Skip to main content

Advertisement

Log in

Estimated Cerebral Perfusion Pressure and Intracranial Pressure in Septic Patients

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients.

Methods

We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg.

Results

A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52–71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15–28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7–12) min. Median (IQR) eCPP was 63 (58–71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4–13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups.

Conclusions

Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABG:

Arterial blood gases

AP:

Arterial pressure

APACHE II:

Acute physiology and chronic health evaluation II

CPP:

Cerebral perfusion pressure

eCPP:

Estimated cerebral perfusion pressure

eICP:

Estimated intracranial pressure

FiO2 :

Fraction of inspired oxygen

FV:

Flow velocity

FVd:

Diastolic flow velocity

FVm:

Mean flow velocity

hICP:

High intracranial pressure

ICP:

Intracranial pressure

ICU:

Intensive care unit

lCPP:

Low cerebral perfusion pressure

MAP:

Mean arterial pressure

MCA:

Middle cerebral artery

nCPP:

Normal cerebral perfusion pressure

nICP:

Normal intracranial pressure

PaCO2 :

Partial pressure of carbon dioxide

PaO2 :

Partial pressure of oxygen

PEEP:

Positive end-expiratory pressure

SABD:

Sepsis-associated brain dysfunction

ScvO2 :

Central venous oxygen saturation

STROBE:

Strengthening the reporting of observational studies in epidemiology

TCD:

Transcranial Doppler

References

  1. Crippa IA, Taccone FS, Wittebole X, et al. The prognostic value of brain dysfunction in critically Ill patients with and without sepsis: A Post Hoc analysis of the ICON audit. Brain Sci. 2021;11(5):530. https://doi.org/10.3390/brainsci11050530.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Semmler A, Widmann CN, Okulla T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry. 2013;84(1):62–9. https://doi.org/10.1136/jnnp-2012-302883.

    Article  PubMed  Google Scholar 

  3. Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol. 2014;13(6):630–6. https://doi.org/10.1016/S1474-4422(14)70017-1.

    Article  PubMed  Google Scholar 

  4. Heming N, Mazeraud A, Verdonk F, Bozza FA, Chrétien F, Sharshar T. Neuroanatomy of sepsis-associated encephalopathy. Crit Care. 2017;21(1):65. https://doi.org/10.1186/s13054-017-1643-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Czempik PF, Pluta MP, Krzych Ł. Sepsis-associated brain dysfunction: a review of current literature. Int J Environ Res Public Health. 2020;17(16):5852. https://doi.org/10.3390/ijerph17165852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T. Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics. 2020;17(2):392–403. https://doi.org/10.1007/s13311-020-00862-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taccone FS, Su F, Pierrakos C, et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;14(4):R140. https://doi.org/10.1186/cc9205.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cepinskas G, Wilson JX. Inflammatory response in microvascular endothelium in sepsis: role of oxidants. J Clin Biochem Nutr. 2008;42(3):175–84. https://doi.org/10.3164/jcbn.2008026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crippa IA, Subirà C, Vincent JL, et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Crit Care. 2018;22(1):327. https://doi.org/10.1186/s13054-018-2258-8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taccone FS, Castanares-Zapatero D, Peres-Bota D, Vincent JL, Berre’ J, Melot C. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care. 2010;12(1):35–42. https://doi.org/10.1007/s12028-009-9289-6.

    Article  CAS  PubMed  Google Scholar 

  11. Bozza FA, Garteiser P, Oliveira MF, et al. Sepsis-associated encephalopathy: a magnetic resonance imaging and spectroscopy study. J Cereb Blood Flow Metab. 2010;30(2):440–8. https://doi.org/10.1038/jcbfm.2009.215.

    Article  PubMed  Google Scholar 

  12. Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED. Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond). 1999;96(5):461–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gu M, Mei XL, Zhao YN. Sepsis and cerebral dysfunction: BBB damage, neuroinflammation, oxidative stress, apoptosis and autophagy as key mediators and the potential therapeutic approaches. Neurotox Res. 2021;39(2):489–503. https://doi.org/10.1007/s12640-020-00270-5.

    Article  CAS  PubMed  Google Scholar 

  14. Nyberg A, Gremo E, Blixt J, et al. Lung-protective ventilation increases cerebral metabolism and non-inflammatory brain injury in porcine experimental sepsis. BMC Neurosci. 2021;22(1):31. https://doi.org/10.1186/s12868-021-00629-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pang D, Wu YL, Alcamo AM, et al. Early axonal injury and delayed cytotoxic cerebral edema are associated with microglial activation in a mouse model of sepsis. Shock. 2020;54(2):256–64. https://doi.org/10.1097/SHK.0000000000001446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donnelly J, Budohoski KP, Smielewski P, Czosnyka M. Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care. 2016;20(1):129. https://doi.org/10.1186/s13054-016-1293-6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77. https://doi.org/10.1007/s00134-017-4683-6.

