Skip to main content
Log in

Expression of O-glycosylated oncofetal fibronectin in alternatively activated human macrophages

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

A Correction to this article was published on 10 November 2022

This article has been updated

Abstract

Macrophage (Mϕ) polarization is an essential phenomenon for the maintenance of homeostasis and tissue repair, and represents the event by which Mϕ reach divergent functional phenotypes as a result to specific stimuli and/or microenvironmental signals. Mϕ can be polarized into two main phenotypes, M1 or classically activated and M2 or alternatively activated. These two categories diverge in many aspects, such as secreted cytokines, markers of cell surface, and biological functions. Over the last 10 years, many potential markers have been proposed for both M1 and M2 human Mϕ. However, there is scarce information regarding the glycophenotype adopted by these cells. Here, we show that M2- but not M1-polarized Mϕ expresses high levels of an unusual glycoform of fibronectin (FN), named O-glycosylated oncofetal FN (onf-FN), found in fetal/cancer cells, but not in healthy tissues. The onf-FN expression was confirmed in vitro by Western blot and real-time RT-qPCR in primary and cell line monocyte-derived Mϕ. onf-FN was induced by IL-4 and IL-13, but not by pro-inflammatory stimuli (LPS and INF-γ). RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization. In conclusion, we show by the first time that O-glycosylated onf-FN is expressed by M2-polarized Mϕ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008.

    Article  CAS  Google Scholar 

  2. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61. https://doi.org/10.2741/2692.

    Article  CAS  Google Scholar 

  3. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55. https://doi.org/10.1016/s1471-4906(02)02302-5.

    Article  CAS  Google Scholar 

  4. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95. https://doi.org/10.1172/JCI59643.

    Article  CAS  Google Scholar 

  5. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15:123–47. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

    Article  CAS  Google Scholar 

  6. Xiao M, Zhang J, Chen W, Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 2018;37(1):143. https://doi.org/10.1186/s13046-018-0815-2.

    Article  CAS  Google Scholar 

  7. Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, et al. Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. 2018;78(15):4253–69. https://doi.org/10.1158/0008-5472.CAN-17-3876.

    Article  CAS  Google Scholar 

  8. Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. Metabolic regulation of macrophage activation. J Innate Immun. 2022;14(1):51–68. https://doi.org/10.1159/000516780.

    Article  CAS  Google Scholar 

  9. Ma J, Liu L, Che G, Yu N, Dai F, You Z. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010;10:112. https://doi.org/10.1186/1471-2407-10-112.

    Article  CAS  Google Scholar 

  10. Mills CD. M1 and M2 Macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88. https://doi.org/10.1615/critrevimmunol.v32.i6.10.

    Article  CAS  Google Scholar 

  11. Pan XQ. The mechanism of the anticancer function of M1 macrophages and their use in the clinic. Chin J Cancer. 2012;31(12):557–63. https://doi.org/10.5732/cjc.012.10046.

    Article  CAS  Google Scholar 

  12. Nascimento CS, Alves EAR, de Melo CP, Correa-Oliveira R, Calzavara-Silva CE. Immunotherapy for cancer: effects of iron oxide nanoparticles on polarization of tumor-associated macrophages. Nanomedicine (Lond). 2021;16(29):2633–50. https://doi.org/10.2217/nnm-2021-0255.

    Article  CAS  Google Scholar 

  13. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35. https://doi.org/10.1038/nri978.

    Article  CAS  Google Scholar 

  14. Dungan LS, McGuinness NC, Boon L, Lynch MA, Mills KH. Innate IFN-gamma promotes development of experimental autoimmune encephalomyelitis: a role for NK cells and M1 macrophages. Eur J Immunol. 2014;44(10):2903–17. https://doi.org/10.1002/eji.201444612.

    Article  CAS  Google Scholar 

  15. Eom YW, Akter R, Li W, Lee S, Hwang S, Kim J et al. M1 macrophages promote TRAIL expression in adipose tissue-derived stem cells, which suppresses colitis-associated colon cancer by increasing apoptosis of CD133(+) cancer stem cells and decreasing M2 macrophage population. Int J Mol Sci. 2020;21(11):1–15. https://doi.org/10.3390/ijms21113887.

