Skip to main content
Log in

A preliminary study of carrion insects in Greece and their attraction to three animal baits: a forensic entomology perspective

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

The current study provides data on the composition of the dipteran and coleopteran fauna attracted to three different animal baits (chicken stomach, beef liver, fish) in the urban ecosystem of Athens, Greece. An additional objective was to examine the effect of bait choice by the collected taxa. Three trap locations were established within the Agricultural University of Athens. At each location two different types of baited traps were used to capture and record the local dipteran and coleopteran biodiversity. During the sampling period, a total of 2416 dipteran and coleopteran specimens representing 43 species were collected and identified. The three most abundant dipteran taxa were Sarcophaga sp. (Diptera: Sarcophagidae), Calliphora vicina Robineau-Desvoidy, Lucilia sericata (Meigen) (Diptera: Calliphoridae). The results showed that the structure of the local insect community associated with the decomposition of animal baits depends on the bait used for sampling. This study reinforced the feasibility of using animal tissues as attractants to a wide diversity of medical, parasitological and forensically important taxa. Overall, beef liver attracted the most insects with Diptera preferring beef liver and Coleoptera preferring chicken stomach. Furthermore, this study revealed that baits of one animal tissue did not attract all species but in combination a much better understanding of this biodiversity was achieved. Finally, from a forensic entomology perspective this study highlights the lack of understanding of the value of entomological data related to case work in Greece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The specimens listed in this study are currently deposited in the Zoological Collection of the Laboratory of Agricultural Zoology and Entomology, AUA, Greece and in the KMNH and are available from the curators upon request. The data that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bambaradeniya DB, Magni PA, Dadour IR. A Summary of concepts, procedures and techniques used by forensic entomologists and proxies. Insects. 2023;14:536. https://doi.org/10.3390/insects14060536.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lei G, Liu F, Liu P, Zhou Y, Jiao T, Dang Y. A bibliometric analysis of forensic entomology trends and perspectives worldwide over the last two decades (1998–2017). Forensic Sci Int. 2019;295:72–82. https://doi.org/10.1016/j.forsciint.2018.12.002.

    Article  PubMed  Google Scholar 

  3. Wolff M, Uribe A, Ortiz A, Duque P. A preliminary study of forensic entomology in Medellín, Colombia. Forensic Sci Int. 2001;120:53–9. https://doi.org/10.1016/s0379-0738(01)00422-4.

    Article  CAS  PubMed  Google Scholar 

  4. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR. Forensic entomology: applications and limitations. Forensic Sci Med Pathol. 2011;7:379–92. https://doi.org/10.1007/s12024-010-9209-2.

    Article  CAS  PubMed  Google Scholar 

  5. Campobasso CP, Introna F. The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int. 2001;120:132–9. https://doi.org/10.1016/s0379-0738(01)00425-x.

    Article  CAS  PubMed  Google Scholar 

  6. Wells JD, Di Introna FJr G, Campobasso CP, Hayes J, Sperling FAH. Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci. 2001;46:685–87.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne AL, Camann MA, Cyr TL, Catts EP, Espelie KE. Forensic implications of biochemical differences among geographic populations of the black blow fly, Phormia regina (Meigen). J Forensic Sci. 1995;40:372–77.

    Article  CAS  PubMed  Google Scholar 

  8. Altamura BM, Introna F. A new possibility of applying the entomological method in forensic medicine: age determination of postmortem mutilation. Med Leg Quad Camerti. 1982;4:127–30.

    Google Scholar 

  9. Haskell NH, Hall R, Cervenka VJ, Clark MA. On the body: insect’s life stage presence and their postmortem artifacts. In: Haglund WD, Sorg MA, editors. Forensic taphonomy: the Postmortem Fate of human remains. Boston: CRC; 1997. pp. 415–48.

    Google Scholar 

  10. Dadour IR, Morris B. Forensic entomology: a synopsis, Guide and Update. In: Rutty GN, editor. Essentials of autopsy practice: innovations, updates and advances in practice. London: Springer; 2013. pp. 105–30. https://doi.org/10.1007/978-1-4471-5270-5.

    Chapter  Google Scholar 

  11. Pirtle D, Magni PA, Reinecke GW, Dadour IR. Barnacle colonization of shoes: evaluation of a novel approach to estimate the time spent in water of human remains. Forensic Sci Int. 2019;294:1–9. https://doi.org/10.1016/j.forsciint.2018.10.024.