    Article  PubMed  Google Scholar 

  18. Pfister D, Schmidt B, Smielewski P, et al. Intracranial pressure in patients with sepsis. Acta Neurochir Suppl. 2008;102:71–5. https://doi.org/10.1007/978-3-211-85578-2_14.

    Article  CAS  PubMed  Google Scholar 

  19. Carney N, Totten AM, O’Reilly C, et al. Guidelines for the management of severe traumatic brain injury. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  PubMed  Google Scholar 

  20. Rasulo FA, Bertuetti R, Robba C, et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21(1):44. https://doi.org/10.1186/s13054-017-1632-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lang EW, Lagopoulos J, Griffith J, et al. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma. 2003;20(1):69–75. https://doi.org/10.1089/08977150360517191.

    Article  PubMed  Google Scholar 

  22. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88(5):802–8. https://doi.org/10.3171/jns.1998.88.5.0802.

    Article  CAS  PubMed  Google Scholar 

  23. Rasulo FA, Calza S, Robba C, et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care. 2022;26(1):110. https://doi.org/10.1186/s13054-022-03978-2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31(4):1250–6. https://doi.org/10.1097/01.CCM.0000050454.01978.3B.

    Article  PubMed  Google Scholar 

  26. von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9. https://doi.org/10.1016/j.ijsu.2014.07.013.

    Article  Google Scholar 

  27. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86. https://doi.org/10.1007/s12028-008-9175-7.

    Article  PubMed  Google Scholar 

  28. Olsen MH, Riberholt CG, Plovsing RR, Møller K, Berg RMG. Reliability of the mean flow index (Mx) for assessing cerebral autoregulation in healthy volunteers. Physiol Rep. 2021;9:e14923. https://doi.org/10.14814/phy2.14923.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hawryluk GWJ, Citerio G, Hutchinson P, et al. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med. 2022;48(10):1471–81. https://doi.org/10.1007/s00134-022-06786-y.

    Article  PubMed  Google Scholar 

  30. Rangel-Castilla L, Rangel-Castillo L, Gopinath S, Robertson CS. Management of intracranial hypertension. Neurol Clin. 2008;26(2):521–41. https://doi.org/10.1016/j.ncl.2008.02.003.

    Article  PubMed  Google Scholar 

  31. Polito A, Eischwald F, Maho AL, et al. Pattern of brain injury in the acute setting of human septic shock. Crit Care. 2013;17(5):R204. https://doi.org/10.1186/cc12899.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meng L, Wang Y, Zhang L, McDonagh DL. Heterogeneity and variability in pressure autoregulation of organ blood flow: lessons learned over 100+ years. Crit Care Med. 2019;47(3):436–48. https://doi.org/10.1097/CCM.0000000000003569.

    Article  PubMed  Google Scholar 

  33. Brassard P, Labrecque L, Smirl JD, et al. Losing the dogmatic view of cerebral autoregulation. Physiol Rep. 2021;9(15):14982. https://doi.org/10.14814/phy2.14982.

    Article  Google Scholar 

  34. Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93. https://doi.org/10.1056/NEJMoa1312173.

    Article  CAS  PubMed  Google Scholar 

  35. Goodson CM, Rosenblatt K, Rivera-Lara L, Nyquist P, Hogue CW. Cerebral blood flow autoregulation in sepsis for the intensivist: why its monitoring may be the future of individualized care. J Intensive Care Med. 2018;33(2):63–73. https://doi.org/10.1177/0885066616673973.

    Article  PubMed  Google Scholar 

  36. Rosenblatt K, Walker KA, Goodson C, et al. Cerebral autoregulation-guided optimal blood pressure in sepsis-associated encephalopathy: a case series. J Intensive Care Med. 2020;35(12):1453–64. https://doi.org/10.1177/0885066619828293.

    Article  PubMed  Google Scholar 

  37. Raabe A, Kopetsch O, Woszczyk A, et al. Serum S-100B protein as a molecular marker in severe traumatic brain injury. Restor Neurol Neurosci. 2003;21(3–4):159–69.

    CAS  PubMed  Google Scholar 

  38. Kanner AA, Marchi N, Fazio V, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;97(11):2806–13. https://doi.org/10.1002/cncr.11409.

