Skip to main content

Advertisement

Log in

T cell subsets: an integral component in pathogenesis of rheumatic heart disease

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Acute rheumatic fever (ARF) is a consequence of pharyngeal infection of group A streptococcal (GAS) infection. Carditis is the most common manifestation of ARF which occurs in 30–45% of the susceptible individuals. Overlooked ARF cases might further progress towards rheumatic heart disease (RHD) in susceptible individuals, which ultimately leads to permanent heart valve damage. Molecular mimicry between streptococcal antigens and human proteins is the most widely accepted theory to describe the pathogenesis of RHD. In the recent past, various subsets of T cells have been reported to play an imperative role in the pathogenesis of RHD. Alterations in various T cell subsets, viz. Th1, Th2, Th17, and Treg cells, and their signature cytokines influence the immune responses and are associated with pathogenesis of RHD. Association of other T cell subsets (Th3, Th9, Th22, and TFH) is not defined in context of RHD. Several investigations have confirmed the up-regulation of adhesion molecules and thus infiltration of T cells into the heart tissues. T cells secrete both Th type 1 and type 2 cytokines and these auto-reactive T cells play a key role in progression of heart valve damage. In this review, we are going to discuss about the role of T cell subsets and their corresponding cytokines in the pathogenesis of RHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carapetis J, McDonald M, Wilson N. Acute rheumatic fever. Lancet. 2005;366(9480):155–68.

    Article  PubMed  Google Scholar 

  2. Carapetis JR. The stark reality of rheumatic heart disease. Eur Heart J. 2015:12–5.

  3. Dajani AS, Ayoub E, Bierman FZ, Bisno AL, Denny FW, Durack DT, et al. Guidelines for the diagnosis of rheumatic fever: Jones criteria, updated 1992: special writing group of the committee on rheumatic fever, endocarditis, and Kawasaki disease of the council on cardiovascular disease in the young, American Heart Association. Circulation. 1993;87(1):302.

    Google Scholar 

  4. Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, Carapetis J, et al. Revision of the Jones criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography a scientific statement from the American Heart Association. Circulation. 2015:1–14.

  5. Beaton A, Carapetis J. The 2015 revision of the Jones criteria for the diagnosis of acute rheumatic fever: implications for practice in low-income and middle-income countries. Heart Asia. 2015;7(2):7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eroğlu AG. Update on diagnosis of acute rheumatic fever: 2015 Jones criteria. Türk Pediatr arşivi. 2016;51(1):1–7.

    Google Scholar 

  7. Kumar D, Bhutia E, Kumar P, Shankar B, Juneja A, Chandelia S. Evaluation of American Heart Association 2015 revised Jones criteria versus existing guidelines. Heart Asia. 2016;8(1):30–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marijon E, Mirabel M, Celermajer DS, Jouven X. Rheumatic heart disease. Lancet. 2012;379(9819):953–64.

    Article  PubMed  Google Scholar 

  9. Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline. Nat Rev Cardiol Nature Publishing Group. 2012;9(5):297–309.

    Article  Google Scholar 

  10. Carapetis JR. Rheumatic heart disease in developing countries. N Engl J Med. 2007;357(5):439–41.

    Article  CAS  PubMed  Google Scholar 

  11. Zuhlke LJ, Steer AC. Estimates of the global burden of rheumatic heart disease. Glob Heart. 2013;8(3):189–95.

    Article  PubMed  Google Scholar 

  12. Guilherme L, Kalil J. Rheumatic fever: from sore throat to autoimmune heart lesions. Int Arch Allergy Immunol. 2004;134:56–64.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar RK, Tandon R. Rheumatic fever & rheumatic heart disease: the last 50 years. Indian J Med Res. 2014:1–23.

  14. Guilherme L, Cury P, Demarchi LMF, Coelho V, Abel L, Lopez AP, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):1583–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guilherme L, Ramasawmy R, Kalil J. Rheumatic fever and rheumatic heart disease: genetics and pathogenesis. Scand J Immunol. 2007;66(2–3):199–207.

    Article  CAS  PubMed  Google Scholar 

  16. Guilherme L, Köhler KF, Postol E, Kalil J. Genes, autoimmunity and pathogenesis of rheumatic heart disease. Ann Pediatr Cardiol. 2011;4(1):13–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bijjiga E, Martino AT. Interleukin 10 (IL-10) regulatory cytokine and its clinical consequences. J Clin Cell Immunol. 2011:1–6.

  18. Ouyang W, Rutz S, Crellin N, Valdez P, Hymowitz S. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.

    Article  CAS  PubMed  Google Scholar 

  19. Okello E, Kakande B, Sebatta E, Kayima J, Kuteesa M, Mutatina B, et al. Socioeconomic and environmental risk factors among rheumatic heart disease patients in Uganda. PLoS One. 2012;7(8):3–8.

