Skip to main content

Advertisement

Log in

Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Transcranial Doppler (TCD) noninvasively measures cerebral blood flow (CBF) velocity and is a well-studied method to monitor cerebral autoregulation (CA). Near-infrared spectroscopy (NIRS) has emerged as a promising noninvasive method to determine CA continuously by using regional cerebral oxygen saturation (rSO2) as a surrogate for CBF. Little is known about its accuracy to determine CA in patients with intracranial lesions. The purpose of this study was to assess the accuracy of rSO2-based CA monitoring with TCD methods in comatose patients with acute neurological injury.

Methods

Thirty-three comatose patients were monitored at the bedside to measure CA using both TCD and NIRS. Patients were monitored daily for up to three days from coma onset. The cerebral oximetry index (COx) was calculated as the moving correlation between the slow waves of rSO2 and mean arterial pressure (MAP). The mean velocity index (Mx) was calculated as a similar coefficient between slow waves of TCD-measured CBF velocity and MAP. Optimal blood pressure was defined as the MAP with the lowest Mx and COx. Averaged Mx and COx as well as optimal MAP, based on both Mx and COx, were compared using Pearson’s correlation. Bias analysis was performed between these same CA metrics.

Results

The median duration of monitoring was 60 min (interquartile range [IQR] 48–78). There was a moderate correlation between the averaged values of COx and Mx (R = 0.40, p = 0.005). Similarly, there was a strong correlation between optimal MAP calculated for COx and Mx (R = 0.87, p < 0.001). Bland–Altman analysis showed moderate agreement with bias (±standard deviation) of −0.107 (±0.191) for COx versus Mx and good agreement with bias of 1.90 (±7.94) for optimal MAP determined by COx versus Mx.

Conclusions

Monitoring CA with NIRS-derived COx is correlated and had good agreement with previously validated TCD-based method. These results suggest that COx may be an acceptable substitute for Mx monitoring in patients with acute intracranial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.

    Article  CAS  PubMed  Google Scholar 

  2. Newell DW, Aaslid R. Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev. 1992;4:122–43.

    CAS  PubMed  Google Scholar 

  3. Aries MJ, Elting JW, De Keyser J, Kremer BP, Vroomen PC. Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke. 2010;41:2697–704.

    Article  PubMed  Google Scholar 

  4. Bazan R, Braga GP, Luvizutto GJ, Hueb JC, Hokama NK, Zanati Bazan SG, et al. Evaluation of the temporal acoustic window for transcranial Doppler in a multi-ethnic population in Brazil. Ultrasound Med Biol. 2015;41:2131–4.

    Article  PubMed  Google Scholar 

  5. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10:122–8.

    Article  PubMed  Google Scholar 

  8. Howlett JA, Northington FJ, Gilmore MM, Tekes A, Huisman TA, Parkinson C, et al. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2013;74:525–35.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ono M, Zheng Y, Joshi B, Sigl JC, Hogue CW. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery. Anesth Analg. 2013;116:198–204.

    Article  PubMed  Google Scholar 

  10. Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, et al. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients. Interact Cardiovasc Thorac Surg. 2016;22(4):445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Ji B, Yang B, Liu G, Miao N, Yang J, et al. Real-time continuous neuromonitoring combines transcranial cerebral Doppler with near-infrared spectroscopy cerebral oxygen saturation during total aortic arch replacement procedure: a pilot study. ASAIO J. 2012;58:122–6.

    Article  CAS  PubMed  Google Scholar 

  12. Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, et al. The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery. 2012;71:652–60 (discussion 660-651).

    Article  PubMed  Google Scholar 

  13. Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab. 2013;33:449–56.

    Article  PubMed  Google Scholar 

  14. Weerakkody RA, Czosnyka M, Zweifel C, Castellani G, Smielewski P, Keong N, et al. Slow vasogenic fluctuations of intracranial pressure and cerebral near infrared spectroscopy—an observational study. Acta Neurochir. 2010;152:1763–9.

    Article  PubMed  Google Scholar 

  15. Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18:1025–30.