    Article  PubMed  Google Scholar 

  12. Lord WD, DiZinno JA, Wilson MR, Budowle B, Taplin D, Meinking TL. Isolation, amplification, and sequencing of human mitochondrial DNA obtained from human crab louse, Pthirus pubis (L.), blood meals. J Forensic Sci. 1998;43:1097–100.

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho F, Dadour IR, Groth DM, Harvey ML. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae) a forensically important blowfly. Forensic Sci Med Pathol. 2005;1:261–5. https://doi.org/10.1385/FSMP:1:4:261.

    Article  CAS  PubMed  Google Scholar 

  14. Kotzé Z, Aimar S, Amendt J, Anderson GS, Bourguignon L, Hall MJ, Tomberlin JK. The forensic entomology case report—A global perspective. Insects. 2021;12:283. https://doi.org/10.3390/insects12040283.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weidner LM, Gemmellaro MD, Tomberlin JK, Hamilton GC. Evaluation of bait traps as a means to predict initial blow fly (Diptera: Calliphoridae) communities associated with decomposing swine remains in New Jersey, USA. Forensic Sci Int. 2017;278:95–100. https://doi.org/10.1016/j.forsciint.2017.06.014.

    Article  PubMed  Google Scholar 

  16. Weidner LM, Monzon MA, Hamilton GC. Death eaters respond to the dark mark of decomposition day and night: observations of initial insect activity on piglet carcasses. Int J Legal Med. 2016;130:1633–37. https://doi.org/10.1007/s00414-016-1371-y.

    Article  PubMed  Google Scholar 

  17. Kulshrestha P, Satpathy DK. Use of beetles in forensic entomology. Forensic Sci Int. 2001;120:15–7. https://doi.org/10.1016/S0379-0738(01)00410-8.

    Article  CAS  PubMed  Google Scholar 

  18. Jeong Y, Weidner LM, Pergande S, Gemmellaro D, Jennings DE, Hans KR. Biodiversity of forensically relevant blowflies (Diptera: Calliphoridae) at the Anthropology Research Facility in Knoxville, Tennessee, USA. Insects. 2022;13:109. https://doi.org/10.3390/insects13020109.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davies L. Seasonal and spatial changes in blowfly production from small and large carcasses at Durham in lowland northeast England. Med Vet Entomol. 1999;13:245–51. https://doi.org/10.1046/j.1365-2915.1999.00135.x.

    Article  CAS  PubMed  Google Scholar 

  20. Grassberger M, Friedrich E, Reiter C. The blowfly Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) as a new forensic indicator in Central Europe. Int J Legal Med. 2003;117:75–81. https://doi.org/10.1007/s00414-002-0323-x.

    Article  PubMed  Google Scholar 

  21. Brundage A, Bros S, Honda JY. Seasonal and habitat abundance and distribution of some forensically important blow flies (Diptera: Calliphoridae) in Central California. Forensic Sci Int. 2011;212:115–20. https://doi.org/10.1016/j.forsciint.2011.05.023.

    Article  PubMed  Google Scholar 

  22. Moretti TDC, Godoy WAC. Spatio-temporal dynamics and Preference for type of bait in Necrophagous insects, particularly native and Introduced blow flies (Diptera: Calliphoridae). J Med Entomol. 2013;50:415–24. https://doi.org/10.1603/me12187.

    Article  PubMed  Google Scholar 

  23. Farinha A, Dourado CG, Centeio N, Oliveira AR, Dias D, Rebelo MT. Small bait traps as accurate predictors of dipteran early colonizers in forensic studies. J Insect Sci. 2014;14:77. https://doi.org/10.1093/jis/14.1.77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lutz L, Verhoff MA, Amendt J. Environmental factors influencing flight activity of forensically important female blow flies in Central Europe. Int J Legal Med. 2018;133:1267–78. https://doi.org/10.1007/s00414-018-1967-5.

    Article  PubMed  Google Scholar 

  25. Oliveira DL, Soares TF, Vasconcelos SD. Effect of bait decomposition on the attractiveness to species of Diptera of veterinary and forensic importance in a rainforest fragment in Brazil. Parasitol Res. 2016;115:449–55. https://doi.org/10.1007/s00436-015-4811-6.

    Article  PubMed  Google Scholar 

  26. Rîşnoveanu G, Bujor M, Popescu C. Effects of sampling design on the assessed structure of necrophilous terrestrial insect communities: evidence at order taxonomic level. North West J Zool. 2017;13:6–11.