  16. Zong Z, Zou J, Mao R, Ma C, Li N, Wang J, et al. M1 Macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1beta signaling. Front Immunol. 2019;10:1643. https://doi.org/10.3389/fimmu.2019.01643.

    Article  CAS  Google Scholar 

  17. Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle. 2018;17(4):428–38. https://doi.org/10.1080/15384101.2018.1444305.

    Article  CAS  Google Scholar 

  18. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85. https://doi.org/10.1002/path.4133.

    Article  CAS  Google Scholar 

  19. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10(23):10712–28. https://doi.org/10.7150/thno.46143.

    Article  CAS  Google Scholar 

  20. Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 2018;105:63–72. https://doi.org/10.1016/j.cyto.2018.02.002.

    Article  CAS  Google Scholar 

  21. Yu T, Zhao L, Huang X, Ma C, Wang Y, Zhang J, et al. Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection. J Periodontol. 2016;87(9):1092–102. https://doi.org/10.1902/jop.2016.160081.

    Article  CAS  Google Scholar 

  22. Vega-Galaviz D, Vecchyo-Tenorio GD, Alcantara-Suarez R, Mendez-Garcia LA, Sanchez-Del Real AL, Villalobos-Molina R, et al. M2 macrophage immunotherapy abolishes glucose intolerance by increasing IL-10 expression and AKT activation. Immunotherapy. 2020;12(1):9–24. https://doi.org/10.2217/imt-2019-0080.

    Article  CAS  Google Scholar 

  23. Vogel DY, Glim JE, Stavenuiter AW, Breur M, Heijnen P, Amor S, et al. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology. 2014;219(9):695–703. https://doi.org/10.1016/j.imbio.2014.05.002.

    Article  CAS  Google Scholar 

  24. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5(1): e8668. https://doi.org/10.1371/journal.pone.0008668.

    Article  CAS  Google Scholar 

  25. Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021;22(13):1–21. https://doi.org/10.3390/ijms22136995.

  26. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65(8):3437–46. https://doi.org/10.1158/0008-5472.CAN-04-4262.

    Article  CAS  Google Scholar 

  27. Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, et al. p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 2006;66(23):11432–40. https://doi.org/10.1158/0008-5472.CAN-06-1867.

    Article  CAS  Google Scholar 

  28. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. https://doi.org/10.1038/ni.1937.

    Article  CAS  Google Scholar 

  29. Biswas SK, Lewis CE. NF-kappaB as a central regulator of macrophage function in tumors. J Leukoc Biol. 2010;88(5):877–84. https://doi.org/10.1189/jlb.0310153.

    Article  CAS  Google Scholar 

  30. Dorrington MG, Fraser IDC. NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol. 2019;10:705. https://doi.org/10.3389/fimmu.2019.00705.

    Article  CAS  Google Scholar 

  31. Ernst O, Vayttaden SJ, Fraser IDC. Measurement of NF-kappaB activation in TLR-activated macrophages. Methods Mol Biol. 2018;1714:67–78. https://doi.org/10.1007/978-1-4939-7519-8_5.

    Article  CAS  Google Scholar 

  32. Quero L, Tiaden AN, Hanser E, Roux J, Laski A, Hall J, et al. miR-221-3p drives the shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation. Front Immunol. 2019;10:3087. https://doi.org/10.3389/fimmu.2019.03087.

    Article  CAS  Google Scholar 

  33. Xu H, An H, Yu Y, Zhang M, Qi R, Cao X. Ras participates in CpG oligodeoxynucleotide signaling through association with toll-like receptor 9 and promotion of interleukin-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor 6 complex formation in macrophages. J Biol Chem. 2003;278(38):36334–40. https://doi.org/10.1074/jbc.M305698200.

    Article  CAS  Google Scholar 

  34. Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 2018;128(2):805–15. https://doi.org/10.1172/JCI96113.

    Article  Google Scholar 

  35. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543(7645):428–32. https://doi.org/10.1038/nature21409.

    Article  CAS  Google Scholar 

  36. Yang X, Feng W, Wang R, Yang F, Wang L, Chen S, et al. Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. Oncoimmunology. 2018;7(4):e1412910. https://doi.org/10.1080/2162402X.2017.1412910.