    Article  CAS  Google Scholar 

  20. Dobson J, Steer AC, Colquhoun S, Kado J. Environmental factors and rheumatic heart disease in Fiji. Pediatr Cardiol. 2012;33(2):332–6.

    Article  PubMed  Google Scholar 

  21. Riaz BK, Selim S, Karim N, Chowdhury KN, Chowdhury SH, Rahman R. Risk factors of rheumatic heart disease in Bangladesh: a case-control study. J Health Popul Nutr. 2013;31(1):70–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gray FG, Quinn RW, Quinn JP. A long-term survey of rheumatic and non-rheumatic families. Am J Med. 1952:1947–9.

  23. Wilson MG, Schweitzer M. Pattern of hereditary susceptibility in rheumatic fever. Circulation. 1954:699–705.

  24. Spanguolo M, Taranta A. Rheumatic fever in siblings—similarity of its clinical manifestations. N Engl J Med. 1968;278:183–8.

    Article  Google Scholar 

  25. Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest. 1986;77:2019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maharaj B, Khedun SM, Hammond MG, van der Byl K. HLA-A, B, DR, and DQ antigens in Indian patients with severe chronic rheumatic heart disease. Jpn Heart J. 1997;38(5):663–8.

    Article  CAS  PubMed  Google Scholar 

  27. Guedez Y, Kotby A, El-demellawy M, Galal A, Thomson G, Zaher S, et al. HLA class II associations with rheumatic heart disease. Circulation. 1999;99:2784–90.

    Article  CAS  PubMed  Google Scholar 

  28. Visentainer JE, Pereira FC, Dalalio MM, Tsuneto LT, Donadio PR, Moliterno RA. Association of HLA-DR7 with rheumatic fever in the Brazilian population. J Rheumatol. 2000;27(6):1518–20.

    CAS  PubMed  Google Scholar 

  29. Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther. 2003;5(6):R340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toor D, Leal K, Kumar R, Sharma YP, Chakraborti A. Association of HLA-DRB1*14 with rheumatic heart disease patients from Chandigarh. North India Biomarkers. 2012;17(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  31. Jin Z, Ji Z, Hu J. Mannose-binding lectin gene site mutations and the susceptibility of rheumatic heart disease. Zhonghua Yi Xue Za Zhi China. 2001;81(21):1284–6.

    CAS  Google Scholar 

  32. Ramasawmy R, Spina GS, Fae KC, Pereira AC, Nisihara R, Reason IJM, et al. Association of mannose-binding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin Vaccine Immunol. 2008;15(6):932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saraswathy R, Abilash VG, Manivannan G, George A, Babu KT. Four novel mutations detected in the exon 1 of MBL2 gene associated with rheumatic heart disease in South Indian patients. Int J Genet Mol Biol. 2010;2:165–70.

    CAS  Google Scholar 

  34. Messias-Reason IJ, Schafranski MD, Kremsner PG, Kun JFJ. Ficolin 2 ( FCN 2 ) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin Exp Immunol. 2009;157:395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Catarino SJ, Boldt AB, Beltrame MH, Nisihara RM, Schafranski MD, de Messias-Reason IJ. Association of MASP2 polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum Immunol [Internet]. 2014;75(12):1197–202.

    Article  CAS  Google Scholar 

  36. Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28(5):363–71.

    Article  CAS  PubMed  Google Scholar 

  37. Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine. Front Immunol. 2013;4:352.

    PubMed  PubMed Central  Google Scholar 

  38. Parks T, Mirabel MM, Kado J, Auckland K, Nowak J, Rautanen A, et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat Commun. 2017;8:14946.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gray L, Antoine, HAD, Tong, SYC, Mckinnon M, Bessarab D, Brown N, et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in Aboriginal Australians provides support for pathogenic molecular mimicry. J Infect Dis. 2017.

  40. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bisno AL, Read SE, Zabriskie JB. The concept of rheumatogenic and non-rheumatogenic group A streptococci, Streptococcal diseases and the immune response. New YorkAcademic Press; 1980;789–803.

  42. Shulman ST, Stollerman G, Beall B, Dale JB, Tanz RR. Temporal changes in streptococcal M protein types and the near-disappearance of acute rheumatic fever in the United States. Clin Infect Dis. 2006;42(4):441–7.