    Google Scholar 

  27. Smith CAR, Poirier LM, Anderson GS. The effect of season and urbanisation on Calliphoridae (Diptera) diversity in British Columbia, Canada, using baited traps. Can Entomol. 2023;155:1–21. https://doi.org/10.4039/tce.2023.11.

    Article  Google Scholar 

  28. Sánchez-Rojas G, Castellanos I, Márquez-Vázquez A. Sampling necrophagous and predatory insects using different lures in a Mexican pine forest. Rev Mex Biodivers. 2011;82:1037–40. https://doi.org/10.22201/ib.20078706e.2011.3.728.

    Article  Google Scholar 

  29. Vilte R, Gleiser RM, Horenstein MB. Necrophagous fly Assembly: evaluation of species bait preference in Field experiments. J Med Entomol. 2019;57:437–42. https://doi.org/10.1093/jme/tjz192.

    Article  Google Scholar 

  30. Meeds AW, Rusch TW, Falcone DL, Weidner LM. A survey of blow fly (Diptera: Calliphoridae) populations in Phoenix, Arizona. Front Ecol Evol. 2023;11:1–9. https://doi.org/10.3389/fevo.2023.1158347.

    Article  Google Scholar 

  31. Baz A, Cifrián B, Díaz-äranda LM, Martín-Vega D. The distribution of adult blow-flies (Diptera: Calliphoridae) along an altitudinal gradient in Central Spain. Ann Soc Entomol Fr. 2007;43:289–96. https://doi.org/10.1080/00379271.2007.10697524.

    Article  Google Scholar 

  32. Benecke M. Six forensic entomology cases: description and commentary. J Forensic Sci. 1998;43:797–805.

    Article  CAS  PubMed  Google Scholar 

  33. Sukontason K, Narongchai P, Kanchai C, Vichairat K, Sribanditmongkol P, Bhoopat T, Kurahashi H, Chockjamsai M, Piangjai S, Bunchu N, Vongvivach S, Samai W, Chaiwong T, Methanitikorn R, Ngern-Klun R, Sripakdee D, Boonsriwong W, Siriwattanarungsee S, Srimuangwong C, Hanterdsith B, Chaiwan K, Srisuwan C, Upakut S, Moopayak K, Vogtsberger RC, Olson JK, Sukontason KL. 2007. Forensic entomology cases in Thailand: a review of cases from 2000 to 2006. Parasitol Res. 2007;101: 1417–23. https://doi.org/10.1007/s00436-007-0659-8.

  34. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11:1633–44. https://doi.org/10.5194/hess-11-1633-2007.

    Article  ADS  Google Scholar 

  35. Rakopoulou G, Alexiou S, Tsagkarakis A. Diptera collected with baited traps in the urban area of Athens. Greece. 2023;24:229–37.

    Google Scholar 

  36. Oliveira DL, Vasconcelos SD. Vertical location of ephemeral resources by adult Diptera: implications for the colonization of cadavers in high-rise buildings. Forensic Sci Int. 2021;324:110827. https://doi.org/10.1016/j.forsciint.2021.110827.

    Article  CAS  PubMed  Google Scholar 

  37. Vogt WG, Runko S, Starick NT. A wind-oriented fly trap for quantitative sampling of adult Musca Vetustissima Walker. J Aust Entomol soc. 1985;24:223–27. https://doi.org/10.1111/j.1440-6055.1985.tb00231.x.

    Article  Google Scholar 

  38. Soultanopoulou Mantaka A. Morphological characters of two species of the genus Carpophilus and variations in the elytral markings of C. Hemipterus Lin. (Coleoptera: Nitidulidae). Ann De L’ Inst Phytopathologique Benaki. 1976;11:193–99.

    Google Scholar 

  39. Rozkošný R, Gregor F, Pont A. The European Fanniidae (Diptera). Brno: Institute of Landscape Ecology; 1997.

    Google Scholar 

  40. Zatwarnicki T, Mathis WN. A revision of the palearctic species of the shore-fly genus Discomyza Meigen (Diptera: Ephydridae). Insect Syst Evol. 2007;38:241–66. https://doi.org/10.1163/187631207788754448.