    Article  Google Scholar 

  37. Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008;27(2):161–7. https://doi.org/10.1038/sj.onc.1210911.

    Article  CAS  Google Scholar 

  38. Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrie M, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 2010;12(4):401–8. https://doi.org/10.1093/neuonc/nop047.

    Article  CAS  Google Scholar 

  39. Weber JS, Zarour H, Redman B, Trefzer U, O’Day S, van den Eertwegh AJ, et al. Randomized phase 2/3 trial of CpG oligodeoxynucleotide PF-3512676 alone or with dacarbazine for patients with unresectable stage III and IV melanoma. Cancer. 2009;115(17):3944–54. https://doi.org/10.1002/cncr.24473.

    Article  CAS  Google Scholar 

  40. Bleriot C, Chakarov S, Ginhoux F. Determinants of resident tissue macrophage identity and function. Immunity. 2020;52(6):957–70. https://doi.org/10.1016/j.immuni.2020.05.014.

    Article  CAS  Google Scholar 

  41. Davies LC, Taylor PR. Tissue-resident macrophages: then and now. Immunology. 2015;144(4):541–8. https://doi.org/10.1111/imm.12451.

    Article  CAS  Google Scholar 

  42. O’Shannessy DJ, Somers EB, Wang LC, Wang H, Hsu R. Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers. J Ovarian Res. 2015;8:29. https://doi.org/10.1186/s13048-015-0156-0.

    Article  CAS  Google Scholar 

  43. Tariq M, Zhang JQ, Liang GK, He QJ, Ding L, Yang B. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin. 2017;38(11):1501–11. https://doi.org/10.1038/aps.2017.124.

    Article  CAS  Google Scholar 

  44. Zhang X, Zhao Y, Zhu X, Guo Y, Yang Y, Jiang Y, et al. Active vitamin D regulates macrophage M1/M2 phenotypes via the STAT-1-TREM-1 pathway in diabetic nephropathy. J Cell Physiol. 2019;234(5):6917–26. https://doi.org/10.1002/jcp.27450.

    Article  CAS  Google Scholar 

  45. Wu BM, Liu JD, Li YH, Li J. Margatoxin mitigates CCl4induced hepatic fibrosis in mice via macrophage polarization, cytokine secretion and STAT signaling. Int J Mol Med. 2020;45(1):103–14. https://doi.org/10.3892/ijmm.2019.4395.

    Article  CAS  Google Scholar 

  46. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176(1):287–92. https://doi.org/10.1084/jem.176.1.287.

    Article  CAS  Google Scholar 

  47. Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304(5677):1678–82. https://doi.org/10.1126/science.1095336.

    Article  CAS  Google Scholar 

  48. Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh GhG. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol. 2002;71(4):597–602.

    Article  CAS  Google Scholar 

  49. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303–11. https://doi.org/10.4049/jimmunol.177.10.7303.

    Article  CAS  Google Scholar 

  50. Gerrick KY, Gerrick ER, Gupta A, Wheelan SJ, Yegnasubramanian S, Jaffee EM. Transcriptional profiling identifies novel regulators of macrophage polarization. PLoS ONE. 2018;13(12):e0208602. https://doi.org/10.1371/journal.pone.0208602.

    Article  CAS  Google Scholar 

  51. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577. https://doi.org/10.1186/s12885-015-1546-9.

    Article  CAS  Google Scholar 

  52. Sudhakaran PR, Radhika A, Jacob SS. Monocyte macrophage differentiation in vitro: fibronectin-dependent upregulation of certain macrophage-specific activities. Glycoconj J. 2007;24(1):49–55. https://doi.org/10.1007/s10719-006-9011-2.

    Article  CAS  Google Scholar 

  53. Jacob SS, Shastry P, Sudhakaran PR. Monocyte-macrophage differentiation in vitro: modulation by extracellular matrix protein substratum. Mol Cell Biochem. 2002;233(1–2):9–17. https://doi.org/10.1023/a:1015593232347.

    Article  CAS  Google Scholar 

  54. Digiacomo G, Tusa I, Bacci M, Cipolleschi MG, Dello Sbarba P, Rovida E. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway. Cell Adh Migr. 2017;11(4):327–37. https://doi.org/10.1080/19336918.2016.1221566.

