Skip to main content

Polarized Activation of Macrophages

  • Chapter
  • First Online:
Macrophages: Biology and Role in the Pathology of Diseases

Abstract

Macrophages are mononuclear phagocytes which play important roles in many aspects of immunity, tissue repair and metabolism. Plasticity is a key feature of these cells and consists in the capability to modulate their phenotypic and functional aspects under distinct stimuli derived from the microenvironment. A number of transcription factors, epigenetic mechanisms, and post-transcriptional events have been recently described to regulate macrophage activation, differentiation and polarization, thus accounting for a fine modulation of the functions of these cells. This increasing body of evidence opens the way to new therapeutic approaches aimed at targeting specific polarized macrophage subsets (or activation states) in a number of pathological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Annu Rev Immunol 2:283–318. doi:10.1146/annurev.iy.02.040184.001435

    CAS  PubMed  Google Scholar 

  • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317(5838):666–670. doi:10.1126/science.1142883

    CAS  PubMed  Google Scholar 

  • Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P, Szabo G (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286(2):1436–1444. doi:10.1074/jbc.M110.145870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, Abraham E, Liu G (2013) MicroRNA let-7c regulates macrophage polarization. J Immunol 190(12):6542–6549. doi:10.4049/jimmunol.1202496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N, Mantovani A, Cassatella MA, Locati M (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 106(13):5282–5287. doi:10.1073/pnas.0810909106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. doi:10.1038/ni.1937

    CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2012) Orchestration of metabolism by macrophages. Cell Metab 15(4):432–437. doi:10.1016/j.cmet.2011.11.013

    CAS  PubMed  Google Scholar 

  • Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288

    CAS  PubMed  Google Scholar 

  • Bottazzi B, Doni A, Garlanda C, Mantovani A (2010) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28:157–183. doi:10.1146/annurev-immunol-030409-101305

    CAS  PubMed  Google Scholar 

  • Cao Z, Sun X, Icli B, Wara AK, Feinberg MW (2010) Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116(22):4404–4414. doi:10.1182/blood-2010-05-285353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O’Connell RM, Baltimore D (2011) MicroRNA-125b potentiates macrophage activation. J Immunol 187(10):5062–5068. doi:10.4049/jimmunol.1102001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Ivashkiv LB (2010) IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc Natl Acad Sci U S A 107(45):19438–19443. doi:10.1073/pnas.1007816107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48. doi:10.1016/j.coi.2005.11.006, pii: S0952-7915(05)00197-4

    CAS  PubMed  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657

    CAS  PubMed  Google Scholar 

  • Curtale G, Mirolo M, Renzi T, Rossato M, Bazzoni F, Locati M (2013) Negative regulation of toll-like receptor 4 signaling by the IL-10 dependent microRNA-146b. Proc Natl Acad Sci U S A 110:11499–11504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421

    CAS  PubMed  Google Scholar 

  • Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR (2011) A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol 41(8):2155–2164. doi:10.1002/eji.201141817

    CAS  PubMed  Google Scholar 

  • De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G, Sung WK, Wei CL, Natoli G (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28(21):3341–3352. doi:10.1038/emboj.2009.271

    PubMed Central  PubMed  Google Scholar 

  • Deban L, Russo RC, Sironi M, Moalli F, Scanziani M, Zambelli V, Cuccovillo I, Bastone A, Gobbi M, Valentino S, Doni A, Garlanda C, Danese S, Salvatori G, Sassano M, Evangelista V, Rossi B, Zenaro E, Constantin G, Laudanna C, Bottazzi B, Mantovani A (2010) Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 11(4):328–334. doi:10.1038/ni.1854

    CAS  PubMed  Google Scholar 

  • Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201(9):1355–1359. doi:10.1084/jem.20050640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6(10):e26317. doi:10.1371/journal.pone.0026317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans R, Alexander P (1972) Mechanism of immunologically specific killing of tumour cells by macrophages. Nature 236(5343):168–170

    CAS  PubMed  Google Scholar 

  • Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007) Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178(8):5245–5252, pii: 178/8/5245

    CAS  PubMed  Google Scholar 

  • Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y, Jeannin P (2013) IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. Antagonistic effects of GM-CSF and IFNgamma. PLoS One 8(2):e56045. doi:10.1371/journal.pone.0056045, pii: PONE-D-12-17596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, Van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M, Allavena P (2013) Role of macrophage targeting in the anti-tumor activity of Trabectedin. Cancer Cell 23:249–262

