative to those with an intact spinal cord. Infection of cultured spinal cord neurons (SCNs) with miR-93 mimic led to neuronal growth promotion and decreased levels of EphA4, p-Ephexin, and active RhoA protein expression. Dual-luciferase reporter assay confirmed that miR-93 bound to the three prime untranslated region (3′ UTR) of EphA4 and inhibited the expression of EphA4 mRNA. These findings provide evidence that miR-93 inhibits EphA4 expression, decreased EphA4 expression could promote neurite outgrowth in SCNs due to reduced levels of p-Ephexin and active RhoA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arvanitis D, Davy A (2008) Eph/ephrin signaling: networks. Genes Dev 22(4):416–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 26(10):555–563

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139(2):244–256

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006) MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24(1):157–163

    Article  CAS  PubMed  Google Scholar 

  • Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23(21):7789–7800

    CAS  PubMed  Google Scholar 

  • Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan CA, Henkemeyer M (2002) Ephrins in reverse, park and drive. Trends Cell Biol 12(7):339–346

    Article  CAS  PubMed  Google Scholar 

  • Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53(4):454–468

    Article  PubMed  Google Scholar 

  • Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • Dottori M, Hartley L, Galea M, Paxinos G, Polizzotto M, Kilpatrick T, Bartlett PF, Murphy M, Kontgen F, Boyd AW (1998) EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A 95(22):13248–13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou F, Huang L, Yu P, Zhu H, Wang X, Zou J, Lu P, Xu XM (2009) Temporospatial expression and cellular localization of oligodendrocyte myelin glycoprotein (OMgp) after traumatic spinal cord injury in adult rats. J Neurotrauma 26(12):2299–2311

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23(4):1416–1423

    CAS  PubMed  Google Scholar 

  • Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24(45):10064–10073

    Article  CAS  PubMed  Google Scholar 

  • Goldshmit Y, McLenachan S, Turnley A (2006) Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev 52(2):327–345

    Article  CAS  PubMed  Google Scholar 

  • Himanen JP, Nikolov DB (2003) Eph receptors and ephrins. Int J Biochem Cell Biol 35(2):130–134

    Article  CAS  PubMed  Google Scholar 

  • Hohjoh H, Fukushima T (2007) Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene 391(1–2):39–44

    Article  CAS  PubMed  Google Scholar 

  • Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J (2006) Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. Mol Cell Biol 26(13):4830–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein R (2004) Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 16(5):580–589

    Article  CAS  PubMed  Google Scholar 

  • Kullander K, Croll SD, Zimmer M, Pan L, McClain J, Hughes V, Zabski S, DeChiara TM, Klein R, Yancopoulos GD, Gale NW (2001) Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15(7):877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YX, Schaffner AE, Walton MK, Barker JL (1998) Astrocytes regulate developmental changes in the chloride ion gradient of embryonic rat ventral spinal cord neurons in culture. J Physiol 509(Pt 3):847–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu NK, Wang XF, Lu QB, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219(2):424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquardt T, Shirasaki R, Ghosh S, Andrews SE, Carter N, Hunter T, Pfaff SL (2005) Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 121(1):127–139

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Soriano E (2005) Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Brain Res Rev 49(2):211–226

    Article  CAS  PubMed  Google Scholar 

  • Moore SW, Kennedy TE (2008) Dissection and culture of embryonic spinal commissural neurons. Curr Protoc Neurosci Chapter 3: Unit 3 20

  • Rodger J, Vitale PN, Tee LB, King CE, Bartlett CA, Fall A, Brennan C, O’Shea JE, Dunlop SA, Beazley LD (2004) EphA/ephrin-A interactions during optic nerve regeneration: restoration of topography and regulation of ephrin-A2 expression. Mol Cell Neurosci 25(1):56–68

    Article  CAS  PubMed  Google Scholar 

  • Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O’Connell S, Cowan CW, Hu L, Goldberg JL, Debant A, Corfas G, Krull CE, Greenberg ME (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A, Greenberg ME (2001) EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105(2):233–244

    Article  CAS  PubMed  Google Scholar 

  • Silber J, James CD, Hodgson JG (2009) microRNAs in gliomas: small regulators of a big problem. Neuromol Med 11(3):208–222

    Article  CAS  Google Scholar 

  • Willson CA, Irizarry-Ramirez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR, Miranda JD (2002) Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant 11(3):229–239

    PubMed  Google Scholar 

  • Willson CA, Miranda JD, Foster RD, Onifer SM, Whittemore SR (2003) Transection of the adult rat spinal cord upregulates EphB3 receptor and ligand expression. Cell Transplant 12(3):279–290

    Article  PubMed  Google Scholar 

  • Yue Y, Su J, Cerretti DP, Fox GM, Jing S, Zhou R (1999) Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin-A5. J Neurosci 19(22):10026–10035

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express sincere gratitude to Professor Tang Tian-si and Dr. Hua Fu for help with their guidance. This research was supported by Huai’an No. 2 People’s Hospital grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Yang.

Additional information

Xiaogang Chen is the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, H., Zhou, X. et al. MiR-93 Targeting EphA4 Promotes Neurite Outgrowth from Spinal Cord Neurons. J Mol Neurosci 58, 517–524 (2016). https://doi.org/10.1007/s12031-015-0709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0709-0

Keyword

Navigation