    Article  CAS  Google Scholar 

  55. Pietrocola G, Rindi S, Nobile G, Speziale P. Purification of human plasma/cellular fibronectin and fibronectin fragments. Methods Mol Biol. 2017;1627:309–24. https://doi.org/10.1007/978-1-4939-7113-8_20.

    Article  CAS  Google Scholar 

  56. Mosher DF. Cross-linking of plasma and cellular fibronectin by plasma transglutaminase. Ann N Y Acad Sci. 1978;312:38–42. https://doi.org/10.1111/j.1749-6632.1978.tb16791.x.

    Article  CAS  Google Scholar 

  57. Krusius T, Fukuda M, Dell A, Ruoslahti E. Structure of the carbohydrate units of human amniotic fluid fibronectin. J Biol Chem. 1985;260(7):4110–6.

    Article  CAS  Google Scholar 

  58. Sekiguchi K, Hakomori S. Functional domain structure of fibronectin. Proc Natl Acad Sci U S A. 1980;77(5):2661–5. https://doi.org/10.1073/pnas.77.5.2661.

    Article  CAS  Google Scholar 

  59. Schor SL, Grey AM, Ellis I, Schor AM, Coles B, Murphy R. Migration stimulating factor (MSF): its structure, mode of action and possible function in health and disease. Symp Soc Exp Biol. 1993;47:235–51.

    CAS  Google Scholar 

  60. Schor SL, Ellis IR, Jones SJ, Baillie R, Seneviratne K, Clausen J, et al. Migration-stimulating factor: a genetically truncated onco-fetal fibronectin isoform expressed by carcinoma and tumor-associated stromal cells. Cancer Res. 2003;63(24):8827–36.

    CAS  Google Scholar 

  61. Schor AM, Woolston AM, Kankova K, Harada K, Aljorani LE, Perrier S, et al. Migration stimulating factor (MSF): its role in the tumour microenvironment. Adv Exp Med Biol. 2021;1329:351–97. https://doi.org/10.1007/978-3-030-73119-9_18.

    Article  CAS  Google Scholar 

  62. Schor AM, Schor SL. Angiogenesis and tumour progression: migration-stimulating factor as a novel target for clinical intervention. Eye (Lond). 2010;24(3):450–8. https://doi.org/10.1038/eye.2009.314.

    Article  CAS  Google Scholar 

  63. Schor SL, Grey AM, Picardo M, Schor AM, Howell A, Ellis I, et al. Heterogeneity amongst fibroblasts in the production of migration stimulating factor (MSF): implications for cancer pathogenesis. EXS. 1991;59:127–46. https://doi.org/10.1007/978-3-0348-7494-6_9.

    Article  CAS  Google Scholar 

  64. da Fonseca LM, da Silva VA, Freire-de-Lima L, Previato JO, Mendonca-Previato L, Capella MA. Glycosylation in cancer: interplay between multidrug resistance and epithelial-to-mesenchymal transition? Front Oncol. 2016;6:158. https://doi.org/10.3389/fonc.2016.00158.

    Article  Google Scholar 

  65. Freire-de-Lima L. Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol. 2014;4:59. https://doi.org/10.3389/fonc.2014.00059.

    Article  Google Scholar 

  66. da Fonseca LM, Calvalhan DM, Previato JO, Mendonca Previato L, Freire-de-Lima L. Resistance to paclitaxel induces glycophenotype changes and mesenchymal-to-epithelial transition activation in the human prostate cancer cell line PC-3. Tumour Biol. 2020;42(9):1010428320957506. https://doi.org/10.1177/1010428320957506.

    Article  CAS  Google Scholar 

  67. Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K, et al. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci U S A. 2011;108(43):17690–5. https://doi.org/10.1073/pnas.1115191108.

    Article  Google Scholar 

  68. da Fonseca LM, da Silva VA, da Costa KM, Dos Reis JS, Previato JO, Previato LM, et al. Resistance to cisplatin in human lung adenocarcinoma cells: effects on the glycophenotype and epithelial to mesenchymal transition markers. Glycoconj J. 2022. https://doi.org/10.1007/s10719-022-10042-2.

