Skip to main content

Advertisement

Log in

Molecular Pathology of Well-Differentiated Gastro-entero-pancreatic Neuroendocrine Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Well differentiated neuroendocrine tumors (NETs) arising in the gastrointestinal and pancreaticobiliary system are the most common neuroendocrine neoplasms. Studies of the molecular basis of these lesions have identified genetic mutations that predispose to familial endocrine neoplasia syndromes and occur both as germline events and in sporadic tumors. The mutations often involve epigenetic regulators rather than the oncogenes and tumor suppressors that are affected in other malignancies. Somatic copy number alterations and miRNAs have also been implicated in the development and progression of some of these tumors. The molecular profiles differ by location, but many are shared by tumors in other sites, including those outside the gastroenteropancreatic system. The approach to therapy relies on both the neuroendocrine nature of these tumors and the identification of specific alterations that can serve as targets for precision oncologic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Langerhans P (1869) Beiträge zur Mikroskopischen Anatomie der Bauchspeicheldrüse. Berlin.

  2. von Mering JV, Minkowski O (1889) Diabetes mellitus nach Pankreasexstirpation. Zbl Klin Med 10: 393.

    Google Scholar 

  3. Laguesse E (1895) Recherches sur l'histogénie du pancréas chez le mouton. J de l'Anat et Physiol (Paris) 31: 475-500.

    Google Scholar 

  4. Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7: 465-480.

    Google Scholar 

  5. Sanger F, Thompson EO (1953) The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J 53: 353-366.

    Article  CAS  Google Scholar 

  6. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28: 325-353.

    Article  CAS  Google Scholar 

  7. Asa SL, Mete O (2018) Endocrine pathology: past, present and future. Pathol 50: 111–118. S0031–3025(17)30442–7 [pii];https://doi.org/10.1016/j.pathol.2017.09.003.

  8. Suissa Y, Magenheim J, Stolovich-Rain M, Hija A, Collombat P, Mansouri A, Sussel L, Sosa-Pineda B, McCracken K, Wells JM, Heller RS, Dor Y, Glaser B (2013) Gastrin: a distinct fate of neurogenin3 positive progenitor cells in the embryonic pancreas. PLoS One 8: e70397. PONE-D-13-05488 [pii]; https://doi.org/10.1371/journal.pone.0070397.

  9. Dohrmann C, Gruss P, Lemaire L (2000) Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Dev 92: 47–54. S092547739900324X [pii];https://doi.org/10.1016/s0925-4773(99)00324-x.

  10. Matsuoka TA, Kawashima S, Miyatsuka T, Sasaki S, Shimo N, Katakami N, Kawamori D, Takebe S, Herrera PL, Kaneto H, Stein R, Shimomura I (2017) Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet alpha-Cells Into beta-Cells In Vivo. Diabetes 66: 1293–1300. db16–0887 [pii];https://doi.org/10.2337/db16-0887.

  11. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, Busam KJ, de Krijger RR, Dietel M, El-Naggar AK, Fernandez-Cuesta L, Kloppel G, McCluggage WG, Moch H, Ohgaki H, Rakha EA, Reed NS, Rous BA, Sasano H, Scarpa A, Scoazec JY, Travis WD, Tallini G, Trouillas J, van Krieken JH, Cree IA (2018) A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 31: 1770-1786. https://doi.org/10.1038/s41379-018-0110-y;https://doi.org/10.1038/s41379-018-0110-y [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alexandraki KI, Kaltsatou M, Kyriakopoulos G, Mavroeidi V, Kostopoulou A, Atlan K, Theocharis S, Rindi G, Grossman AB, Grozinsky-Glasberg S, Kaltsas GA (2020) Distinctive features of pancreatic neuroendocrine neoplasms exhibiting an increment in proliferative activity during the course of the disease. Endocrine . https://doi.org/10.1007/s12020-020-02540-w;https://doi.org/10.1007/s12020-020-02540-w [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM, Shi C, Sharma R, Laheru D, Edil BH, Wolfgang CL, Schulick RD, Hruban RH, Tang LH, Klimstra DS, Iacobuzio-Donahue CA (2012) Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 36: 173-184. 00000478-201202000-00002 [pii]; https://doi.org/10.1097/PAS.0b013e3182417d36.

  14. Konukiewitz B, Jesinghaus M, Steiger K, Schlitter AM, Kasajima A, Sipos B, Zamboni G, Weichert W, Pfarr N, Kloppel G (2018) Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3. Hum Pathol 77: 70–79. S0046–8177(18)30095–9 [pii];https://doi.org/10.1016/j.humpath.2018.03.018.

  15. Hijioka S, Hosoda W, Matsuo K, Ueno M, Furukawa M, Yoshitomi H, Kobayashi N, Ikeda M, Ito T, Nakamori S, Ishii H, Kodama Y, Morizane C, Okusaka T, Yanagimoto H, Notohara K, Taguchi H, Kitano M, Yane K, Maguchi H, Tsuchiya Y, Komoto I, Tanaka H, Tsuji A, Hashigo S, Kawaguchi Y, Mine T, Kanno A, Murohisa G, Miyabe K, Takagi T, Matayoshi N, Yoshida T, Hara K, Imamura M, Furuse J, Yatabe Y, Mizuno N (2017) Rb Loss and KRAS Mutation Are Predictors of the Response to Platinum-Based Chemotherapy in Pancreatic Neuroendocrine Neoplasm with Grade 3: A Japanese Multicenter Pancreatic NEN-G3 Study. Clin Cancer Res 23: 4625–4632. 1078–0432.CCR-16–3135 [pii];https://doi.org/10.1158/1078-0432.CCR-16-3135.