    Article  Google Scholar 

  41. Rössner E, Schoenfeldt J, Ahrens D. Onthophagus (Palaeonthophagus) mediusKugelann, (1792) – a good western palaearctic species in the Onthophagus vacca complex (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini). Zootaxa. 2010; 2629:1–28. https://doi.org/10.11646/Zootaxa.2629.1.1.

  42. Ferrer J. Taxonomic notes on the Genus Gonocephalum Solier, 1834, with description of New Taxa (Coleoptera: Tenebrionidae). Annal Zool. 2010;60:231–38. https://doi.org/10.3161/000345410X516902.

    Article  Google Scholar 

  43. Arndt E, Schnitter P, Sfenthourakis S, Wrase D. Ground Beetles (Carabidae) of Greece. Sofia: Pensoft; 2011.

    Google Scholar 

  44. Szpila K. Key for identification of European and Mediterranean fleshflies (Diptera, Sarcophagidae) of medical and veterinary importance. Forensically important Diptera identification workshop. Torun: Faculty of Biology and Environmental Protection, Nicolaus Copernicus University; 2014.

    Google Scholar 

  45. Akbarzadeh K, Wallman JF, Sulakova H, Szpila K. Species identification of Middle Eastern blowflies (Diptera: Calliphoridae) of forensic importance. Parasitol Res. 2015;114:1463–72. https://doi.org/10.1007/s00436-015-4329-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aballay F, Flores G, Silvestro V, Zanetti N, Centeno N. An Illustrated Key to, and diagnoses of the species of Tenebrionidae (Coleoptera) Associated with decaying carcasses in Argentina. Annal Zool. 2016;66:703–26. https://doi.org/10.3161/00034541anz2016.66.4.

    Article  Google Scholar 

  47. František G, Rozkošný R, Barták M, Vaňhara J. Manual of Central European Muscidae (Diptera). Morphology, taxonomy, identification and distribution. Stuttgart: Schweizerbart Science; 2016.

    Google Scholar 

  48. Leo P, Ruzzante G. Dati Nuovi E Riassuntivi Sui Tenebrionidi dell’isola di Lesbo (Grecia) (Coleoptera Tenebrionidae). Boll Soc Entomol Ital. 2016;148:83–9. https://doi.org/10.4081/BollettinoSEI.2016.83.

    Article  Google Scholar 

  49. Lutovinovas E, Davenis A. Myennis octopunctata (Coquebert, 1798) – new to the fauna of Lithuania (Diptera: Ulidiidae). Bull Lith Entomol Soc. 2020;4:105–8.

    Google Scholar 

  50. Herrmann A. Dermestes intermedius ssp. Intermedius Kalík, 1951. In: Dermestidae (Coleoptera) of the world. 2022. http://www.dermestidae.com/Dermestesintermediusintermedius.html. Accessed 12 Dec 2022.

  51. Herrmann A. Dermestes undulatus Brahm, 1790. In: Dermestidae (Coleoptera) of the world. 2022. http://www.dermestidae.com/Dermestesundulatus.html. Accessed 15 Dec 2022.

  52. Buchelos CTH, Athanassiou CG. Dominance and frequency of Coleoptera found on stored cereals and cereal products in Central Greece. Entomol Hell. 1993;11:17–22. https://doi.org/10.12681/eh.14007.

    Article  Google Scholar 

  53. Taplin RH, Series C. (Applied Statistics). 1997;46:493–512. https://doi.org/10.1111/1467-9876.00086.

    Article  Google Scholar 

  54. SAS Institute. JMP version 16. Carry, NC, USA: SAS Institute Inc.; 2021.

    Google Scholar 

  55. Coyle DR, Larsen KJ. Carrion Beetles (Coleoptera: Silphidae) of northeastern Iowa: a comparison of baits for Sampling. Jour Iowa Acad Sci. 1998;105:161–4.

    Google Scholar 

  56. Newton AF, Peck SB. Baited pitfall traps for beetles. Coleopt Bull. 1975;29:45–6.

    Google Scholar 

  57. Aak A, Knudsen GK. Sex differences in olfaction-mediated visual acuity in blowflies and its consequences for gender-specific trapping. Entomol Exp Appl. 2011;139:25–34. https://doi.org/10.1111/j.1570-7458.2011.01103.x.

    Article  Google Scholar 

  58. Harvey M, Gasz N, Woolley Z, Roberts L, Raven N, Colbert A, Law K, Marshall P, Voss S. Dipteran attraction to a Variety of baits: implications for Trapping studies as a Tool for establishing Seasonal Presence of significant species. J Med Entomol. 2019;56:1283–89. https://doi.org/10.1093/jme/tjz050.