    Article  CAS  PubMed  Google Scholar 

  16. Hori D, Ono M, Rappold TE, Conte JV, Shah AS, Cameron DE, et al. Hypotension after cardiac operations based on autoregulation monitoring leads to brain cellular injury. Ann Thorac Surg. 2015;100:487–93.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.

    Article  PubMed  Google Scholar 

  18. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  CAS  PubMed  Google Scholar 

  19. Stevens RD, Bhardwaj A. Approach to the comatose patient. Crit Care Med. 2006;34:31–41.

    Article  PubMed  Google Scholar 

  20. Hughes CG, Patel MB, Pandharipande PP. Pathophysiology of acute brain dysfunction: what’s the cause of all this confusion? Curr Opin Crit Care. 2012;18:518–26.

    Article  PubMed  Google Scholar 

  21. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106:625–32.

    Article  CAS  PubMed  Google Scholar 

  22. Olsen KS, Svendsen LB, Larsen FS. Validation of transcranial near-infrared spectroscopy for evaluation of cerebral blood flow autoregulation. J Neurosurg Anesthesiol. 1996;8:280–5.

    Article  CAS  PubMed  Google Scholar 

  23. Vernieri F, Tibuzzi F, Pasqualetti P, Altamura C, Palazzo P, Rossini PM, et al. Increased cerebral vasomotor reactivity in migraine with aura: an autoregulation disorder? A transcranial Doppler and near-infrared spectroscopy study. Cephalalgia. 2008;28:689–95.

    Article  CAS  PubMed  Google Scholar 

  24. Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41:1963–8.

    Article  PubMed  Google Scholar 

  25. Berg RM, Plovsing RR. Near-infrared spectroscopy versus transcranial Doppler ultrasound for assessing dynamic cerebral autoregulation by transfer function analysis in sepsis. Scand J Clin Lab Invest. 2016;76:88–91.

    Article  PubMed  Google Scholar 

  26. Yoshitani K, Kawaguchi M, Tatsumi K, Kitaguchi K, Furuya H. A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers. Anesth Analg. 2002;94:586–90.

    Article  CAS  PubMed  Google Scholar 

  27. Vretzakis G, Georgopoulou S, Stamoulis K, Stamatiou G, Tsakiridis K, Zarogoulidis P, et al. Cerebral oximetry in cardiac anesthesia. J Thorac Dis. 2014;6(Suppl 1):S60–9.

    PubMed  PubMed Central  Google Scholar 

  28. Tsuji M, duPlessis A, Taylor G, Crocker R, Volpe JJ. Near infrared spectroscopy detects cerebral ischemia during hypotension in piglets. Pediatr Res. 1998;44:591–5.

    Article  CAS  PubMed  Google Scholar 

  29. Reinhard M, Wehrle-Wieland E, Grabiak D, Roth M, Guschlbauer B, Timmer J, et al. Oscillatory cerebral hemodynamics—the macro- vs. Microvascular level. J Neurol Sci. 2006;250:103–9.

    Article  PubMed  Google Scholar 

  30. Smielewski PC, Czosnyka M. https://www.enterprise.cam.ac.uk/opportunities/icm-software-for-brain-monitoring-in-neurological-intensive-care-research/. 2016.

Download references

Funding

Dr. Hogue is the PI on an NIH-sponsored clinical study (R01 HL 92259). Dr. Rivera Lara is the PI on an American Academy of Neurology/American Brain Foundation and grant from Medtronic/Covidien, Dublin, IR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Rivera-Lara.

Ethics declarations

Conflict of interest

Dr. Hogue receives research funding from Medtronic/Covidien, Dublin, IR, and he serves as a consultant to Medtronic/Covidien and Ornim Medical, Inc., Foxborough, MA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Lara, L., Geocadin, R., Zorrilla-Vaca, A. et al. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients. Neurocrit Care 27, 362–369 (2017). https://doi.org/10.1007/s12028-017-0421-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-017-0421-8

Keywords

Navigation