Skip to main content
Log in

Upregulation of Nucleoside Triphosphate Diphosphohydrolase-1 and Ecto-5′-Nucleotidase in Rat Hippocampus after Repeated Low-Dose Dexamethasone Administration

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Although dexamethasone (DEX), a synthetic glucocorticoid receptor (GR) analog with profound effects on energy metabolism, immune system, and hypothalamic-pituitary-adrenal axis, is widely used therapeutically, its impact on the brain is poorly understood. The aim of the present study was to explore the effect of repeated low-dose DEX administration on the activity and expression of the ectonucleotidase enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. Ectonucleotidases tested were ectonucleoside triphosphate diphosphohydrolase 1–3 (NTPDase1–3) and ecto-5′-nucleotidase (eN), whereas the effects were evaluated in two brain areas that show different sensitivity to glucocorticoid action, hippocampus, and cerebral cortex. In the hippocampus, but not in cerebral cortex, modest level of neurodegenerative changes as well as increase in ATP, ADP, and AMP hydrolysis and upregulation of NTPDase1 and eN mRNA expression ensued under the influence of DEX. The observed pattern of ectonucleotidase activation, which creates tissue volume with enhanced capacity for adenosine formation, is the hallmark of the response after different insults to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham IM, Harkany T, Horvath KM, Luiten PG (2001) Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection. J Neuroendocrinol 13(9):749–760

    Article  CAS  PubMed  Google Scholar 

  • Almeida OF, Conde GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, et al (2000) Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J 14:779–790

  • Barnes PJ (2005) Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Alergy Clin North Am 25:451–468

    Article  Google Scholar 

  • Bavaresco L, Bernardi A, Braganhol E, Wink MR, Battastini AM (2007) Dexamethasone inhibits proliferation and stimulates ecto-5′-nucleotidase/CD73 activity in C6 rat glioma cell line. J Neuro oncol 84:1–8

    Article  CAS  Google Scholar 

  • Belcher SM, Zsarnovsky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep wake behaviors. Neuroscience 137:1331–1346

    Article  CAS  PubMed  Google Scholar 

  • Bjelobaba I, Lavrnja I, Parabucki A, Stojkov D, Stojiljkovic M, Pekovic S, Nedeljkovic N (2010) The cortical stab injury induces beading of fibers expressing ecto-nucleoside triphosphate diphosphohydrolase3. Neuroscience 170:107–116

    Article  CAS  PubMed  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18:4891–4900

    CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blocade. Purinergic Signal 1(2):111–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  • Drakulić D, Veličković N, Stanojlović M, Grković I, Mitrović N, Lavrnja I, Horvat A (2013) Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. J Neuroendocrinol 25(7):605–616

    Article  PubMed  Google Scholar 

  • Dunwiddle TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  Google Scholar 

  • Elkouby A, Ledig M, Mandel P (1982) Effect of hydrocortisone and thyroxine on ATPase activities of neuronal and glial cell lines in culture. Neurochem Res 7:387–397

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Wiksyrom AC, Gustafsson JA (1985) Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinol 117:1803–1812

    Article  CAS  Google Scholar 

  • GeneCards: ENTPD1; HGNC 3363; Entrez gene: 953; Ensembl: ENSG0000138185; OMIM 601752

  • GeneCards: NT5E; HGNC 8021; Entrez gene: 4907; Ensembl: ENSG00000135318; OMIM 129190

  • Haynes LE, Griffiths MR, Hyde RE, Barber DJ, Mitchell IJ (2001) Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: implications for mood disorders. Neuroscience 104(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Horvat A, Stanojevic I, Drakulic D, Velickovic N, Petrovic S, Milosević M (2010) Effect of acute stress on NTPDase and 5′-nucleotidase activities in brain synaptosomes in different stages of development. Int J Dev Neurosci 28(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Hoffmann C, Cattebeni F, Abbracchio MP (1999) Adenosine-induced cell death: evidence for receptor-mediated signaling. Apoptosis 4:197–211

    Article  CAS  PubMed  Google Scholar 

  • James G, Butt AM (2002) P2Y and P2X purinoreceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    Article  CAS  PubMed  Google Scholar 

  • Karssen AM, Meijer OC, Berry A, Sanjuan Pinol R, de Kloet ER (2005) Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinol 146:5587–5595