    CAS  PubMed  Google Scholar 

  • Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, Ragoussis J, Natoli G (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3):317–328. doi:10.1016/j.immuni.2010.02.008

    CAS  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637, pii: science.1194637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10(5):365–376. doi:10.1038/nri2748

    CAS  PubMed  Google Scholar 

  • Gleissner CA, Shaked I, Little KM, Ley K (2010) CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 184(9):4810–4818. doi:10.4049/jimmunol.0901368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. doi:10.1038/nri978

    CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi:10.1016/j.immuni.2010.05.007

    CAS  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    CAS  PubMed  Google Scholar 

  • Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287(26):21816–21825. doi:10.1074/jbc.M111.327031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, Malissen B, Hammad H, Lambrecht BN (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210(10):1977–1992. doi:10.1084/jem.20131199, pii: jem.20131199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafsson C, Mjosberg J, Matussek A, Geffers R, Matthiesen L, Berg G, Sharma S, Buer J, Ernerudh J (2008) Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 3(4):e2078. doi:10.1371/journal.pone.0002078

    PubMed Central  PubMed  Google Scholar 

  • Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton JA, Achuthan A (2013) Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 34(2):81–89. doi:10.1016/j.it.2012.08.006, pii: S1471-4906(12)00144-5

    CAS  PubMed  Google Scholar 

  • Han MS, Jung DY, Morel C, Lakhani SA, Kim JK, Flavell RA, Davis RJ (2013) JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339(6116):218–222. doi:10.1126/science.1227568

    CAS  PubMed  Google Scholar 

  • Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, Pei H, Geissmann F, Ley K, Hedrick CC (2012) NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 110(3):416–427. doi:10.1161/CIRCRESAHA.111.253377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazlett LD, McClellan SA, Barrett RP, Huang X, Zhang Y, Wu M, van Rooijen N, Szliter E (2010) IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 51(3):1524–1532. doi:10.1167/iovs.09-3983

    PubMed Central  PubMed  Google Scholar 

  • He M, Xu Z, Ding T, Kuang DM, Zheng L (2009) MicroRNA-155 regluates inflammatory cytokine production in tumor-associated macrophages via tergeting C/EBPbeta. Cellular & molecular immunology 6(5):343–352. doi:10.1038/cmi.2009.45

  • Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JK, Ng LG, Samokhvalov IM, Merad M, Ginhoux F (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181. doi:10.1084/jem.20120340, pii: jem.20120340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang W, Ghisletti S, Perissi V, Rosenfeld MG, Glass CK (2009) Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol Cell 35(1):48–57. doi:10.1016/j.molcel.2009.05.023

    PubMed Central  PubMed  Google Scholar 

  • Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ, Hammond R, Gimotty PA, Keith B, Simon MC (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120(8):2699–2714. doi:10.1172/JCI39506, pii: 39506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivashkiv LB (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34(5):216–223. doi:10.1016/j.it.2012.11.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19(4):523–534. doi:10.1016/j.molcel.2005.06.027

    CAS  PubMed  Google Scholar 

  • Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332(6035):1284–1288. doi:10.1126/science.1204351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin F, Li Y, Ren B, Natarajan R (2011) PU.1 and C/EBP(alpha) synergistically program distinct response to NF-kappaB activation through establishing monocyte specific enhancers. Proc Natl Acad Sci U S A 108(13):5290–5295. doi:10.1073/pnas.1017214108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junttila IS, Mizukami K, Dickensheets H, Meier-Schellersheim M, Yamane H, Donnelly RP, Paul WE (2008) Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Ralpha, IL-13Ralpha1, and gammac regulates relative cytokine sensitivity. J Exp Med 205(11):2595–2608. doi:10.1084/jem.20080452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B, Strobl H (2010) miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 184(9):4955–4965. doi:10.4049/jimmunol.0903021

    CAS  PubMed  Google Scholar 

  • Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, Lee CH (2008) Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7(6):485–495. doi:10.1016/j.cmet.2008.04.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC (2012) MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A 109(20):7865–7870. doi:10.1073/pnas.1200081109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, Pierce RH, Crispe IN (2007) Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood 110(12):4077–4085. doi:10.1182/blood-2007-02-073841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korczeniewska J, Barnes BJ (2012) The COP9 signalosome interacts with and regulates IRF5 protein stability. Mol Cell Biol. doi:10.1128/MCB.00802-12

    PubMed  Google Scholar 

  • Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat Immunol 12(3):231–238. doi:10.1038/ni.1990