  16. Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, Oki E, Takayanagi R, Oda Y (2015) Molecular characteristics of colorectal neuroendocrine carcinoma; similarities with adenocarcinoma rather than neuroendocrine tumor. Hum Pathol 46: 1890–1900. S0046–8177(15)00310-X [pii];https://doi.org/10.1016/j.humpath.2015.08.006.

  17. Maitra A, Tascilar M, Hruban RH, Offerhaus GJ, Albores-Saavedra J (2001) Small cell carcinoma of the gallbladder: a clinicopathologic, immunohistochemical, and molecular pathology study of 12 cases. Am J Surg Pathol 25: 595-601. https://doi.org/10.1097/00000478-200105000-00005.

    Article  CAS  PubMed  Google Scholar 

  18. Tang LH (2020) Pancreatic Neuroendocrine Neoplasms: Landscape and Horizon. Arch Pathol Lab Med . https://doi.org/10.5858/arpa.2019-0654-RA.

    Article  PubMed  Google Scholar 

  19. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz Jr LA, Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331: 1199-1203.

    Article  CAS  Google Scholar 

  20. La Rosa S, Vanoli A (2014) Gastric neuroendocrine neoplasms and related precursor lesions. J Clin Pathol 67: 938–948. jclinpath-2014–202515 [pii];https://doi.org/10.1136/jclinpath-2014-202515.

  21. Rindi G, Luinetti O, Cornaggia M, Capella C, Solcia E (1993) Three subtypes of gastric argyrophil carcinoid and the gastric neuroendocrine carcinoma: a clinicopathologic study. Gastroenterology 104: 994–1006. 0016–5085(93)90266-F [pii];https://doi.org/10.1016/0016-5085(93)90266-f.

  22. La Rosa S, Rindi G, Solcia E, Tang LH (2019) Gastric neuroendocrine neoplasms. In: WHO Classification of Digestive System Tumours. Lyon: ARC. pp. 104-109.

    Google Scholar 

  23. Ooi A, Ota M, Katsuda S, Nakanishi I, Sugawara H, Takahashi I (1995) An Unusual Case of Multiple Gastric Carcinoids Associated with Diffuse Endocrine Cell Hyperplasia and Parietal Cell Hypertrophy. Endocr Pathol 6: 229–237. EP0603229 [pii];https://doi.org/10.1007/BF02739887.

  24. Abraham SC, Carney JA, Ooi A, Choti MA, Argani P (2005) Achlorhydria, parietal cell hyperplasia, and multiple gastric carcinoids: a new disorder. Am J Surg Pathol 29: 969–975. 00000478–200507000–00017 [pii];https://doi.org/10.1097/01.pas.0000163363.86099.9f.

  25. Trinh VQ, Shi C, Ma C (2020) Gastric neuroendocrine tumours from long-term proton pump inhibitor users are indolent tumours with good prognosis. Histopathology 77: 865-876. https://doi.org/10.1111/his.14220.

    Article  PubMed  Google Scholar 

  26. La Rosa S, Solcia E (2020) New insights into the classification of gastric neuroendocrine tumours, expanding the spectrum of ECL-cell tumours related to hypergastrinaemia. Histopathology 77: 862-864. https://doi.org/10.1111/his.14226.

    Article  PubMed  Google Scholar 

  27. Kaltsas G, Grozinsky-Glasberg S, Alexandraki KI, Thomas D, Tsolakis AV, Gross D, Grossman AB (2014) Current concepts in the diagnosis and management of type 1 gastric neuroendocrine neoplasms. Clin Endocrinol (Oxf) 81: 157-168. https://doi.org/10.1111/cen.12476.

    Article  Google Scholar 

  28. Sundaresan S, Kang AJ, Merchant JL (2017) Pathophysiology of Gastric NETs: Role of Gastrin and Menin. Curr Gastroenterol Rep 19: 32. https://doi.org/10.1007/s11894-017-0572-y;https://doi.org/10.1007/s11894-017-0572-y [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bordi C (2014) Neuroendocrine pathology of the stomach: the Parma contribution. Endocr Pathol 25: 171-180. https://doi.org/10.1007/s12022-014-9315-x.

    Article  CAS  PubMed  Google Scholar 

  30. Calvete O, Reyes J, Zuniga S, Paumard-Hernandez B, Fernandez V, Bujanda L, Rodriguez-Pinilla MS, Palacios J, Heine-Suner D, Banka S, Newman WG, Canamero M, Pritchard DM, Benitez J (2015) Exome sequencing identifies ATP4A gene as responsible of an atypical familial type I gastric neuroendocrine tumour. Hum Mol Genet 24: 2914–2922. ddv054 [pii];https://doi.org/10.1093/hmg/ddv054.

  31. Peghini PL, Annibale B, Azzoni C, Milione M, Corleto VD, Gibril F, Venzon DJ, Delle FG, Bordi C, Jensen RT (2002) Effect of chronic hypergastrinemia on human enterochromaffin-like cells: insights from patients with sporadic gastrinomas. Gastroenterology 123: 68–85. S0016508502000653 [pii];https://doi.org/10.1053/gast.2002.34231.