    Article  PubMed  Google Scholar 

  43. Krisher K, Cunningham MW. Myosin: a link between streptococci and heart. Science. 1985;227(4685):413–5.

    Article  CAS  PubMed  Google Scholar 

  44. Faé KC, da Silva DD, Oshiro SE, Tanaka AC, Pomerantzeff PM, Douay C, et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J Immunol. 2006;176(9):5662–70.

    Article  PubMed  Google Scholar 

  45. Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9(7):914–20.

    Article  CAS  PubMed  Google Scholar 

  46. Kirvan CA, Cox CJ, Swedo SE, Cunningham MW. Tubulin is a neuronal target of autoantibodies in Sydenham’s chorea. J Immunol. 2007;178(11):7412–21.

    Article  CAS  PubMed  Google Scholar 

  47. Cox CJ, Sharma M, Leckman JF, Zuccolo J, Zuccolo A, Kovoor A, et al. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J Immunol. 2013;191(11):5524–41.

    Article  CAS  PubMed  Google Scholar 

  48. Kaplan MH. The concept of autoantibodies in rheumatic fever and in the postcommissurotomy state. Ann N Y Acad Sci. 1960;86:994–1.

    Google Scholar 

  49. Kodama M, Matsumoto Y, Fujiwara M, Masani F, Izumi T, Shibata A. A novel experimental model of giant cell myocarditis induced in rats by immunization with cardiac myosin fraction. Clin Immunol Immunopathol. 1990;57(2):250–62.

    Article  CAS  PubMed  Google Scholar 

  50. Quinn A, Kosanke S, Fischetti VA, Factor SM, Cunningham MW. Induction of autoimmune valvular heart disease by recombinant streptococcal m protein. Infect Immun. 2001;69(6):4072–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Heuser JS, Kosanke SD, Hemric M, Cunningham MW. Cryptic epitope identified in rat and human cardiac myosin S2 region induces myocarditis in the Lewis rat. J Immunol. 2004;172(5):3225–34.

    Article  CAS  PubMed  Google Scholar 

  52. Rush CM, Govan BL, Sikder S, Williams NL, Ketheesan N. Animal models to investigate the pathogenesis of rheumatic heart disease. Front Pediatr. 2014;2:116.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Galvin JE, Hemric ME, Ward K, Cunningham MW. Cytotoxic mAb from rheumatic carditis recognizes heart valves and laminin. J Clin Invest. 2000;106(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim. 2016;15084

  55. Faé KC, Oshiro SE, Toubert A, Charron D, Kalil J, Guilherme L. How an autoimmune reaction triggered by molecular mimicry between streptococcal M protein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun. 2005;24(2):101–9.

    Article  PubMed  CAS  Google Scholar 

  56. Toor D, Vohra H. Immune responsiveness during disease progression from acute rheumatic fever to chronic rheumatic heart disease. Microbes Infect. 2012;14(12):1111–7.

    Article  CAS  PubMed  Google Scholar 

  57. Itoh K, Hirohata S. The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol. 1995;154(9):4341–50.

    CAS  PubMed  Google Scholar 

  58. Sharma N, Toor D. Interleukin-10: role in increasing susceptibility and pathogenesis of rheumatic fever/rheumatic heart disease. Cytokine. 2016;90:169–76.

    Article  PubMed  CAS  Google Scholar 

  59. Roberts S, Kosanke S, Dunn ST, Jankelow D, Duran CMG, Cunningham MW. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis. 2001;183(3):507–11.

    Article  CAS  PubMed  Google Scholar 

  60. Tandon R, Sharma M, Chandrashekhar Y, Kotb M, Yacoub MH, Narula J. Revisiting the pathogenesis of rheumatic fever and carditis. Nat Rev Cardiol. 2013;10(3):171–7.

    Article  CAS  PubMed  Google Scholar 

  61. Cunningham MW. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33:314–29.

  62. Root-bernstein R. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Pediatr. 2014;2(August):1–17.

    Google Scholar 

  63. Dinkla K, Rohde M, Jansen WTM, Kaplan EL, Chhatwal GS, Talay SR. Rheumatic fever-associated Streptococcus pyogenes isolates aggregate collagen. J Clin Invest. 2003 Jun;111(12):1905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dinkla K, Nitsche-Schmitz DP, Barroso V, Reissmann S, Johansson HM, Frick I-M, et al. Identification of a streptococcal octapeptide motif involved in acute rheumatic fever. J Biol Chem. 2007;282(26):18686–93.

    Article  CAS  PubMed  Google Scholar 

  65. Dinkla K, Talay SR, Morgelin M, Graham RMA, Rohde M, Nitsche-Schmitz DP, et al. Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS One. 2009;4(3):e4666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chhatwal GS. Host-pathogen interactions in streptococcal diseases [Internet]. Springer Berlin Heidelberg; 2014. (Current Topics in Microbiology and Immunology).