    CAS  PubMed  Google Scholar 

  • Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, Bantscheff M, Bountra C, Bridges A, Diallo H, Eberhard D, Hutchinson S, Jones E, Katso R, Leveridge M, Mander PK, Mosley J, Ramirez-Molina C, Rowland P, Schofield CJ, Sheppard RJ, Smith JE, Swales C, Tanner R, Thomas P, Tumber A, Drewes G, Oppermann U, Patel DJ, Lee K, Wilson DM (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488(7411):404–408. doi:10.1038/nature11262

    CAS  PubMed  Google Scholar 

  • Kuroda E, Ho V, Ruschmann J, Antignano F, Hamilton M, Rauh MJ, Antov A, Flavell RA, Sly LM, Krystal G (2009) SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils. J Immunol 183(6):3652–3660. doi:10.4049/jimmunol.0900864

    CAS  PubMed  Google Scholar 

  • Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, Shepherd M, McSharry C, McInnes IB, Xu D, Liew FY (2009) IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183(10):6469–6477. doi:10.4049/jimmunol.0901575

    CAS  PubMed  Google Scholar 

  • Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ (2002) Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 169(5):2253–2263

    CAS  PubMed  Google Scholar 

  • Lawrence T, Gilroy DW (2007) Chronic inflammation: a failure of resolution? Int J Exp Pathol 88(2):85–94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clement K, Jain MK (2011) Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 121(7):2736–2749. doi:10.1172/JCI45444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liddiard K, Rosas M, Davies LC, Jones SA, Taylor PR (2011) Macrophage heterogeneity and acute inflammation. Eur J Immunol 41(9):2503–2508. doi:10.1002/eji.201141743

    CAS  PubMed  Google Scholar 

  • Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811. doi:10.1126/science.1154370, pii: 320/5877/807

    CAS  PubMed  Google Scholar 

  • Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 106(37):15819–15824. doi:10.1073/pnas.0901216106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackaness GB (1969) The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J Exp Med 129(5):973–992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahabeleshwar GH, Kawanami D, Sharma N, Takami Y, Zhou G, Shi H, Nayak L, Jeyaraj D, Grealy R, White M, McManus R, Ryan T, Leahy P, Lin Z, Haldar SM, Atkins GB, Wong HR, Lingrel JB, Jain MK (2011) The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity 34(5):715–728. doi:10.1016/j.immuni.2011.04.014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mantovani A (2008) From phagocyte diversity and activation to probiotics: back to Metchnikoff. Eur J Immunol 38(12):3269–3273. doi:10.1002/eji.200838918

    CAS  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi:10.1016/j.it.2004.09.015

    CAS  PubMed  Google Scholar 

  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185. doi:10.1002/path.4133

    CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311

    CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. doi:10.1146/annurev.immunol.021908.132532

    CAS  PubMed  Google Scholar 

  • Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, Ten Hacken NH, Cobos Jimenez V, Kootstra NA, Hamann J, Greaves DR, Locati M, Mantovani A, Gordon S (2013) Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121(9):e57–e69. doi:10.1182/blood-2012-06-436212

    CAS  PubMed  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. doi:10.1038/nature07201

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9(10):692–703. doi:10.1038/nri2634

    CAS  PubMed  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, Feng D, Steger DJ, Schug J, Artis D, Lazar MA (2011) Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 25(23):2480–2488. doi:10.1101/gad.175950.111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 41(1):14–20. doi: 10.1016/j.immuni.2014.06.008

    CAS  PubMed  Google Scholar 

  • Nahid MA, Pauley KM, Satoh M, Chan EK (2009) miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 284(50):34590–34599. doi:10.1074/jbc.M109.056317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nathan CF, Murray HW, Wiebe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158(3):670–689

    CAS  PubMed  Google Scholar 

  • Natoli G, Ghisletti S, Barozzi I (2011) The genomic landscapes of inflammation. Genes Dev 25(2):101–106. doi:10.1101/gad.2018811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, Heyll K, Gremse F, Kiessling F, Grommes J, Weber C, Schober A (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest 122(11):4190–4202. doi:10.1172/JCI61716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123. doi:10.1038/nature09589

    CAS  PubMed  Google Scholar 

  • Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Kodama H (1999) Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 190(2):293–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noel W, Raes G, Hassanzadeh Ghassabeh G, De Baetselier P, Beschin A (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol 20(3):126–133. doi:10.1016/j.pt.2004.01.004

    CAS  PubMed  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104(5):1604–1609. doi:10.1073/pnas.0610731104