    Article  CAS  PubMed  Google Scholar 

  39. Dostal P, Cerny V, Parizkova R. Sepsis: cause of late deterioration of intracranial pressure in patients with severe traumatic brain injury? Crit Care. 1998;2:1–61.

    Article  Google Scholar 

  40. Kim JA, Wahlster S, LaBuzetta JN, et al. Focused management of patients with severe acute brain injury and ARDS. Chest. 2022;161(1):140–51. https://doi.org/10.1016/j.chest.2021.08.066.

    Article  CAS  PubMed  Google Scholar 

  41. de Azevedo DS, Salinet ASM, de Lima OM, Teixeira MJ, Bor-Seng-Shu E, de Carvalho NR. Cerebral hemodynamics in sepsis assessed by transcranial Doppler: a systematic review and meta-analysis. J Clin Monit Comput. 2017;31(6):1123–32. https://doi.org/10.1007/s10877-016-9945-2.

    Article  PubMed  Google Scholar 

  42. Pfister D, Siegemund M, Dell-Kuster S, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12(3):R63. https://doi.org/10.1186/cc6891.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schramm P, Klein KU, Falkenberg L, et al. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit Care. 2012;16(5):R181. https://doi.org/10.1186/cc11665.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bowie RA, O’Connor PJ, Mahajan RP. Cerebrovascular reactivity to carbon dioxide in sepsis syndrome. Anaesthesia. 2003;58(3):261–5. https://doi.org/10.1046/j.1365-2044.2003.29671.x.

    Article  CAS  PubMed  Google Scholar 

  45. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Röther J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27(7):1231–4. https://doi.org/10.1007/s001340101005.

    Article  CAS  PubMed  Google Scholar 

  46. Thees C, Kaiser M, Scholz M, et al. Cerebral haemodynamics and carbon dioxide reactivity during sepsis syndrome. Crit Care. 2007;11(6):R123. https://doi.org/10.1186/cc6185.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Berg RM, Plovsing RR. Effects of short-term mechanical hyperventilation on cerebral blood flow and dynamic cerebral autoregulation in critically ill patients with sepsis. Scand J Clin Lab Invest. 2016;76(3):226–33. https://doi.org/10.3109/00365513.2015.1137350.

    Article  PubMed  Google Scholar 

  48. Cardim D, Robba C, Bohdanowicz M, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25(3):473–91. https://doi.org/10.1007/s12028-016-0258-6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Topcuoglu MA. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem. 2012;123(Suppl 2):39–51. https://doi.org/10.1111/j.1471-4159.2012.07942.x.

    Article  CAS  PubMed  Google Scholar 

  50. Sheth KN, Stein DM, Aarabi B, et al. Intracranial pressure dose and outcome in traumatic brain injury. Neurocrit Care. 2013;18(1):26–32. https://doi.org/10.1007/s12028-012-9780-3.

    Article  PubMed  Google Scholar 

  51. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32(5):737–41.

    Article  CAS  PubMed  Google Scholar 

  52. Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25:793–7. https://doi.org/10.1161/01.str.25.4.793.

    Article  CAS  PubMed  Google Scholar 

  53. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8. https://doi.org/10.1161/01.str.31.7.1672.

    Article  CAS  PubMed  Google Scholar 

  54. Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol. 2000;21(7):1207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol. 2014;117(10):1090–6. https://doi.org/10.1152/japplphysiol.00285.2014.

    Article  PubMed  Google Scholar 

  56. Spilt A, Box FM, van der Geest RJ, et al. Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging. 2002;16(1):1–5. https://doi.org/10.1002/jmri.10133.

    Article  PubMed  Google Scholar 

  57. Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhäupl KM. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. AJNR Am J Neuroradiol. 1997;18(10):1929–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindegaard KF, Lundar T, Wiberg J, Sjøberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18(6):1025–30. https://doi.org/10.1161/01.str.18.6.1025.

    Article  CAS  PubMed  Google Scholar 

  59. Bishop CC, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke. 1986;17(5):913–5. https://doi.org/10.1161/01.str.17.5.913.

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y, Yang X, Gong H, et al. Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope. J Biomed Opt. 2013;18(7):76007. https://doi.org/10.1117/1.JBO.18.7.076007.

