Skip to main content

Advertisement

Log in

Monitoring cerebrovascular reactivity in pediatric traumatic brain injury: comparison of three methods

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

To study three different methods of monitoring cerebral autoregulation in children with severe traumatic brain injury.

Methods

Prospective cohort study of all children admitted to the pediatric intensive care unit at a university-affiliated hospital with severe TBI over a 4-year period to study three different methods of monitoring cerebral autoregulation: pressure-reactivity index (PRx), transcranial Doppler derived mean flow velocity index (Mx), and near-infrared spectroscopy derived cerebral oximetry index (COx).

Results

Twelve patients were included in the study, aged 5 months to 17 years old. An empirical regression analyzing dependence of PRx on cerebral perfusion pressure (CPP) displayed the classic U-shaped distribution, with low PRx values (< 0.3) reflecting intact auto-regulation, within the CPP range of 50–100 mmHg. The optimal CPP was 75–80 mmHg for PRx and COx. The correlation coefficients between the three indices were as follows: PRx vs Mx, r = 0.56; p < 0.0001; PRx vs COx, r = 0.16; p < 0.0001; and COx vs Mx, r = 0.15; p = 0.022. The mean PRx with a cutoff value of 0.3 predicted correctly long-term outcome (p = 0.015).

Conclusions

PRx seems to be the most robust index to access cerebrovascular reactivity in children with TBI and has promising prognostic value. Optimal CPP calculation is feasible with PRx and COx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data is available if necessary.

References

  1. Dewan MC, Mummareddy N, Wellons JC, Bonfield CM (2016) Epidemiology of global pediatric traumatic brain injury: qualitative review. World Neurosurg 91:497-509.e1. https://doi.org/10.1016/j.wneu.2016.03.045

    Article  PubMed  Google Scholar 

  2. Taylor CA, Bell JM, Breiding MJ, Xu L (2017) Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summ 66:1–16. https://doi.org/10.15585/mmwr.ss6609a1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gruenbaum SE, Zlotnik A, Gruenbaum BF et al (2016) Pharmacologic neuroprotection for functional outcomes after traumatic brain injury: a systematic review of the clinical literature. CNS Drugs 30:791–806. https://doi.org/10.1007/s40263-016-0355-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tisdall MM, Smith M (2007) Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth 99:61–67. https://doi.org/10.1093/bja/aem143

    Article  CAS  PubMed  Google Scholar 

  5. Vavilala MS, Lee LA, Boddu K et al (2004) Cerebral autoregulation in pediatric traumatic brain injury*. Pediatr Crit Care Med 5:257–263. https://doi.org/10.1097/01.PCC.0000123545.69133.C3

    Article  PubMed  Google Scholar 

  6. Brady KM, Shaffner DH, Lee JK et al (2009) Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics 124:e1205–e1212. https://doi.org/10.1542/peds.2009-0550

    Article  PubMed  Google Scholar 

  7. Dias C, Silva MJ, Pereira E et al (2015) Optimal cerebral perfusion pressure management at bedside: a single-center pilot study Neurocrit Care 92–102 https://doi.org/10.1007/s12028-014-0103-8

  8. Beqiri E, Smielewski P, Robba C et al (2019) Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open 9:e030727. https://doi.org/10.1136/bmjopen-2019-030727

    Article  PubMed  PubMed Central  Google Scholar 

  9. Czosnyka M, Smielewski P, Kirkpatrick P et al (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19. https://doi.org/10.1097/00006123-199707000-00005

    Article  CAS  PubMed  Google Scholar 

  10. Aries MJH, Czosnyka M, Budohoski KP et al (2012) Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 40:2456–2463. https://doi.org/10.1097/CCM.0b013e3182514eb6

    Article  PubMed  Google Scholar 

  11. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34:1783–1788. https://doi.org/10.1097/01.CCM.0000218413.51546.9E

    Article  PubMed  Google Scholar 

  12. Zweifel C, Lavinio A, Steiner LA et al (2008) Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 25:E2. https://doi.org/10.3171/FOC.2008.25.10.E2

    Article  PubMed  Google Scholar 

  13. Lewis PM, Czosnyka M, Carter BG et al (2015) Cerebrovascular pressure reactivity in children with traumatic brain injury. Pediatr Crit Care Med 16:739–749. https://doi.org/10.1097/PCC.0000000000000471