  67. De Oliveira Martins C, Demarchi L, Ferreira FM, Pomerantzeff PMA, Brandao C, Sampaio RO, et al. Rheumatic heart disease and myxomatous degeneration: differences and similarities of valve damage resulting from autoimmune reactions and matrix disorganization. PLoS One. 2017;12(1):1–12.

    Google Scholar 

  68. Guilherme L, Köhler KF, Kalil J. Rheumatic heart disease. Mediation by complex immune events. Adv Clin Chem. 2011;53(C):31–50.

    Article  CAS  PubMed  Google Scholar 

  69. Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol. 1993;11:729–66.

    Article  CAS  PubMed  Google Scholar 

  70. Lehmann P V, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen 1992;358(6382):155–157.

  71. Ellis NMJ, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol. 2005;175(8):5448–56.

    Article  CAS  PubMed  Google Scholar 

  72. Guilherme L, Kalil J. Role of autoimmunity in rheumatic fever. Fut Rheumatol Future Medicine. 2008;3(2):161–7.

    Article  CAS  Google Scholar 

  73. Guilherme L, Kalil J. Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol. 2009;30(1):17–23.

    Article  PubMed  Google Scholar 

  74. Guilherme L, Dulphy N, Douay C, Coelho V, Cunha-Neto E, Oshiro SE, et al. Molecular evidence for antigen-driven immune responses in cardiac lesions of rheumatic heart disease patients. Int Immunol. 2000;12(7):1063–74.

    Article  CAS  PubMed  Google Scholar 

  75. Cunningham MW. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front Biosci. 2003;8:s533–43.

    Article  CAS  PubMed  Google Scholar 

  76. Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39(1):31–9.

  77. Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, et al. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev. 2015;14(8):710–25.

    Article  PubMed  Google Scholar 

  78. Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C. Animal models. Ann Neurol. 1994;36:S47–53.

    Article  CAS  PubMed  Google Scholar 

  79. Brimberg L, Benhar I, Mascaro-Blanco A, Alvarez K, Lotan D, Winter C, et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology. 2012;37(9):2076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaplan MH. Rheumatic fever, rheumatic heart disease, and the streptococcal connection: the role of streptococcal antigens cross-reactive with heart tissue. Rev Infect Dis. 1979;1(6):986–8.

    Article  Google Scholar 

  81. Zabriskie JB. Rheumatic fever: a streptococcal-induced autoimmune disease? Pediatr Ann. 1982;11(4):383–96.

    Article  CAS  PubMed  Google Scholar 

  82. Senitzer D, Freimer EH. Autoimmune mechanisms in the pathogenesis of rheumatic fever. Rev Infect Dis. 1984;6

  83. Stollerman GH. Rheumatogenic streptococci and autoimmunity. Clin Immunol Immunopathol. 1991;61(2 Pt 1):131–42.

    Article  CAS  PubMed  Google Scholar 

  84. Williams RC, Prakash K, Van de Rijn I, Zabriskie JB. Changes in T-lymphocyte subsets during acute rheumatic fever. J Clin Immunol. 1982;2(3):166–72.

    Article  PubMed  Google Scholar 

  85. Raizada V, Williams RC, Chopra P, Gopinath N, Prakash K, Sharma KB, et al. Tissue distribution of lymphocytes in rheumatic heart valves as defined by monoclonal anti-T cell antibodies. Am J Med. 1983;74(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  86. Kemeny E, Grieve T, Marcus R, Sareli P, Zabriskie JB. Identification of mononuclear cells and T cell subsets in rheumatic valvulitis. Clin Immunol Immunopathol. 1989;52(2):225–37.

    Article  CAS  PubMed  Google Scholar 

  87. Reddy KS, Narula J, Bhatia R, Shailendri K, Koicha M, Taneja V, et al. Immunologic and immunogenetic studies in rheumatic fever and rheumatic heart disease. Indian J Pediatr. 1990;57(5):693–700.

    Article  CAS  PubMed  Google Scholar 

  88. Morris K, Mohan C, Wahi PL, Anand IS, Ganguly NK. Increase in activated T cells and reduction in suppressor/cytotoxic T cells in acute rheumatic fever and active rheumatic heart disease: a longitudinal study. J Infect Dis. 1993;167(4):979–83.

    Article  CAS  PubMed  Google Scholar 

  89. Guilherme L, Cunha-Neto E, Coelho V, Snitcowsky R, Pomerantzeff PMA, Assis RV, et al. Human heart–infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation. 1995;92:415–20.