  32. D'Adda T, Pizzi S, Azzoni C, Bottarelli L, Crafa P, Pasquali C, Davoli C, Corleto VD, Delle FG, Bordi C (2002) Different patterns of 11q allelic losses in digestive endocrine tumors. Hum Pathol 33: 322–329. S0046817702805597 [pii];https://doi.org/10.1053/hupa.2002.32219.

  33. Furlan D, Cerutti R, Uccella S, La RS, Rigoli E, Genasetti A, Capella C (2004) Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin Cancer Res 10: 947-957. https://doi.org/10.1158/1078-0432.ccr-1068-3.

    Article  CAS  PubMed  Google Scholar 

  34. Guadagno E, Luglio G, Iacobelli A, Borrelli G, Castaldi A, De RG, Del Basso De CM (2018) A Case of Gastric Neuroendocrine Neoplasm with Mixed Grade: a Distinct Type of "High"-grade Well-Differentiated Neuroendocrine Neoplasm. Endocr Pathol 29: 289-293. https://doi.org/10.1007/s12022-018-9528-5;https://doi.org/10.1007/s12022-018-9528-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  35. Malanga D, De Gisi S, Riccardi M, Scrima M, De Marco C, Robledo M, Viglietto G (2012) Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype. Eur J Endocrinol 166: 551-560.

    Article  CAS  Google Scholar 

  36. Lee M, Pellegata NS (2013) Multiple endocrine neoplasia syndromes associated with mutation of p27. J Endocrinol Invest 36: 781–787. 9021 [pii];https://doi.org/10.3275/9021.

  37. Pea A, Hruban RH, Wood LD (2015) Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev Gastroenterol Hepatol 9: 1407-1419. https://doi.org/10.1586/17474124.2015.1092383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scarpa A (2019) The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. Ann Endocrinol (Paris) 80: 153–158. S0003–4266(19)30062–9 [pii];https://doi.org/10.1016/j.ando.2019.04.010.

  39. Esposito I, Segler A, Steiger K, Kloppel G (2015) Pathology, genetics and precursors of human and experimental pancreatic neoplasms: An update. Pancreatology 15: 598–610. S1424–3903(15)00632–8 [pii];https://doi.org/10.1016/j.pan.2015.08.007.

  40. Agarwal SK (2017) The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 24: T119-T134. 24/10/T119 [pii];https://doi.org/10.1530/ERC-17-0199.

  41. Anlauf M, Schlenger R, Perren A, Bauersfeld J, Koch CA, Dralle H, Raffel A, Knoefel WT, Weihe E, Ruszniewski P, Couvelard A, Komminoth P, Heitz PU, Kloppel G (2006) Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol 30: 560-574. 00000478-200605000-00002 [pii]; https://doi.org/10.1097/01.pas.0000194044.01104.25.

  42. Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, Kay GF, Hayward NK, Hess JL, Meyerson M (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13: 587–597. S1097–2765(04)00081–4 [pii];https://doi.org/10.1016/s1097-2765(04)00081-4.

  43. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639-5649. 24/13/5639 [pii]; https://doi.org/10.1128/MCB.24.13.5639-5649.2004.

  44. Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y, Meyerson M, Kim SK (2005) Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci U S A 102: 14659–14664. 0503484102 [pii];https://doi.org/10.1073/pnas.0503484102.

  45. Bordeianou L, Vagefi PA, Sahani D, Deshpande V, Rakhlin E, Warshaw AL, Fernandez-del CC (2008) Cystic pancreatic endocrine neoplasms: a distinct tumor type? J Am Coll Surg 206: 1154–1158. S1072–7515(08)00024–0 [pii];https://doi.org/10.1016/j.jamcollsurg.2007.12.040.

  46. Petignot S, Daly AF, Castermans E, Korpershoek E, Scagnol I, Beckers P, Dideberg V, Rohmer V, Bours V, Beckers A (2020) Pancreatic Neuroendocrine Neoplasm Associated with a Familial MAX Deletion. Horm Metab Res 52: 784-787. https://doi.org/10.1055/a-1186-0790.

    Article  CAS  PubMed  Google Scholar 

  47. Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, Walther MM, Linehan WM, Zhuang Z (1998) Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol 153: 223-231.

    Article  CAS  Google Scholar 

  48. Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, Chauveau D, Balian A, Beigelman C, O'Toole D, Bernades P, Ruszniewski P, Richard S (2000) Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d'Etude de la Maladie de von Hippel-Lindau. Gastroenterology 119: 1087-1095.

    Article  CAS  Google Scholar 

  49. Kaelin Jr WG (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2: 673-682.

    Article  CAS  Google Scholar 

  50. Salama Y, Albanyan S, Szybowska M, Bullivant G, Gallinger B, Giles RH, Asa S, Badduke C, Chiorean A, Druker H, Ezzat S, Hannah-Shmouni F, Hernandez KG, Inglese C, Jani P, Kaur Y, Krema H, Krimus L, Laperriere N, Lichner Z, Mete O, Sit M, Zadeh G, Jewett MAS, Malkin D, Stockley T, Wasserman JD, Xu W, Schachter NF, Kim RH (2019) Comprehensive characterization of a Canadian cohort of von Hippel-Lindau disease patients. Clin Genet 96: 461-467. https://doi.org/10.1111/cge.13613.

    Article  CAS  PubMed  Google Scholar 

  51. Richard S, Graff J, Lindau J, Resche F (2004) Von Hippel-Lindau disease. Lancet 363: 1231-1234. S0140-6736(04)15957-6 [pii]; https://doi.org/10.1016/S0140-6736(04)15957-6.