    Article  CAS  PubMed  Google Scholar 

  59. Martín-Vega D, Baz A. Sarcosaprophagous Diptera assemblages in natural habitats in central Spain: spatial and seasonal changes in composition. 2012;27:64–76. https://doi.org/10.1111/j.1365-2915.2012.01028.x.

  60. Velásquez Y, Magaña C, Martínez-Sánchez A, Rojo S. Diptera of forensic importance in the Iberian Peninsula: larval identification key. Med Vet Entomol. 2010;24:293–308. https://doi.org/10.1111/j.1365-2915.2010.00879.x.

    Article  PubMed  Google Scholar 

  61. Pinilla Beltran YT, Segura NA, Bello FJ. Synanthropy of Calliphoridae and Sarcophagidae (Diptera) in Bogotá, Colombia. Neotrop Entomol. 2012;41:237–42. https://doi.org/10.1007/s13744-012-0036-x.

    Article  CAS  PubMed  Google Scholar 

  62. Linhares AX. Synanthropy of Calliphoridae and Sarcophagidae (Diptera) in the city of Campinas, São Paulo, Brazil. Rev Bras Entomol. 1981;25:189–221.

    Google Scholar 

  63. Smith KGV. A manual of forensic entomology. London: Cornell University Press; 1986.

    Google Scholar 

  64. Guo Y, Zha L, Yan W, Li P, Cai J, Wu L. Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China based on COI and period gene. Int J Legal Med. 2013;128:221–28. https://doi.org/10.1007/s00414-013-0923-7.

    Article  PubMed  Google Scholar 

  65. Serbino NMB, Godoy WAC. Seasonal abundance and distribution of Necrophagous Diptera in Western São Paulo State, Brazil. Funct Ecosyst Communities. 2007;1:145–9.

    Google Scholar 

  66. Urabe S, Kurahashi H, Inokuchi G, Chiba F, Motomura A, Hoshioka Y, Torimitsu S, Yamaguchi R, Tsuneya S, Iwase H. Carrion flies (Insecta: Diptera) found on human cadavers in Chiba prefecture, Honshu, Japan, with the first record of Fannia Prisca from a human corpse. J Forensic Sci. 2022;67:2469–78. https://doi.org/10.1111/1556-4029.15128.

    Article  PubMed  Google Scholar 

  67. Horenstein MB, Linhares AX, Rosso B, García MD. Species composition and seasonal succession of saprophagous calliphorids in a rural area of Córdoba: Argentina. Biol Res. 2007;40:163–71. https://doi.org/10.4067/s0716-97602007000200007.

    Article  Google Scholar 

  68. Horenstein MB, Linhares AX, Ferradas BR, García D. Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science. Med Vet Entomol. 2010;24:16–25. https://doi.org/10.1111/j.1365-2915.2009.00854.x.

    Article  PubMed  Google Scholar 

  69. Hanski I. Carrion fly community dynamics: patchiness, seasonality and coexistence. Ecol Entomol. 1987;12:257–66. https://doi.org/10.1111/j.1365-2311.1987.tb01004.x.

    Article  Google Scholar 

  70. Romera E, Arnaldos MI, García MD, González-Mora D. Los Sarcophagidae (Insecta, Diptera) de un ecosistema cadavérico en El sureste de la Península Ibérica. biol. 2003;25:49–63.

    Google Scholar 

  71. Mulieri PR, Patitucci LD, Schnack JA, Mariluis JC. Diversity and seasonal dynamics of an assemblage of sarcophagid Diptera in a gradient of urbanization. J Insect Sci. 2011;11:1–15. https://doi.org/10.1673/031.011.9101.

    Article  Google Scholar 

  72. Hwang C, Turner BD. Spatial and temporal variability of necrophagous Diptera from urban to rural areas. Med Vet Entomol. 2005;19:379–91. https://doi.org/10.1111/j.1365-2915.2005.00583.x.

    Article  CAS  PubMed  Google Scholar 

  73. Salimi M, Rassi Y, Oshaghi M, Chatrabgoun O, Limoee M, Rafizadeh S. Temperature requirements for the growth of immature stages of blowflies species, Chrysomya albiceps and Calliphora vicina, (Diptera: Calliphoridae) under laboratory conditions. Egypt J Forensic Sci. 2018;8:28. https://doi.org/10.1186/s41935-018-0060-z.