    Article  CAS  PubMed  Google Scholar 

  90. Bhatnagar A, Grover A, Ganguly NK. Superantigen-induced T cell responses in acute rheumatic fever and chronic: rheumatic heart disease patients. Clin Exp Immunol. 1999;116(1):100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kirvan CA, Galvin JE, Hilt S, Kosanke S, Cunningham MW. Identification of streptococcal M-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. J Cardiovasc Transl Res. 2014;7(2):172–81.

    Article  PubMed  Google Scholar 

  92. Gorton D, Sikder S, Williams NL, Chilton L, Rush CM, Govan BL, et al. Repeat exposure to group A streptococcal M protein exacerbates cardiac damage in a rat model of rheumatic heart disease. Autoimmunity. 2016;49(8):563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Damsker JM, Hansen AM, Caspi RR. Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci. 2010;1183:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miller LC, Gray ED, Mansour M, Abdin ZH, Kamel R, Zaher S, et al. Cytokines and immunoglobulin in rheumatic heart disease: production by blood and tonsillar mononuclear cells. J Rheumatol. 1989;16(11):1436–42.

    CAS  PubMed  Google Scholar 

  95. Lane JR, Neumann DA, Lafond-walker A, Herskowitz A, Rose NR. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. J Exp Med. 1992;175:1123–9.

    Article  CAS  PubMed  Google Scholar 

  96. Yeǧin O, Coşkun M, Ertuǧ H. Cytokines in acute rheumatic fever. Eur J Pediatr. 1997;156(1):25–9.

    Article  PubMed  Google Scholar 

  97. Fraser WJ, Haffejee Z, Jankelow D, Wadee A, Cooper K. Rheumatic Aschoff nodules revisited. II: cytokine expression corroborates recently proposed sequential stages. Histopathology. 1997;31(5):460–4.

    Article  CAS  PubMed  Google Scholar 

  98. Hafez M, EL-Morsy Z, EL-Shennawy F, Hawas S, Sheishaa A, Abo-EL-Kheir M, et al. Susceptibility to over production of cytokines in acute rheumatic carditis and their role in the pathogenesis. J Med Sci. 2002;2(2):65–73.

    Article  Google Scholar 

  99. Mills KHG, Dunne A. Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med. 2009;15(12):1363–4.

    Article  CAS  PubMed  Google Scholar 

  100. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis [Internet]. 2000;59:i103–8.

    Article  CAS  Google Scholar 

  102. Azevedo PM, Bauer R, Vde Caparbo F, Silva CAA, Bonfa E, Pereira RMR. Interleukin-1 receptor antagonist gene (IL1RN) polymorphism possibly associated to severity of rheumatic carditis in a Brazilian cohort. Cytokine. 2010;49(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  103. Chou H-T, Tsai C-H, Chen W-C, Tsai F-J. Lack of association of genetic polymorphisms in the interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 genes with risk of rheumatic heart disease in Taiwan Chinese. Int Heart J. 2005;46(3):397–406.

    Article  CAS  PubMed  Google Scholar 

  104. Zheng L, Sharma R, Gaskin F, Fu SM, Ju S-T. A novel role of IL-2 in organ-specific autoimmune inflammation beyond regulatory T cell checkpoint: both IL-2 knockout and Fas mutation prolong lifespan of Scurfy mice but by different mechanisms. J Immunol. 2007;179(12):8035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sharma R, Sharma PR, Kim Y, Leitinger N, Lee JK, Fu SM, et al. IL-2–controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. J Immunol. 2011;186(2):1268–78.

    Article  CAS  PubMed  Google Scholar 

  106. Sharma R, Fu SM, Ju S-T. IL-2: a two-faced master regulator of autoimmunity. J Autoimmun. 2011;36(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moon BI, Kim TH, Seoh JY. Functional modulation of regulatory T cells by IL-2. PLoS One. 2015;10(11):1–13.

    Article  CAS  Google Scholar 

  108. Zedan MM, El-Shennawy FA, Abou-Bakr HM, Al-Basousy AM. Interleukin-2 in relation to T cell subpopulations in rheumatic heart disease. Arch Dis Child. 1992;67(11):1373–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Narin N, Kutukculer N, Ozyurek R, Bakiler AR, Parlar A, Arcasoy M. Lymphocyte subsets and plasma IL-1 alpha, IL-2, and TNF-alpha concentrations in acute rheumatic fever and chronic rheumatic heart disease. Clin Immunol Immunopathol. 1995;77(2):172–6.

    Article  CAS  PubMed  Google Scholar 

  110. Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006;108(5):1571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007;178(4):2018–27.