    Article  Google Scholar 

  69. Matsuura H, Takio K, Titani K, Greene T, Levery SB, Salyan ME, et al. The oncofetal structure of human fibronectin defined by monoclonal antibody FDC-6. Unique structural requirement for the antigenic specificity provided by a glycosylhexapeptide. J Biol Chem. 1988;263(7):3314–22.

    Article  CAS  Google Scholar 

  70. Vendittelli F, Raffaelli M, Fadda G, Carelli-Alinovi C, Paolillo C, Bellantone R, et al. Blood presence of circulating oncofetal fibronectin mRNA, by RT-PCR, does not represent a useful specific marker for the management and follow-up of thyroid cancer patients. Clin Chem Lab Med. 2012;50(4):715–20. https://doi.org/10.1515/cclm-2011-0848.

    Article  CAS  Google Scholar 

  71. Feinberg RF, Kliman HJ, Wang CL. Transforming growth factor-beta stimulates trophoblast oncofetal fibronectin synthesis in vitro: implications for trophoblast implantation in vivo. J Clin Endocrinol Metab. 1994;78(5):1241–8. https://doi.org/10.1210/jcem.78.5.8175984.

    Article  CAS  Google Scholar 

  72. Menzin AW, Loret de Mola JR, Bilker WB, Wheeler JE, Rubin SC, Feinberg RF. Identification of oncofetal fibronectin in patients with advanced epithelial ovarian cancer: detection in ascitic fluid and localization to primary sites and metastatic implants. Cancer. 1998;82(1):152–8. https://doi.org/10.1002/(sici)1097-0142(19980101)82:1%3c152::aid-cncr19%3e3.0.co;2-1.

    Article  CAS  Google Scholar 

  73. Jaatinen T, Laine J. Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient. Curr Protoc Stem Cell Biol. 2007;Chapter 2:Unit 2A 1. https://doi.org/10.1002/9780470151808.sc02a01s1.

  74. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45. https://doi.org/10.1016/j.intimp.2014.08.002.

    Article  CAS  Google Scholar 

  75. Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129(4):1016–25. https://doi.org/10.1038/jid.2008.310.

    Article  CAS  Google Scholar 

  76. Freire-de-Lima L, Nardy A, Ramos-Junior ES, Conde L, Santos Lemos J, da Fonseca LM, et al. Multiple myeloma cells express key immunoregulatory cytokines and modulate the monocyte migratory response. Front Med (Lausanne). 2017;4:92. https://doi.org/10.3389/fmed.2017.00092.

    Article  Google Scholar 

  77. Matsuura H, Hakomori S. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc Natl Acad Sci U S A. 1985;82(19):6517–21. https://doi.org/10.1073/pnas.82.19.6517.

    Article  CAS  Google Scholar 

  78. Ding Y, Gelfenbeyn K, Freire-de-Lima L, Handa K, Hakomori SI. Induction of epithelial-mesenchymal transition with O-glycosylated oncofetal fibronectin. FEBS Lett. 2012;586(13):1813–20. https://doi.org/10.1016/j.febslet.2012.05.020.

    Article  CAS  Google Scholar 

  79. Silva-Aguiar RP, Peruchetti DB, Florentino LS, Takiya CM, Marzolo MP, Dias WB et al. Albumin expands albumin reabsorption capacity in proximal tubule epithelial cells through a positive feedback loop between AKT and megalin. Int J Mol Sci. 2022;23(2):1–17. https://doi.org/10.3390/ijms23020848.

  80. Lomovskaya YV, Kobyakova MI, Senotov AS, Lomovsky AI, Minaychev VV, Fadeeva IS et al. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules. 2022;12(2):1–19. https://doi.org/10.3390/biom12020150.

  81. Alisson-Silva F, Freire-de-Lima L, Donadio JL, Lucena MC, Penha L, Sa-Diniz JN, et al. Increase of O-glycosylated oncofetal fibronectin in high glucose-induced epithelial-mesenchymal transition of cultured human epithelial cells. PLoS ONE. 2013;8(4): e60471. https://doi.org/10.1371/journal.pone.0060471.

    Article  CAS  Google Scholar 

  82. Maess MB, Wittig B, Cignarella A, Lorkowski S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J Immunol Methods. 2014;402(1–2):76–81. https://doi.org/10.1016/j.jim.2013.11.006.