    PubMed Central  PubMed  Google Scholar 

  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447(7148):1116–1120. doi:10.1038/nature05894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, Subramanian V, Mukundan L, Ferrante AW, Chawla A (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7(6):496–507. doi:10.1016/j.cmet.2008.04.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohmori Y, Hamilton TA (1998) STAT6 is required for the anti-inflammatory activity of interleukin-4 in mouse peritoneal macrophages. J Biol Chem 273(44):29202–29209

    CAS  PubMed  Google Scholar 

  • Pauleau AL, Rutschman R, Lang R, Pernis A, Watowich SS, Murray PJ (2004) Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol 172(12):7565–7573

    CAS  PubMed  Google Scholar 

  • Pello OM, Chevre R, Laoui D, De Juan A, Lolo F, Andres-Manzano MJ, Serrano M, Van Ginderachter JA, Andres V (2012a) In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities. PLoS One 7(9):e45399. doi:10.1371/journal.pone.0045399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A, Doni A, Nebuloni M, Swigart LB, Evan GI, Mantovani A, Locati M (2012b) Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119(2):411–421. doi:10.1182/blood-2011-02-339911

    PubMed  Google Scholar 

  • Pesce J, Kaviratne M, Ramalingam TR, Thompson RW, Urban JF Jr, Cheever AW, Young DA, Collins M, Grusby MJ, Wynn TA (2006) The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J Clin Invest 116(7):2044–2055. doi:10.1172/JCI27727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, Dieli F, Ghisletti S, Natoli G, De Baetselier P, Mantovani A, Sica A (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A 106(35):14978–14983. doi:10.1073/pnas.0809784106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F, Ratnam M, Sanchez-Mateos P, Corbi AL (2009) Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 69(24):9395–9403. doi:10.1158/0008-5472.CAN-09-2050

    PubMed  Google Scholar 

  • Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH (2007) Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol 308(1):232–246. doi:10.1016/j.ydbio.2007.05.027

    CAS  PubMed  Google Scholar 

  • Raes G, Brys L, Dahal BK, Brandt J, Grooten J, Brombacher F, Vanham G, Noel W, Bogaert P, Boonefaes T, Kindt A, Van den Bergh R, Leenen PJ, De Baetselier P, Ghassabeh GH (2005) Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol 77(3):321–327. doi:10.1189/jlb.0304212

    CAS  PubMed  Google Scholar 

  • Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, Zammataro L, Girelli D, Cairo G (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40(3):824–835. doi:10.1002/eji.200939889

    CAS  PubMed  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391(6662):79–82. doi:10.1038/34178

    CAS  PubMed  Google Scholar 

  • Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284(49):34342–34354. doi:10.1074/jbc.M109.042671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185(1):605–614. doi:10.4049/jimmunol.0901698

    CAS  PubMed  Google Scholar 

  • Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S, Mariotti B, De Luca M, Mirolo M, Cassatella MA, Locati M, Bazzoni F (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci U S A 109(45):E3101–E3110. doi:10.1073/pnas.1209100109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruckerl D, Jenkins SJ, Laqtom NN, Gallagher IJ, Sutherland TE, Duncan S, Buck AH, Allen JE (2012) Induction of IL-4Ralpha-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 120(11):2307–2316. doi:10.1182/blood-2012-02-408252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, Bottazzi B, Colombo MP, Mantovani A, Sica A (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66(23):11432–11440

    CAS  PubMed  Google Scholar 

  • Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944. doi:10.1038/ni.1920

    CAS  PubMed  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179

    CAS  PubMed  Google Scholar 

  • Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147. doi:10.1038/ni.1828

    CAS  PubMed  Google Scholar 

  • Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE (1993) Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366(6455):580–583. doi:10.1038/366580a0

    CAS  PubMed  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166. doi:10.1172/JCI31422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi:10.1172/JCI59643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sierra-Filardi E, Puig-Kroger A, Blanco FJ, Nieto C, Bragado R, Palomero MI, Bernabeu C, Vega MA, Corbi AL (2011) Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117(19):5092–5101. doi:10.1182/blood-2010-09-306993, pii: blood-2010-09-306993

    CAS  PubMed  Google Scholar 

  • Smale ST (2010) Selective transcription in response to an inflammatory stimulus. Cell 140(6):833–844. doi:10.1016/j.cell.2010.01.037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spence S, Fitzsimons A, Boyd CR, Kessler J, Fitzgerald D, Elliott J, Gabhann JN, Smith S, Sica A, Hams E, Saunders SP, Jefferies CA, Fallon PG, McAuley DF, Kissenpfennig A, Johnston JA (2013) Suppressors of cytokine signaling 2 and 3 diametrically control macrophage polarization. Immunity 38(1):66–78. doi:10.1016/j.immuni.2012.09.013