    Article  CAS  PubMed  Google Scholar 

  113. Mukhopadhyay S, Varma S, Gade S, Yusuf J, Trehan V, Tyagi S. Regulatory T-cell deficiency in rheumatic heart disease: a preliminary observational study. J Heart Valve Dis. 2013;22(1):118–25.

    PubMed  Google Scholar 

  114. Mukhopadhyay S, Varma S, Mohan Kumar HN, Yusaf J, Goyal M, Mehta V, et al. Circulating level of regulatory T cells in rheumatic heart disease: an observational study. Indian Heart J. 2016;68(3):342–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mohamed AA, Rashed LA, Shaker SM, Ammar RI. Association of tumor necrosis factor-alpha polymorphisms with susceptibility and clinical outcomes of rheumatic heart disease. Saudi Med J. 2010;31(6):644–9.

    PubMed  Google Scholar 

  116. Sedgwick JD, Riminton DS, Cyster JG, Korner H. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today. 2000;21(3):110–3.

    Article  CAS  PubMed  Google Scholar 

  117. Campbell IL, Oxbrow L, Koulmanda M, Harrison LC. IFN-gamma induces islet cell MHC antigens and enhances autoimmune, streptozotocin-induced diabetes in the mouse. J Immunol. 1988;140(4):1111–6.

    CAS  PubMed  Google Scholar 

  118. Benzabya W. Interleukin 8 and tumor necrosis factor- α level in acute rheumatic fever and chronic rheumatic heart disease. Libyan J Med Res. 2014;8(1):4–7.

    Google Scholar 

  119. Arya DK, Sharma A, Mehta G, Dua M, Johri AK. Molecular epidemiology and virulence characteristics of prevalent group A streptococci recovered from patients in northern India. J Infect Dev Ctries. 2014;8(3):271–81.

    Article  PubMed  CAS  Google Scholar 

  120. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13(4–5):357–68.

    Article  CAS  PubMed  Google Scholar 

  121. Hirano T. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(7):717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Srirangan S, Choy EH. The role of Interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2010;2(5):247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Md Yusof MY, Emery P. Targeting interleukin-6 in rheumatoid arthritis. Drugs. 2013;73(4):341–56.

    Article  CAS  PubMed  Google Scholar 

  124. Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, Noubade R, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med. 2009;206(1):69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Azevedo PM, Merriman TR, Topless RK, Wilson NJ, Crengle S, Lennon DR. Association study involving polymorphisms in IL-6, IL-1RA, and CTLA4 genes and rheumatic heart disease in New Zealand population of Maori and Pacific ancestry. Cytokine. 2016;85:201–6.

    Article  CAS  PubMed  Google Scholar 

  126. Endo H, Akahoshi T, Takagishi K, Kashiwazaki S, Matsushima K. Elevation of interleukin-8 (IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res. 1991;10(4):245–52.

    CAS  PubMed  Google Scholar 

  127. Berger A. Th1 and Th2 responses: what are they? BMJ. 2000;321(7258):424.

  128. Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303.

    Article  CAS  PubMed  Google Scholar 

  129. Leão SC, Lima MR, Nascimento HM, Octacilio-Silva S, TM R. IL-10 and ET-1 as biomarkers of rheumatic valve disease. Rev Bras Cir Cardiovasc. 2014;29(1):25–30.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Koppelman B, Neefjes JJ, De Vries JE. Interleukin-10 down-regulates MHC class II αβ peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity. 1997;7:861–71.

    Article  CAS  PubMed  Google Scholar 

  131. Mittal SK, Roche PA. Suppression of antigen presentation by IL-10. Curr Opin Immunol. 2015;34:22–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Llorente BL, Zou W, Levy Y, Richaud-patin Y, Wijdenes J, Alcocer-varela IIJ, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic luppus erythematosus. J Exp Med. 1995;181:839–44.

    Article  CAS  PubMed  Google Scholar 

  133. Ravirajan CT, Wang Y, Matis LA, Papadaki L, Griffiths MH, Latchman DS, et al. Effect of neutralizing antibodies to IL-10 and C5 on the renal damage caused by a pathogenic human anti-dsDNA antibody. Rheumatology. 2004;43(4):442–7.

    Article  CAS  PubMed  Google Scholar 

  134. Rahim SS, Khan N, Boddupalli CS, Hasnain SE, Mukhopadhyay S. Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells involves c-rel transcription factor. Immunology. 2005;114:313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med. 1993;178(3):1041–8.

    Article  PubMed  Google Scholar 

  136. Ito S, Ansari P, Sakatsume M, Dickensheets H, Vazquez N, Donnelly RP, et al. Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood. 1999;93(5):1456–63.