    Article  PubMed  Google Scholar 

  61. Carrara M, Ferrario M, Bollen Pinto B, Herpain A. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care. 2021;11:80. https://doi.org/10.1186/s13613-021-00869-7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pantzaris ND, Platanaki C, Tsiotsios K, Koniari I, Velissaris D. The use of electroencephalography in patients with sepsis: a review of The literature. J Transl Int Med. 2021;9(1):12–6. https://doi.org/10.2478/jtim-2021-0007.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rosengarten B, Krekel D, Kuhnert S, Schulz R. Early neurovascular uncoupling in the brain during community acquired pneumonia. Crit Care. 2012;16(2):R64. https://doi.org/10.1186/cc11310.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ferlini L, Su F, Creteur J, Taccone FS, Gaspard N. Cerebral autoregulation and neurovascular coupling are progressively impaired during septic shock: an experimental study. Intensive Care Med Exp. 2020;8(1):44. https://doi.org/10.1186/s40635-020-00332-0.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Heckelmann M, Shivapathasundram G, Cardim D, et al. Transcranial Doppler-derived indices of cerebrovascular haemodynamics are independent of depth and angle of insonation. J Clin Neurosci. 2020;82(Pt A):115–21. https://doi.org/10.1016/j.jocn.2020.10.037.

    Article  PubMed  Google Scholar 

  66. Hoskins PR. Accuracy of maximum velocity estimates made using Doppler ultrasound systems. Br J Radiol. 1996;69(818):172–7. https://doi.org/10.1259/0007-1285-69-818-172.

    Article  CAS  PubMed  Google Scholar 

  67. Lau VI, Arntfield RT. Point-of-care transcranial Doppler by intensivists. Crit Ultrasound J. 2017;9(1):21. https://doi.org/10.1186/s13089-017-0077-9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Robba C, Crippa IA, Taccone FS. Septic encephalopathy. Curr Neurol Neurosci Rep. 2018;18(12):82. https://doi.org/10.1007/s11910-018-0895-6.

    Article  PubMed  Google Scholar 

  69. Boettger S, Nuñez DG, Meyer R, et al. Delirium in the intensive care setting: a reevaluation of the validity of the CAM-ICU and ICDSC versus the DSM-IV-TR in determining a diagnosis of delirium as part of the daily clinical routine. Palliat Support Care. 2017;15(6):675–83. https://doi.org/10.1017/S1478951516001176.

    Article  PubMed  Google Scholar 

  70. Reade MC, Eastwood GM, Peck L, Bellomo R, Baldwin I. Routine use of the confusion assessment method for the intensive care unit (CAM-ICU) by bedside nurses may underdiagnose delirium. Crit Care Resusc. 2011;13:217–24.

    PubMed  Google Scholar 

  71. van Eijk MM, van den Boogaard M, van Marum RJ, et al. Routine use of the confusion assessment method for the intensive care unit: a multicenter study. Am J Respir Crit Care Med. 2011;184(3):340–4. https://doi.org/10.1164/rccm.201101-0065OC.

    Article  PubMed  Google Scholar 

  72. Zampieri FG, Park M, Machado FS, Azevedo LC. Sepsis-associated encephalopathy: not just delirium. Clinics (Sao Paulo). 2011;66(10):1825–31.

    Article  PubMed  Google Scholar 

  73. Sonneville R, de Montmollin E, Poujade J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43(8):1075–84. https://doi.org/10.1007/s00134-017-4807-z.

    Article  PubMed  Google Scholar 

  74. Skrobik Y, Duprey MS, Hill NS, Devlin JW. Low-dose nocturnal dexmedetomidine prevents ICU delirium. A randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197(9):1147–56. https://doi.org/10.1164/rccm.201710-1995OC.

    Article  CAS  PubMed  Google Scholar 

  75. Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10. https://doi.org/10.1001/jama.286.21.2703.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for the present study. IAC, JC, NG, and FST are supported by the Fonds d’Excellence of Fondation Erasme (2015–2021).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FST, IAC; methodology: IAC, FST; investigation: IAC, FZC, SP, CM; analysis of data: IAC; writing original draft: IAC; review and editing: IAC, JLV, FZC, SP. NG, CM, JC, FST. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ilaria Alice Crippa.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Ethical Approval/Informed Consent

The study protocol was approved by the Ethics Committee of the Erasme Hospital (P2021/493), which waived the need for an informed consent because of the retrospective analysis of anonymized data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crippa, I.A., Vincent, JL., Zama Cavicchi, F. et al. Estimated Cerebral Perfusion Pressure and Intracranial Pressure in Septic Patients. Neurocrit Care 40, 577–586 (2024). https://doi.org/10.1007/s12028-023-01783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01783-5

Keywords

Navigation