    CAS  PubMed  Google Scholar 

  • Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, Casazza A, Mazzone M, Lyle R, Naldini L, De Palma M (2012) miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep 1(2):141–154. doi:10.1016/j.celrep.2011.12.005

    CAS  PubMed  Google Scholar 

  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264. doi:10.1146/annurev.biochem.67.1.227

    CAS  PubMed  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    CAS  PubMed  Google Scholar 

  • Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, Boutros M, Perrimon N, Rosenfeld MG, Glass CK (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48(1):28–38. doi:10.1016/j.molcel.2012.07.020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans RM, Barak Y, Schwabe J, Nagy L (2010) STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity 33(5):699–712. doi:10.1016/j.immuni.2010.11.009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33):12481–12486. doi:10.1073/pnas.0605298103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A, Johnson RS (2010) Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev 24(5):491–501. doi:10.1101/gad.1881410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuch O, Akira S (2011) Epigenetic control of macrophage polarization. Eur J Immunol 41(9):2490–2493. doi:10.1002/eji.201141792

    CAS  PubMed  Google Scholar 

  • Tausendschon M, Dehne N, Brune B (2011) Hypoxia causes epigenetic gene regulation in macrophages by attenuating Jumonji histone demethylase activity. Cytokine 53(2):256–262. doi:10.1016/j.cito.2010.11.002

  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179(8):5082–5089

    CAS  PubMed  Google Scholar 

  • Uhlenhaut NH, Barish GD, Yu RT, Downes M, Karunasiri M, Liddle C, Schwalie P, Hubner N, Evans RM (2013) Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol Cell 49(1):158–171. doi:10.1016/j.molcel.2012.10.013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verbist KC, Wang R, Green DR (2013) T cell metabolism and the immune response. Semin Immunol 24(6):399–404. doi:10.1016/j.smim.2012.12.006

    Google Scholar 

  • Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X (2010a) Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185(10):6226–6233. doi:10.4049/jimmunol.1000491

    CAS  PubMed  Google Scholar 

  • Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H (2010b) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70(12):4840–4849. doi:10.1158/0008-5472.CAN-10-0269

    CAS  PubMed  Google Scholar 

  • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13(8):753–760. doi:10.1038/ni.2360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford WT, Schones DE, Peng W, Sun HW, Paul WE, O’Shea JJ, Zhao K (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30(1):155–167. doi:10.1016/j.immuni.2008.12.009

    PubMed Central  PubMed  Google Scholar 

  • Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER (2010) Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol 88(3):495–505. doi:10.1189/jlb.1209822, pii: jlb.1209822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whyte CS, Bishop ET, Ruckerl D, Gaspar-Pereira S, Barker RN, Allen JE, Rees AJ, Wilson HM (2011) Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol 90(5):845–854. doi:10.1189/jlb.1110644

    CAS  PubMed  Google Scholar 

  • Widmann JJ, Fahimi HD (1975) Proliferation of mononuclear phagocytes (Kupffer cells) and endothelial cells in regenerating rat liver. A light and electron microscopic cytochemical study. Am J Pathol 80(3):349–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4(8):583–594. doi:10.1038/nri1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. doi:10.1038/nature12034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X (2012) Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13(7):642–650. doi:10.1038/ni.2304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–88. doi: 10.1016/j.immuni.2014.01.006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545. doi:10.1016/j.molcel.2005.06.029

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, Li N, Gomez-Cabrero A, Reisfeld RA, Xiang R, Luo Y (2013) MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene. doi:10.1038/onc.2013.258

    Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. doi:10.1016/j.immuni.2012.12.001, pii: S1074-7613(12)00548-1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, van Essen D, Saccani S (2012) Cell-type-specific control of enhancer activity by H3K9 trimethylation. Mol Cell 46(4):408–423. doi:10.1016/j.molcel.2012.05.011

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Alberto Mantovani is supported by AIRC (Investigator Grant and 5x1000 Grant). Maria Rosaria Galdiero is supported by a fellowship from P.O.R. Campania FSE 2007–2013, Project “CREMe”. Subhra K Biswas is supported by funding from SIgN, Biomedical Research Council, A*STAR, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galdiero, M.R., Biswas, S.K., Mantovani, A. (2014). Polarized Activation of Macrophages. In: Biswas, S., Mantovani, A. (eds) Macrophages: Biology and Role in the Pathology of Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1311-4_2

Download citation

Publish with us

Policies and ethics