    CAS  PubMed  Google Scholar 

  137. Kim L, Kim DK, Yang WI, Shin DH, Jung IM, Park HK, et al. Overexpression of transforming growth factor-beta 1 in the valvular fibrosis of chronic rheumatic heart disease. J Korean Med Sci. 2008;23(1):41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Xiao H, Lei H, Qin S, Ma K, Wang X. TGF-beta1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin Cardiol. 2010;33(3):149–56.

    Article  PubMed  Google Scholar 

  139. El-Din SS, Senna WGA. The role of transforming growth factor beta 1 in rheumatic mitral valve disease. Histological and immunohistochemical study. J Egypt Soc Cardio-Thoracic Surg. 2011;19:45–51.

    Google Scholar 

  140. Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–95.

    Article  CAS  PubMed  Google Scholar 

  141. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6.

  142. Frangogiannis NG. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J Thorac Dis. 2017;9:S52–63.

  143. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  144. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wen Y, Zeng Z, Gui C, Li L, Li W. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc Pathol. 2015;24(6):382–7.

    Article  CAS  PubMed  Google Scholar 

  146. Dileepan T, Linehan JL, Moon JJ, Pepper M, Jenkins MK, Cleary PP. Robust antigen specific th17 t cell response to group a streptococcus is dependent on il-6 and intranasal route of infection. PLoS Pathog. 2011;7(9):e1002252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Qin H, Wang L, Feng T, Elson CO, Niyongere SA, Lee SJ, et al. TGF-β promotes Th17 cell development through inhibition of SOCS3. J Immunol. 2009;183:97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hatton RD. TGF-b in Th17 cell development: the truth is out there. Immunity. 2011;34:288–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wynn TA. Mechanism of fibrosis: therapeutic transplation for fibrotic disease. Nat Med. 2013;18(7):1028–40.

    Article  CAS  Google Scholar 

  150. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta - Mol Basis Dis. 2013;1832(7):1049–60.

    Article  CAS  Google Scholar 

  151. Mi S, Li Z, Yang H-Z, Liu H, Wang J-P, Ma Y-G, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–14.

    Article  CAS  PubMed  Google Scholar 

  152. Bas HD, Baser K, Yavuz E, Bolayir HA, Yaman B, Unlu S, et al. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J Investig Med. 2014;62(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  153. Chong DLW, Ingram RJ, Lowther DE, Muir R, Sriskandan S, Altmann DM. The nature of innate and adaptive interleukin-17A responses in sham or bacterial inoculation. Immunology. 2012;136(3):325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bryant PA, Smyth GK, Gooding T, Oshlack A, Harrington Z, Currie B, et al. Susceptibility to acute rheumatic fever based on differential expression of genes involved in cytotoxicity, chemotaxis, and apoptosis. Infect Immun. 2014;82(2):753–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126(1):303–17.

    Article  PubMed  Google Scholar 

  156. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(4):1023–34.

    CAS  Google Scholar 

  157. Wang B, Dileepan T, Briscoe S, Hyland KA, Kang J, Khoruts A, et al. Induction of TGF- 1 and TGF- 1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc Natl Acad Sci. 2010;107(13):5937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:1–11.

    Article  Google Scholar 

  159. Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci. 2012;122(11):487–511.

    Article  CAS  PubMed  Google Scholar 

  160. Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar MDJ, García-Magallanes N, Vibanco-Pérez N. Th17 cells in autoimmune and infectious diseases. Int J Inflam. 2014;2014(Il).

  161. Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp. 2015;63(6):435–49.

    Article  CAS  Google Scholar 

  162. Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–16.

    Article  CAS  PubMed  Google Scholar 

  163. Abdul-Auhaimena N, Al-Kaabi ZIL. Functional and developmental analysis of CD4(+)CD25(+) regulatory T cells under the influence of streptococcal M protein in rheumatic heart disease. Iran J Med Sci. 2011;36:122–7.

    PubMed  PubMed Central  Google Scholar 

  164. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE. TNF downmodulates the function of human CD4(+)CD25(hi) T-regulatory cells. Blood. 2006;108:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fujimoto M, Nakano M, Terabe F, Kawahata H, Ohkawara T, Han Y, et al. The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells. J Immunol. 2011;186(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  166. Lin G, Wang J, Lao X, Wang J, Li L, Li S, et al. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother. 2012;35(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  167. Dale JB, Beachey EH. Human cytotoxic T lymphocytes evoked by group A streptococcal M proteins. J Exp Med. 1987;166(6):1825–35.

    Article  CAS  PubMed  Google Scholar 

  168. Ganguly NK, Anand IS, Khanna AK, Kohli RS, Wahi PL. T cells and T cell subsets in rheumatic heart disease. Indian J Med Res. 1982;76:854–8.