  52. Speisky D, Duces A, Bieche I, Rebours V, Hammel P, Sauvanet A, Richard S, Bedossa P, Vidaud M, Murat A, Niccoli P, Scoazec JY, Ruszniewski P, Couvelard A (2012) Molecular profiling of pancreatic neuroendocrine tumors in sporadic and Von Hippel-Lindau patients. Clin Cancer Res 18: 2838–2849. 1078–0432.CCR-11–2759 [pii];https://doi.org/10.1158/1078-0432.CCR-11-2759.

  53. Singh R, Basturk O, Klimstra DS, Zamboni G, Chetty R, Hussain S, La RS, Yilmaz A, Capelli P, Capella C, Cheng JD, Adsay NV (2006) Lipid-rich variant of pancreatic endocrine neoplasms. Am J Surg Pathol 30: 194–200. 00000478–200602000–00007 [pii];https://doi.org/10.1097/01.pas.0000184819.71752.ad.

  54. Chetty R, Kennedy M, Ezzat S, Asa SL (2004) Pancreatic endocrine pathology in von Hippel-Lindau disease: an expanding spectrum of lesions. Endocr Pathol 15: 141-148.

    Article  Google Scholar 

  55. Thirabanjasak D, Basturk O, Altinel D, Cheng JD, Adsay NV (2009) Is serous cystadenoma of the pancreas a model of clear-cell-associated angiogenesis and tumorigenesis? Pancreatology 9: 182–188. S1424–3903(09)80085–9 [pii];https://doi.org/10.1159/000178890.

  56. Gucer H, Szentgyorgyi E, Ezzat S, Asa SL, Mete O (2013) Inhibin-expressing clear cell neuroendocrine tumor of the ampulla: an unusual presentation of von Hippel-Lindau disease. Virchows Arch 463: 593-597.

    Article  CAS  Google Scholar 

  57. Depoix CL, de S, I, Hubinont C, Debieve F (2017) HIF1A and EPAS1 potentiate hypoxia-induced upregulation of inhibin alpha chain expression in human term cytotrophoblasts in vitro. Mol Hum Reprod 23: 199–209. gax002 [pii];https://doi.org/10.1093/molehr/gax002.

  58. Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, Chandel NS, Hunzicker-Dunn M (2004) Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 279: 19431-19440. M401235200 [pii]; https://doi.org/10.1074/jbc.M401235200.

  59. Mete O, Asa SL (2013) Precursor lesions of endocrine system neoplasms. Pathol 45: 316-330.

    Article  CAS  Google Scholar 

  60. Turcotte S, Turkbey B, Barak S, Libutti SK, Alexander HR, Linehan WM, Hughes MS, Nilubol N, Gesuwan K, Millo C, Quezado M, Choyke PL, Kebebew E, Phan GQ (2012) von Hippel-Lindau disease-associated solid microcystic serous adenomas masquerading as pancreatic neuroendocrine neoplasms. Surgery 152: 1106–1117. S0039–6060(12)00454–0 [pii];https://doi.org/10.1016/j.surg.2012.08.010.

  61. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A 102: 8573–8578. 0503224102 [pii];https://doi.org/10.1073/pnas.0503224102.

  62. Larson AM, Hedgire SS, Deshpande V, Stemmer-Rachamimov AO, Harisinghani MG, Ferrone CR, Shah U, Thiele EA (2012) Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex. Clin Genet 82: 558-563. https://doi.org/10.1111/j.1399-0004.2011.01805.x.

    Article  CAS  PubMed  Google Scholar 

  63. Jensen RT, Berna MJ, Bingham DB, Norton JA (2008) Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 113: 1807-1843.

    Article  Google Scholar 

  64. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355: 1345–1356. 355/13/1345 [pii];https://doi.org/10.1056/NEJMra055323.

  65. Mortaji P, Morris KT, Samedi V, Eberhardt S, Ryan S (2018) Pancreatic neuroendocrine tumor in a patient with a TSC1 variant: case report and review of the literature. Fam Cancer 17: 275-280. https://doi.org/10.1007/s10689-017-0029-3;https://doi.org/10.1007/s10689-017-0029-3 [pii].

    Article  PubMed  Google Scholar 

  66. Mehta S, Rusyn L, Ginsburg H, Hajdu C, Kohn B (2019) Pancreatic Neuroendocrine Tumor in a Young Child With Tuberous Sclerosis Complex 1. J Endocr Soc 3: 1201-1206. 201900051 [pii]; https://doi.org/10.1210/js.2019-00051.

  67. McEneaney LJ, Tee AR (2019) Finding a cure for tuberous sclerosis complex: From genetics through to targeted drug therapies. Adv Genet 103: 91–118. S0065–2660(18)30037–3 [pii];https://doi.org/10.1016/bs.adgen.2018.11.003.

  68. Lechuga L, Franz DN (2019) Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev Neurother 19: 913-925. https://doi.org/10.1080/14737175.2019.1635457.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou C, Dhall D, Nissen NN, Chen CR, Yu R (2009) Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 38: 941-946.

    Article  CAS  Google Scholar 

  70. Yu R, Nissen NN, Dhall D, Heaney AP (2008) Nesidioblastosis and hyperplasia of alpha cells, microglucagonoma, and nonfunctioning islet cell tumor of the pancreas: review of the literature. Pancreas 36: 428-431. 00006676-200805000-00015 [pii]; https://doi.org/10.1097/MPA.0b013e31815ceb23.