  • Kegel B, Braun N, Heine P, Maliszewski CR, Zimmermann H (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36:1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Kino T (2007) Tissue glucocorticoid sensitivity: beyond stochastic regulation on the diverse actions of glucocorticoids. Horm Metab Res 39(6):420–424

    Article  CAS  PubMed  Google Scholar 

  • Kukulski F, Komoszynski M (2003) Purification and characterization of NTPDase 1 (ecto-apyrase) and NTPDase 2 (ecto-ATPase) from porcine brain cortex synaptosomes. Eur J Biochem 270:3447–3454

    Article  CAS  PubMed  Google Scholar 

  • Langer D, Hammer K, Koszalka P, Schrade J, Robson S, Zimmermann H (2008) Ditribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    Article  CAS  PubMed  Google Scholar 

  • Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, de Kloet R, Wallach G (1976) Interactions in vivo and in vitro of corticoids and progesterone with cell nuclei and soluble macromolecules from rat brain regions and pituitary. Brain Res 105:129–136

    Article  CAS  PubMed  Google Scholar 

  • Nedeljkovic N, Djordjevic V, Horvat A, Nikezic G, Kanazir D (2000) Effect of steroid hormone deprivation on the expression of ecto-ATPase in distinct brain regions of female rats. Physiol Res 49:419–426

    CAS  PubMed  Google Scholar 

  • Nedeljkovic N, Bjelobaba I, Subasic S, Lavrnja I, Pekovic S, Stojkov D, Vjestica A, Rakic L, Stojiljkovic M (2006) Up-regulation of ectonucleotidase activity after cortical stab injury in rats. Cell Biol Int 30:541–546

    Article  CAS  PubMed  Google Scholar 

  • Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E (2010) The human glucocorticoid receptor: molecular basis of biologic function. Steroids 75:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reul JM, De Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, van den Bosch JR, De Kloet ER (1987) Relative occupation of type-I and type-II corticosteroid receptors in the rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 115:459–467

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Gesing A, Droste S, Stec IS, Weber A, Bachmann C, Bilang-Bleuel A, Holsboer F, Linthorst AC (2000) The brain mineralcorticoid receptor: greedy for ligand, mysterious in function. Eur J Pharmacol 405:235–249

    Article  CAS  PubMed  Google Scholar 

  • Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure functions relations and pathophysiological signifficance. Purinergic Signal 2:409–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saucedo E, Pereira R, Barbosa G, Battisti V, Leal CA, Fleck J, Santos RC, Morsch VM, Schetinger MR, Leal DB (2010) Enzymes that hydrolyze adenine nucleotides in lymphocytes and platelets of immunosuppressed rats. Biomed Pharmacother 64(6):437–440

    Article  CAS  PubMed  Google Scholar 

  • Schäcke H, Döcke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    Article  PubMed  Google Scholar 

  • Smith TM, Kirley TL (1998) Cloning, sequencing and expression of a human brain ecto-apyrase. Biochim Biophys Acta 1386:65–78

    Article  CAS  PubMed  Google Scholar 

  • Stone TW (2005) Adenosine, neurodegeneration and neuroprotection. Neurol Res 27:161–168

    Article  CAS  PubMed  Google Scholar 

  • van Bogaert T, De Bosscher K, Libert C (2010) Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine Growth Factor Rev 21:275–286

    Article  PubMed  Google Scholar 

  • van Staa TP, Leufkens HG, Abenhaim L, Begaud B, Zhang B, Cooper C (2000) Use of oral corticosteroids in the United Kingdom. QJM 93:105–111

    Article  PubMed  Google Scholar 

  • Vollmayer P, Koch M, Braun N, Heine P, Servos J, Israr E, Kegel B, Zimmermann H (2001) Multiple ecto-nucleotidase in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 78:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sévigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2(NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate Dr. Irena Lavrnja for the assistance with Fluoro-Jade B staining. This work was supported by the Serbian Ministry of Education and Science, Project Nos. 173044 and 41014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunja Drakulić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakulić, D., Stanojlović, M., Nedeljković, N. et al. Upregulation of Nucleoside Triphosphate Diphosphohydrolase-1 and Ecto-5′-Nucleotidase in Rat Hippocampus after Repeated Low-Dose Dexamethasone Administration. J Mol Neurosci 55, 959–967 (2015). https://doi.org/10.1007/s12031-014-0452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0452-y

Keywords

Navigation