    Article  CAS  Google Scholar 

  83. Liguori M, Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel). 2011;3(4):3740–61. https://doi.org/10.3390/cancers3043740.

    Article  CAS  Google Scholar 

  84. Matsuura H, Greene T, Hakomori S. An alpha-N-acetylgalactosaminylation at the threonine residue of a defined peptide sequence creates the oncofetal peptide epitope in human fibronectin. J Biol Chem. 1989;264(18):10472–6.

    Article  CAS  Google Scholar 

  85. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol. 2001;53(4):386–92. https://doi.org/10.1046/j.1365-3083.2001.00885.x.

    Article  CAS  Google Scholar 

  86. Gudewicz PW, Molnar J, Lai MZ, Beezhold DW, Siefring GE Jr, Credo RB, et al. Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages. J Cell Biol. 1980;87(2 Pt 1):427–33. https://doi.org/10.1083/jcb.87.2.427.

    Article  CAS  Google Scholar 

  87. Falcone DJ, Salisbury BG. Fibronectin stimulates macrophage uptake of low density lipoprotein-heparin-collagen complexes. Arteriosclerosis. 1988;8(3):263–73. https://doi.org/10.1161/01.atv.8.3.263.

    Article  CAS  Google Scholar 

  88. Sikkema AH, Stoffels JMJ, Wang P, Basedow FJ, Bulsink R, Bajramovic JJ, et al. Fibronectin aggregates promote features of a classically and alternatively activated phenotype in macrophages. J Neuroinflammation. 2018;15(1):218. https://doi.org/10.1186/s12974-018-1238-x.

    Article  CAS  Google Scholar 

  89. Li Z, Bratlie KM. Macrophage phenotypic changes on FN-coated physical gradient hydrogels. ACS Appl Bio Mater. 2021;4(9):6758–68. https://doi.org/10.1021/acsabm.1c00489.

    Article  CAS  Google Scholar 

  90. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3. https://doi.org/10.1242/jcs.00059.

    Article  CAS  Google Scholar 

  91. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185(1):642–52. https://doi.org/10.4049/jimmunol.1000413.

    Article  CAS  Google Scholar 

  92. Baum LG, Crocker PR. Glycoimmunology: ignore at your peril! Immunol Rev. 2009;230(1):5–8. https://doi.org/10.1111/j.1600-065X.2009.00800.x.

    Article  CAS  Google Scholar 

  93. van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol. 2008;9(6):593–601. https://doi.org/10.1038/ni.f.203.

    Article  CAS  Google Scholar 

  94. Macauley MS, Rademacher C, Marino KV. Editorial: Addressing roles for glycans in immunology using chemical biology. Front Chem. 2020;8:471. https://doi.org/10.3389/fchem.2020.00471.

    Article  Google Scholar 

  95. Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F, Dias WB, Todeschini AR. Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol Res. 2019;146: 104285. https://doi.org/10.1016/j.phrs.2019.104285.

    Article  CAS  Google Scholar 

  96. Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, et al. Glycosylation changes triggered by the differentiation of monocytic THP-1 cell line into macrophages. J Proteome Res. 2017;16(1):156–69. https://doi.org/10.1021/acs.jproteome.6b00161.

    Article  CAS  Google Scholar 

  97. Hinneburg H, Pedersen JL, Bokil NJ, Pralow A, Schirmeister F, Kawahara R, et al. High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition. Glycobiology. 2020;30(9):679–94. https://doi.org/10.1093/glycob/cwaa020.

    Article  CAS  Google Scholar 

  98. DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–82. https://doi.org/10.1038/s41577-019-0127-6.

    Article  CAS  Google Scholar 

  99. Liu J, Geng X, Hou J, Wu G. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int. 2021;21(1):389. https://doi.org/10.1186/s12935-021-02089-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Manuscript dedicated to the memory of Dr. Sen-Itiroh Hakomori, a researcher who was always been ahead of his time. To Professor Hakomori, our eternal gratitude and respect.