  71. Sipos B, Sperveslage J, Anlauf M, Hoffmeister M, Henopp T, Buch S, Hampe J, Weber A, Hammel P, Couvelard A, Hobling W, Lieb W, Boehm BO, Kloppel G (2015) Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J Clin Endocrinol Metab 100: E783-E788. https://doi.org/10.1210/jc.2014-4405.

    Article  CAS  PubMed  Google Scholar 

  72. Iacovazzo D, Flanagan SE, Walker E, Quezado R, de Sousa Barros FA, Caswell R, Johnson MB, Wakeling M, Brandle M, Guo M, Dang MN, Gabrovska P, Niederle B, Christ E, Jenni S, Sipos B, Nieser M, Frilling A, Dhatariya K, Chanson P, de Herder WW, Konukiewitz B, Kloppel G, Stein R, Korbonits M, Ellard S (2018) MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A 115: 1027–1032. 1712262115 [pii];https://doi.org/10.1073/pnas.1712262115.

  73. Anlauf M, Bauersfeld J, Raffel A, Koch CA, Henopp T, Alkatout I, Schmitt A, Weber A, Kruse ML, Braunstein S, Kaserer K, Brauckhoff M, Dralle H, Moch H, Heitz PU, Komminoth P, Knoefel WT, Perren A, Kloppel G (2009) Insulinomatosis: a multicentric insulinoma disease that frequently causes early recurrent hyperinsulinemic hypoglycemia. Am J Surg Pathol 33: 339-346. https://doi.org/10.1097/PAS.0b013e3181874eca.

    Article  PubMed  Google Scholar 

  74. Bengtsson D, Joost P, Aravidis C, Askmalm SM, Backman AS, Melin B, von SJ, Zagoras T, Gebre-Medhin S, Burman P (2017) Corticotroph Pituitary Carcinoma in a Patient With Lynch Syndrome (LS) and Pituitary Tumors in a Nationwide LS Cohort. J Clin Endocrinol Metab 102: 3928–3932. 4084560 [pii];https://doi.org/10.1210/jc.2017-01401.

  75. Serracant BA, Serra PS, Blazquez Mana CM, Salas RC, Garcia MN, Bejarano GN, Romaguera MA, Andreu Navarro FJ, Bella Cueto MR, Borobia FG (2017) Pancreatic non-functioning neuroendocrine tumor: a new entity genetically related to Lynch syndrome. J Gastrointest Oncol 8: E73-E79. jgo-08–05-E73 [pii]; https://doi.org/10.21037/jgo.2017.07.02.

  76. Karamurzin Y, Zeng Z, Stadler ZK, Zhang L, Ouansafi I, Al-Ahmadie HA, Sempoux C, Saltz LB, Soslow RA, O'Reilly EM, Paty PB, Coit DG, Shia J, Klimstra DS (2012) Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Hum Pathol 43: 1677–1687. S0046–8177(11)00518–1 [pii];https://doi.org/10.1016/j.humpath.2011.12.012.

  77. Tufton N, Roncaroli F, Hadjidemetriou I, Dang MN, Denes J, Guasti L, Thom M, Powell M, Baldeweg SE, Fersht N, Korbonits M (2017) Pituitary Carcinoma in a Patient with an SDHB Mutation. Endocr Pathol 28: 320-325. https://doi.org/10.1007/s12022-017-9474-7;https://doi.org/10.1007/s12022-017-9474-7 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Larouche V, Akirov A, Thain E, Kim RH, Ezzat S (2019) Co-occurrence of breast cancer and neuroendocrine tumours: New genetic insights beyond Multiple Endocrine Neoplasia syndromes. Endocrinol Diabetes Metab 2: e00092. EDM292 [pii]; https://doi.org/10.1002/edm2.92.

  79. Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davi MV, Landoni L, Malpaga A, Miotto M, Whitehall VL, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LM, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van BG, Partelli S, Fassan M, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543: 65–71. nature21063 [pii];https://doi.org/10.1038/nature21063.

  80. Szybowska M, Mete O, Weber E, Silver J, Kim RH (2019) Neuroendocrine Neoplasms Associated with Germline Pathogenic Variants in the Homologous Recombination Pathway. Endocr Pathol 30: 237-245. https://doi.org/10.1007/s12022-019-9569-4;https://doi.org/10.1007/s12022-019-9569-4 [pii].

    Article  PubMed  Google Scholar 

  81. Hu W, Feng Z, Modica I, Klimstra DS, Song L, Allen PJ, Brennan MF, Levine AJ, Tang LH (2010) Gene Amplifications in Well-Differentiated Pancreatic Neuroendocrine Tumors Inactivate the p53 Pathway. Genes Cancer 1: 360-368. https://doi.org/10.1177/1947601910371979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mafficini A, Scarpa A (2018) Genomic landscape of pancreatic neuroendocrine tumours: the International Cancer Genome Consortium. J Endocrinol 236: R161-R167. JOE-17–0560 [pii];https://doi.org/10.1530/JOE-17-0560.

  83. Gortz B, Roth J, Krahenmann A, de Krijger RR, Muletta-Feurer S, Rutimann K, Saremaslani P, Speel EJ, Heitz PU, Komminoth P (1999) Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 154: 429–436. S0002–9440(10)65289–3 [pii];https://doi.org/10.1016/S0002-9440(10)65289-3.

  84. Hessman O, Lindberg D, Skogseid B, Carling T, Hellman P, Rastad J, Akerstrom G, Westin G (1998) Mutation of the multiple endocrine neoplasia type 1 gene in nonfamilial, malignant tumors of the endocrine pancreas. Cancer Res 58: 377-379.