    CAS  PubMed  Google Scholar 

  169. Lue HC, Tseng WP, Lin GJ, Hsieh KH, Hsieh RP, Chiou JF. Clinical and epidemiological features of rheumatic fever and rheumatic heart disease in Taiwan and the Far East. Indian Heart J India. 1983;35(3):139–46.

    CAS  Google Scholar 

  170. Jinquan T, Larsen CG, Gesser B, Matsushima K, Thestrup-Pedersen K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J Immunol. 1993;151(9):4545–51.

    CAS  PubMed  Google Scholar 

  171. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman JJ, et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8 ϩ cytotoxic T lymphocytes. J Virol. 2000;74(10):4729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Groux H, Bigler M, de Vries JE, Roncarolo MG. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J Immunol. 1998;160(7):3188–93.

    CAS  PubMed  Google Scholar 

  173. Rowbottom AW, Lepper MW, Garland RJ, Cox CV, Corley EG, Oakhill A, et al. Interleukin-10-induced CD8 cell proliferation. Immunology. 1999;98:80–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A. IL-10, a novel growth cofactor for mature and immature T cells. J Immunol. 1990;145(12):4167–73.

    CAS  PubMed  Google Scholar 

  175. Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252(1):104–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Wong MT, Ye JJ, Alonso MN, Landrigan A, Cheung RK, Engleman E, et al. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol Cell Biol. 2010;88(6):624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Singh TP, Schön MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One. 2013;8(1):1–11.

    CAS  Google Scholar 

  178. Hughes-austin JM, Deane KD, Derber LA, Kolfenbach JR, Gary O, Sokolove J, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: studies of the aetiology of rheumatoid arthritis (SERA). Ann Rheum Dis. 2013;72(6):901–7.

    Article  CAS  PubMed  Google Scholar 

  179. Deng Y, Wang Z, Chang C, Lu L, Lau CS, Lu Q. Th9 cells and IL-9 in autoimmune disorders: pathogenesis and therapeutic potentials. Hum Immunol. 2017;78(2):120–8.

    Article  CAS  PubMed  Google Scholar 

  180. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341–6.

    Article  CAS  PubMed  Google Scholar 

  181. Li Y, Yu Q, Zhang Z, Wang J, Li S, Zhang J, et al. T(H)9 cell differentiation, transcriptional control and function in inflammation, autoimmune diseases and cancer. Oncotarget. 2016;7:71001–12.

    PubMed  PubMed Central  Google Scholar 

  182. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci. 2009;106(31):12885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jia L, Wu C. The biology and functions of Th22 cells. Adv Exp Med Biol. 2014;841:209–30.

    Article  CAS  PubMed  Google Scholar 

  184. Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–32.

    Article  PubMed  CAS  Google Scholar 

  185. Zenewicz LA, Flavell RA. Recent advances in IL-22 biology. Int Immunol. 2011;23(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  186. Cho KA, Suh JW, Ho Lee K, Kang JL, Woo SY. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of il-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. 2012;24(3):147–58.

    Article  CAS  PubMed  Google Scholar 

  187. Sabat R, Witte E, Witte K, Wolk K. IL-17, IL-22 and their producing cells: role in inflammation and autoimmunity. Prog Inflamm Res 2013;11–36.

  188. Sugita S, Kawazoe Y, Imai A, Kawaguchi T, Horie S, Keino H, et al. Role of IL-22- and TNF-alpha-producing Th22 cells in uveitis patients with Behcet’s disease. J Immunol. 2013;190(11):5799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Azizi G, Yazdani R, Mirshafiey A. Th22 cells in autoimmunity: a review of current knowledge. Eur Ann Allergy Clin Immunol. 2015;47(4):108–17.

    CAS  PubMed  Google Scholar 

  190. Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect. 2001;3(11):947–54.

    Article  CAS  PubMed  Google Scholar 

  191. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265(5176):1237–40.

    Article  CAS  PubMed  Google Scholar 

  192. Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40(2):186–204.

    Article  CAS  PubMed  Google Scholar 

  193. Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323–7.

    Article  CAS  PubMed  Google Scholar 

  194. Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Chou H-T, Chen C-H, Tsai C-H, Tsai F-J. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J. 2004 Jul;148(1):181–6.

    Article  CAS  PubMed  Google Scholar 

  196. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  CAS  PubMed  Google Scholar 

  197. Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol. 2012;8:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41(4):529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Toor.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toor, D., Sharma, N. T cell subsets: an integral component in pathogenesis of rheumatic heart disease. Immunol Res 66, 18–30 (2018). https://doi.org/10.1007/s12026-017-8978-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8978-z

Keywords

Navigation