Funding

This work was supported by the FAPERJ, CNPq, CAPES, and Brazilian Cancer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Marcos André Rodrigues da Costa Santos, Jhenifer Santos dos Reis, Kelli Monteiro da Costa, Israel Diniz-Lima, Carlos Antônio do Nascimento Santos, Debora Decote-Ricardo, Alexandre Morrot, Leonardo Marques da Fonseca, Leonardo Freire-de-Lima. Methodology: Marcos André Rodrigues da Costa Santos, Jhenifer Santos dos Reis, Kelli Monteiro da Costa. Formal analysis and investigation: Marcos André Rodrigues da Costa Santos, Jhenifer Santos dos Reis, Kelli Monteiro da Costa, Israel Diniz-Lima, Pedro Marçal Barcelos, Karen Queiroz de Oliveira Francisco, Pedro Antônio Guimarães Notaroberto Barbosa, Emanuelle Damasceno Souza da Silva. Writing—original draft preparation: Marcos André Rodrigues da Costa Santos, Leonardo Freire-de-Lima, Leonardo Marques da Fonseca, Celio Geraldo Freire- de-Lima, Lucia Mendonça Previato, José Osvaldo Previato. Writing—review and editing: Marcos André Rodrigues da Costa Santos, Leonardo Freire-de-Lima, Leonardo Marques da Fonseca, Celio Geraldo Freire- de-Lima, Lucia Mendonça Previato, José Osvaldo Previato. Funding acquisition: Leonardo Freire-de-Lima, Leonardo Marques da Fonseca, Celio Geraldo Freire- de-Lima, Lucia Mendonça Previato, José Osvaldo Previato. Resources: Leonardo Freire-de-Lima, Celio Geraldo Freire- de-Lima, Lucia Mendonça Previato, José Osvaldo Previato, Leonardo Marques da Fonseca. Supervision: Leonardo Freire-de-Lima.

Corresponding authors

Correspondence to Leonardo Marques da Fonseca or Leonardo Freire-de-Lima.

Ethics declarations

Ethics approval

The study was approved by Institutional Ethics Committee and was carried out in accordance with the relevant guidelines and regulations (CAAE 48917418.2.0000.5257).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The authors have noticed mistakes during figure production, where supplementary figure 3 was incomplete, missing Western blot data.

Supplementary Information

Supplementary Figure 1.

Analysis of CD68 expression in THP-1 derived macrophages. THP-1 derived macrophages were generated after treatment with 320 nM PMA for 48 hours as described in the materials and methods section. The expression of the marker CD68 was monitored by flow cytometry, which the mean fluorescent intensity (MIF) was determined between cells incubated or not with the specific monoclonal antibody. *p ≤ 0.05. (PNG 14 kb)

High resolution image (TIF 72 kb)

Supplementary Figure 2.

Analysis of the profile of cytokines expressed/secreted by THP-1 derived macrophages after polarization for M1 and M2 phenotypes. After differentiation, Mɸ were polarized to the M1 and M2 phenotypes following the treatment with INF-γ + LPS (A and B) or IL-4 + IL-3 (C and D), respectively, as described in the materials and methods section. To confirm the polarization, the levels of transcripts (mRNA) (A and C) and cytokines (B and D) were quantified by qPCR and ELISA, respectively. * p ≤ 0.05 vs. Mϕ and # p ≤ 0.05 vs. M1- Mϕ. n.s. not significant in relation to Mɸ. (PNG 47 kb)

High resolution image (TIF 112 kb)

Supplementary Figure 3.

Analysis of GalNAc-T6 expression in THP-1 derived macrophages by qPCR and Western blot. After differentiation from Monɸ to Mɸ with PMA, cells were classically or alternatively activated as detailed in the material and methods section. mRNA and protein levels for pp-GalNAc-T6 in both M1- and M2-Mɸ were monitored by real time PCR (A) and Western blot (B and C), respectively. Graphs representative of three individual experiments. n.s. not significant in relation to Mɸ. (PNG 658 kb)

High resolution image (TIF 134 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Santos, M.A.R., dos Reis, J.S., do Nascimento Santos, C.A. et al. Expression of O-glycosylated oncofetal fibronectin in alternatively activated human macrophages. Immunol Res 71, 92–104 (2023). https://doi.org/10.1007/s12026-022-09321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09321-9

Keywords

Navigation