    CAS  PubMed  Google Scholar 

  85. Chan CS, Laddha SV, Lewis PW, Koletsky MS, Robzyk K, Da SE, Torres PJ, Untch BR, Li J, Bose P, Chan TA, Klimstra DS, Allis CD, Tang LH (2018) ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nat Commun 9: 4158. https://doi.org/10.1038/s41467-018-06498-2;https://doi.org/10.1038/s41467-018-06498-2 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  86. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, Bettegowda C, Rodriguez FJ, Eberhart CG, Hebbar S, Offerhaus GJ, McLendon R, Rasheed BA, He Y, Yan H, Bigner DD, Oba-Shinjo SM, Marie SK, Riggins GJ, Kinzler KW, Vogelstein B, Hruban RH, Maitra A, Papadopoulos N, Meeker AK (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333: 425.

    Article  CAS  Google Scholar 

  87. Tang LH, Basturk O, Sue JJ, Klimstra DS (2016) A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am J Surg Pathol 40: 1192-1202. https://doi.org/10.1097/PAS.0000000000000662.

    Article  PubMed  PubMed Central  Google Scholar 

  88. de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, Ellison TA, Schulick RD, Molenaar IQ, Valk GD, Vriens MR, Borel Rinkes IH, Offerhaus GJ, Hruban RH, Matsukuma KE (2012) Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol 25: 1033–1039. modpathol201253 [pii];https://doi.org/10.1038/modpathol.2012.53.

  89. Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, Hunger F, Pasquinelli S, Speel EJ, Perren A (2014) Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 146: 453-460.

    Article  CAS  Google Scholar 

  90. Kim JY, Brosnan-Cashman JA, An S, Kim SJ, Song KB, Kim MS, Kim MJ, Hwang DW, Meeker AK, Yu E, Kim SC, Hruban RH, Heaphy CM, Hong SM (2017) Alternative Lengthening of Telomeres in Primary Pancreatic Neuroendocrine Tumors Is Associated with Aggressive Clinical Behavior and Poor Survival. Clin Cancer Res 23: 1598–1606. 1078–0432.CCR-16–1147 [pii];https://doi.org/10.1158/1078-0432.CCR-16-1147.

  91. Park JK, Paik WH, Lee K, Ryu JK, Lee SH, Kim YT (2017) DAXX/ATRX and MEN1 genes are strong prognostic markers in pancreatic neuroendocrine tumors. Oncotarget 8: 49796–49806. 17964 [pii];https://doi.org/10.18632/oncotarget.17964.

  92. Singhi AD, Liu TC, Roncaioli JL, Cao D, Zeh HJ, Zureikat AH, Tsung A, Marsh JW, Lee KK, Hogg ME, Bahary N, Brand RE, McGrath KM, Slivka A, Cressman KL, Fuhrer K, O'Sullivan RJ (2017) Alternative Lengthening of Telomeres and Loss of DAXX/ATRX Expression Predicts Metastatic Disease and Poor Survival in Patients with Pancreatic Neuroendocrine Tumors. Clin Cancer Res 23: 600–609. 1078–0432.CCR-16–1113 [pii];https://doi.org/10.1158/1078-0432.CCR-16-1113.

  93. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della PM, Piemonti L, Capurso G, Di FA, Delle FG, Pederzoli P, Croce CM, Scarpa A (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28: 245–255. JCO.2008.21.5988 [pii];https://doi.org/10.1200/JCO.2008.21.5988.

  94. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG, Tomassetti P, Pavel ME, Hoosen S, Haas T, Lincy J, Lebwohl D, Oberg K (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364: 514-523.

    Article  CAS  Google Scholar 

  95. Roy S, LaFramboise WA, Liu TC, Cao D, Luvison A, Miller C, Lyons MA, O'Sullivan RJ, Zureikat AH, Hogg ME, Tsung A, Lee KK, Bahary N, Brand RE, Chennat JS, Fasanella KE, McGrath K, Nikiforova MN, Papachristou GI, Slivka A, Zeh HJ, Singhi AD (2018) Loss of Chromatin-Remodeling Proteins and/or CDKN2A Associates With Metastasis of Pancreatic Neuroendocrine Tumors and Reduced Patient Survival Times. Gastroenterology 154: 2060–2063. S0016–5085(18)30243–9 [pii];https://doi.org/10.1053/j.gastro.2018.02.026.

  96. Hackeng WM, Schelhaas W, Morsink FHM, Heidsma CM, van ES, Valk GD, Vriens MR, Heaphy CM, Nieveen van Dijkum EJM, Offerhaus GJA, Dreijerink KMA, Brosens LAA (2020) Alternative Lengthening of Telomeres and Differential Expression of Endocrine Transcription Factors Distinguish Metastatic and Non-metastatic Insulinomas. Endocr Pathol 31: 108-118. https://doi.org/10.1007/s12022-020-09611-8;https://doi.org/10.1007/s12022-020-09611-8 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jonkers YM, Claessen SM, Veltman JA, Geurts van KA, Dinjens WN, Skogseid B, Ramaekers FC, Speel EJ (2006) Molecular parameters associated with insulinoma progression: chromosomal instability versus p53 and CK19 status. Cytogenet Genome Res 115: 289–297. 95926 [pii];https://doi.org/10.1159/000095926.