    Article  PubMed  Google Scholar 

  14. Young AMH, Guilfoyle MR, Donnelly J et al (2018) Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatr Res 83:41–49. https://doi.org/10.1038/pr.2017.215

    Article  PubMed  Google Scholar 

  15. Steiner LA, Czosnyka M, Piechnik SK et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–738. https://doi.org/10.1097/00003246-200204000-00002

    Article  PubMed  Google Scholar 

  16. Czosnyka M, Smielewski P, Kirkpatrick P et al (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834. https://doi.org/10.1161/01.STR.27.10.1829

    Article  CAS  PubMed  Google Scholar 

  17. Zeiler FA, Cardim D, Donnelly J et al (2018) Transcranial Doppler systolic flow index and ICP-derived cerebrovascular reactivity indices in traumatic brain injury. J Neurotrauma 35:314–322. https://doi.org/10.1089/neu.2017.5364

    Article  PubMed  Google Scholar 

  18. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD (2003) Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg 125:491–499. https://doi.org/10.1067/mtc.2003.159

    Article  PubMed  Google Scholar 

  19. Brady KM, Lee JK, Kibler KK et al (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825. https://doi.org/10.1161/STROKEAHA.107.485706

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hahn GH, Heiring C, Pryds O, Greisen G (2011) Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets. Pediatr Res 70:166–170. https://doi.org/10.1203/PDR.0b013e3182231d9e

    Article  PubMed  Google Scholar 

  21. Brady KM, Mytar JO, Kibler KK et al (2010) Noninvasive autoregulation monitoring with and without intracranial pressure in the naïve piglet brain. Anesth Analg 111:1. https://doi.org/10.1213/ANE.0b013e3181e054ba

    Article  Google Scholar 

  22. Crouchman M (2001) A practical outcome scale for paediatric head injury. Arch Dis Child 84:120–124. https://doi.org/10.1136/adc.84.2.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sorrentino E, Diedler J, Kasprowicz M et al (2012) Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care 16:258–266. https://doi.org/10.1007/s12028-011-9630-8

    Article  CAS  PubMed  Google Scholar 

  24. Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238. https://doi.org/10.1152/physrev.1959.39.2.183

    Article  CAS  PubMed  Google Scholar 

  25. Kochanek PM, Tasker RC, Carney N et al (2019) Guidelines for the management of pediatric severe traumatic brain injury, Third Edition. Pediatr Crit Care Med 20:S1–S82. https://doi.org/10.1097/PCC.0000000000001735

  26. Mehta A, Kochanek PM, Tyler-Kabara E et al (2011) Relationship of intracranial pressure and cerebral perfusion pressure with outcome in young children after severe traumatic brain injury. Dev Neurosci 32:413–419. https://doi.org/10.1159/000316804

    Article  CAS  Google Scholar 

  27. Allen BB, Chiu Y, Gerber LM et al (2014) Age-specific cerebral perfusion pressure thresholds and survival in children and adolescents with severe traumatic brain injury. Pediatr Crit Care Med 15:62–70. https://doi.org/10.1097/PCC.0b013e3182a556ea

    Article  PubMed  PubMed Central  Google Scholar 

  28. Robertson C, Valadka A, Hannay HJ, Contant C, Gopinath S, Cormio M, Uzura M, Grossman R (1999) Prevention of secondary ischemic insults after severe head injury. Crit Care Med 27:2086–2095

    Article  CAS  Google Scholar 

Download references

Funding

MC is supported by NIHR Biomedical Research Centre, Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Abecasis.

Ethics declarations

Ethics approval

The Institutional Review Board and Ethical Committee of the Lisbon Academic Medical Centre have approved this study. All performed procedures were part of the standard care for severe TBI in the PICU.

Consent to participate

Informed consent was obtained from parents or next of kin at the time of admission and from the children older than 14 years old when they recovered if they were able to understand and give consent.

Consent for publication

Consent for publication was included in the consent to participate form.

Conflict of interest

MC has a financial interest in a part of ICM + software licensing fee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abecasis, F., Dias, C., Zakrzewska, A. et al. Monitoring cerebrovascular reactivity in pediatric traumatic brain injury: comparison of three methods. Childs Nerv Syst 37, 3057–3065 (2021). https://doi.org/10.1007/s00381-021-05263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-021-05263-z

Keywords

Navigation