    Article  Google Scholar 

  74. Pruna W, Guarderas P, Donoso DA, Barragán Á. Life cycle of Lucilia Sericata (Meigen 1826) collected from Andean mountains. Neotrop Biodivers. 2019;5:3–9. https://doi.org/10.1080/23766808.2019.1578056.

    Article  Google Scholar 

  75. Martínez-Sánchez A, Rojo S, Marcos-García MA. Annual and spatial activity of dung flies and carrion in a Mediterranean holm-oak pasture ecosystem. Med Vet Entomol. 2000;14:56–63. https://doi.org/10.1046/j.1365-2915.2000.00205.x.

    Article  PubMed  Google Scholar 

  76. Fremdt H, Amendt J. Species composition of forensically important blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) through space and time. Forensic Sci Int. 2014;236:1–9. https://doi.org/10.1016/j.forsciint.2013.12.010.

    Article  PubMed  Google Scholar 

  77. Singh N, Bala M. Succession study on forensically important Coleoptera from India: a preliminary study and its forensic implications. Egypt J Forensic Sci. 2019;9:66. https://doi.org/10.1186/s41935-019-0168-9.

    Article  CAS  Google Scholar 

  78. Tembe D, Mukaratirwa S. Insect succession and decomposition pattern on Pig Carrion during warm and Cold Seasons in Kwazulu-Natal Province of South Africa. J Med Entomol. 2021;58:2047–570. https://doi.org/10.1093/jme/tjab099.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Façanha B, Esposito MC, Juen L. Trap and bait efficiency for catching Calliphoridae and Mesembrinellidae (Insecta, Diptera) at different heights. Acad Bras Ciênc. 2022;94:1–18. https://doi.org/10.1590/0001-3765202220210763.

    Article  Google Scholar 

  80. Kang SW, Kim HM, Rahman MS, Kim AN, Yang HS, Choi SG. Nutritional quality and physicochemical characteristics of defatted bovine liver treated by supercritical Carbon Dioxide and Organic Solvent. Korean J Food Sci Anim Resour. 2017;37:29–37. https://doi.org/10.5851/kosfa.2017.37.1.29.

    Article  PubMed  PubMed Central  Google Scholar 

  81. George KA, Archer MS, Toop T. Effects of bait age, larval chemical cues and nutrient depletion on colonization by forensically important calliphorid and sarcophagid flies. Med Vet Entomol. 2012;26:188–93. https://doi.org/10.1111/j.1365-2915.2011.00996.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the AUA for use of laboratory facilities. We wish to extend our gratitude to Sotiris Alexiou (Korinthian Museum of Natural History (KMNH)) for contributing to the identification of the dipteran species encountered during this study. We are also grateful to Savvas Zafeiriou (University of the Aegean) for providing the photographic illustrations of the fly species and for examining and confirming the identities of the coleopteran specimens. We would like to express our thanks to Christos Lymperopoulos (Hellenic Open University) for helpful discussions on statistical analyses. We would like to acknowledge Helenos–Konstantinos Grivakis (AUA) for providing the aerial photos of the three trap localities. Finally, we are grateful to Dr. Antonios Tsagkarakis (AUA) for his support throughout this study.

Funding

Financial support for this research was provided by student funding from the Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece.

Author information

Authors and Affiliations

Authors

Contributions

Gabriella Dimitra Rakopoulou conceived the ideas for this project, designed the study and wrote the experimental protocol, constructed the traps, carried out the field work, collected, counted and identified insect material, collated the results, analyzed the data, conducted statistical analyses and took the lead in drafting the first version of this manuscript. Ian Robert Dadour determined appropriate statistical methods, participated in the data analysis, aided in the interpretation of the results, contributed to the literature, participated in writing parts of the manuscript, revised and edited the manuscript and provided expertise that greatly assisted this research. All authors have read and given final approval for the publication of the final manuscript.

Corresponding author

Correspondence to Ian Robert Dadour.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests.

Ethics approval

No permits were required for the field studies. This paper uses animal tissue purchased from the human food supply chain and does not require ethical approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakopoulou, G.D., Dadour, I.R. A preliminary study of carrion insects in Greece and their attraction to three animal baits: a forensic entomology perspective. Forensic Sci Med Pathol (2024). https://doi.org/10.1007/s12024-024-00796-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-024-00796-6

Keywords

Navigation