  98. Thorns C, Schurmann C, Gebauer N, Wallaschofski H, Kumpers C, Bernard V, Feller AC, Keck T, Habermann JK, Begum N, Lehnert H, Brabant G (2014) Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res 34: 2249–2254. 34/5/2249 [pii].

  99. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24: 4677–4684. JCO.2005.05.5194 [pii];https://doi.org/10.1200/JCO.2005.05.5194.

  100. Lee YS, Kim H, Kim HW, Lee JC, Paik KH, Kang J, Kim J, Yoon YS, Han HS, Sohn I, Cho J, Hwang JH (2015) High Expression of MicroRNA-196a Indicates Poor Prognosis in Resected Pancreatic Neuroendocrine Tumor. Medicine (Baltimore) 94: e2224. 00005792-201512150-00029 [pii]; https://doi.org/10.1097/MD.0000000000002224.

  101. Chu YH, Hardin H, Eickhoff J, Lloyd RV (2019) In Situ Hybridization Analysis of Long Non-coding RNAs MALAT1 and HOTAIR in Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Pathol 30: 56-63. https://doi.org/10.1007/s12022-018-9564-1;https://doi.org/10.1007/s12022-018-9564-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  102. Gill P, Kim E, Chua TC, Clifton-Bligh RJ, Nahm CB, Mittal A, Gill AJ, Samra JS (2019) MiRNA-3653 Is a Potential Tissue Biomarker for Increased Metastatic Risk in Pancreatic Neuroendocrine Tumours. Endocr Pathol 30: 128-133. https://doi.org/10.1007/s12022-019-9570-y;https://doi.org/10.1007/s12022-019-9570-y [pii].

    Article  CAS  PubMed  Google Scholar 

  103. Vicentini C, Calore F, Nigita G, Fadda P, Simbolo M, Sperandio N, Luchini C, Lawlor RT, Croce CM, Corbo V, Fassan M, Scarpa A (2020) Exosomal miRNA signatures of pancreatic lesions. BMC Gastroenterol 20: 137. https://doi.org/10.1186/s12876-020-01287-y;https://doi.org/10.1186/s12876-020-01287-y [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malczewska A, Kidd M, Matar S, Kos-Kudla B, Modlin IM (2018) A Comprehensive Assessment of the Role of miRNAs as Biomarkers in Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology 107: 73–90. 000487326 [pii];https://doi.org/10.1159/000487326.

  105. Konukiewitz B, Schlitter AM, Jesinghaus M, Pfister D, Steiger K, Segler A, Agaimy A, Sipos B, Zamboni G, Weichert W, Esposito I, Pfarr N, Kloppel G (2017) Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20. Mod Pathol 30: 587–598. modpathol2016217 [pii];https://doi.org/10.1038/modpathol.2016.217.

  106. Xue Y, Reid MD, Pehlivanoglu B, Obeng RC, Jiang H, Memis B, Lui SK, Sarmiento J, Kooby D, Maithel SK, El-Rayes B, Basturk O, Adsay V (2020) Morphologic Variants of Pancreatic Neuroendocrine Tumors: Clinicopathologic Analysis and Prognostic Stratification. Endocr Pathol 31: 239-253. https://doi.org/10.1007/s12022-020-09628-z;https://doi.org/10.1007/s12022-020-09628-z [pii].

    Article  CAS  PubMed  Google Scholar 

  107. Modlin IM, Sandor A (1997) An analysis of 8305 cases of carcinoid tumors. Cancer 79: 813-829. https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0142(19970215)79:4%3C813::AID-CNCR19%3E3.0.CO;2-2 [pii];https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0142(19970215)79:4%3C813::AID-CNCR19%3E3.0.CO;2-2.

    Article  CAS  Google Scholar 

  108. Yadav R, Jain D, Mathur SR, Iyer VK (2016) Cytomorphology of neuroendocrine tumours of the gallbladder. Cytopathology 27: 97-102. https://doi.org/10.1111/cyt.12239.

    Article  CAS  PubMed  Google Scholar 

  109. Ligato S, Furmaga W, Cartun RW, Hull D, Tsongalis GJ (2005) Primary carcinoid tumor of the common hepatic duct: A rare case with immunohistochemical and molecular findings. Oncol Rep 13: 543-546.

    PubMed  Google Scholar 

  110. Nafidi O, Nguyen BN, Roy A (2008) Carcinoid tumor of the common bile duct: a rare complication of von Hippel-Lindau syndrome. World J Gastroenterol 14: 1299-1301. https://doi.org/10.3748/wjg.14.1299.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sinkre PA, Murakata L, Rabin L, Hoang MP, Albores-Saavedra J (2001) Clear cell carcinoid tumor of the gallbladder: another distinctive manifestation of von Hippel-Lindau disease. Am J Surg Pathol 25: 1334-1339. https://doi.org/10.1097/00000478-200110000-00017.

    Article  CAS  PubMed  Google Scholar 

  112. Vanoli A, La RS, Klersy C, Grillo F, Albarello L, Inzani F, Maragliano R, Manca R, Luinetti O, Milione M, Doglioni C, Rindi G, Capella C, Solcia E (2017) Four Neuroendocrine Tumor Types and Neuroendocrine Carcinoma of the Duodenum: Analysis of 203 Cases. Neuroendocrinology 104: 112–125. 000444803 [pii];https://doi.org/10.1159/000444803.

  113. Kloppel G, Anlauf M, Perren A, Sipos B (2014) Hyperplasia to neoplasia sequence of duodenal and pancreatic neuroendocrine diseases and pseudohyperplasia of the PP-cells in the pancreas. Endocr Pathol 25: 181-185. https://doi.org/10.1007/s12022-014-9317-8.

    Article  CAS  PubMed  Google Scholar 

  114. Anlauf M, Perren A, Henopp T, Rudolf T, Garbrecht N, Schmitt A, Raffel A, Gimm O, Weihe E, Knoefel WT, Dralle H, Heitz PU, Komminoth P, Kloppel G (2007) Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 56: 637–644. gut.2006.108910 [pii];https://doi.org/10.1136/gut.2006.108910.

  115. Ferner RE (2007) Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6: 340-351.

    Article  Google Scholar 

  116. Noe M, Pea A, Luchini C, Felsenstein M, Barbi S, Bhaijee F, Yonescu R, Ning Y, Adsay NV, Zamboni G, Lawlor RT, Scarpa A, Offerhaus GJA, Brosens LAA, Hruban RH, Roberts NJ, Wood LD (2018) Whole-exome sequencing of duodenal neuroendocrine tumors in patients with neurofibromatosis type 1. Mod Pathol 31: 1532-1538. https://doi.org/10.1038/s41379-018-0082-y;https://doi.org/10.1038/s41379-018-0082-y [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, Popovic V, Stratakis CA, Prchal JT, Pacak K (2012) Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 367: 922-930. https://doi.org/10.1056/NEJMoa1205119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pacak K, Jochmanova I, Prodanov T, Yang C, Merino MJ, Fojo T, Prchal JT, Tischler AS, Lechan RM, Zhuang Z (2013) New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol 31: 1690–1698. JCO.2012.47.1912 [pii];https://doi.org/10.1200/JCO.2012.47.1912.

  119. Okubo Y, Yoshioka E, Suzuki M, Washimi K, Kawachi K, Kameda Y, Yokose T (2018) Diagnosis, Pathological Findings, and Clinical Management of Gangliocytic Paraganglioma: A Systematic Review. Front Oncol 8: 291. https://doi.org/10.3389/fonc.2018.00291.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhuang Z, Yang C, Ryska A, Ji Y, Hou Y, Graybill SD, Bullova P, Lubensky IA, Kloppel G, Pacak K (2016) HIF2A gain-of-function mutations detected in duodenal gangliocytic paraganglioma. Endocr Relat Cancer 23: L13-L16. ERC-16–0148 [pii];https://doi.org/10.1530/ERC-16-0148.

  121. Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, Zhang L, Thorland EC, Minn KT, Tentu R, Eckloff BW, Wieben ED, Wu Y, Cunningham JM, Nagorney DM, Gilbert JA, Ames MM, Beutler AS (2013) The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 123: 2502–2508. 67963 [pii];https://doi.org/10.1172/JCI67963.

  122. Francis JM, Kiezun A, Ramos AH, Serra S, Pedamallu CS, Qian ZR, Banck MS, Kanwar R, Kulkarni AA, Karpathakis A, Manzo V, Contractor T, Philips J, Nickerson E, Pho N, Hooshmand SM, Brais LK, Lawrence MS, Pugh T, McKenna A, Sivachenko A, Cibulskis K, Carter SL, Ojesina AI, Freeman S, Jones RT, Voet D, Saksena G, Auclair D, Onofrio R, Shefler E, Sougnez C, Grimsby J, Green L, Lennon N, Meyer T, Caplin M, Chung DC, Beutler AS, Ogino S, Thirlwell C, Shivdasani R, Asa SL, Harris CR, Getz G, Kulke M, Meyerson M (2013) Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 45: 1483–1486. ng.2821 [pii];https://doi.org/10.1038/ng.2821.

  123. Crona J, Gustavsson T, Norlen O, Edfeldt K, Akerstrom T, Westin G, Hellman P, Bjorklund P, Stalberg P (2015) Somatic Mutations and Genetic Heterogeneity at the CDKN1B Locus in Small Intestinal Neuroendocrine Tumors. Ann Surg Oncol 22 Suppl 3: S1428-S1435. https://doi.org/10.1245/s10434-014-4351-9;https://doi.org/10.1245/s10434-014-4351-9 [pii].

    Article  PubMed  Google Scholar 

  124. Dumanski JP, Rasi C, Bjorklund P, Davies H, Ali AS, Gronberg M, Welin S, Sorbye H, Gronbaek H, Cunningham JL, Forsberg LA, Lind L, Ingelsson E, Stalberg P, Hellman P, Tiensuu JE (2017) A MUTYH germline mutation is associated with small intestinal neuroendocrine tumors. Endocr Relat Cancer 24: 427–443. ERC-17–0196 [pii];https://doi.org/10.1530/ERC-17-0196.

  125. Kytola S, Hoog A, Nord B, Cedermark B, Frisk T, Larsson C, Kjellman M (2001) Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 158: 1803–1808. S0002–9440(10)64136–3 [pii];https://doi.org/10.1016/S0002-9440(10)64136-3.

  126. Lollgen RM, Hessman O, Szabo E, Westin G, Akerstrom G (2001) Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer 92: 812-815. https://doi.org/10.1002/ijc.1276;https://doi.org/10.1002/ijc.1276 [pii].

    Article  CAS  PubMed  Google Scholar 

  127. Cunningham JL, Diaz de ST, Sjoblom T, Westin G, Dumanski JP, Janson ET (2011) Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer 50: 82-94. https://doi.org/10.1002/gcc.20834.

    Article  CAS  PubMed  Google Scholar 

  128. Andersson E, Sward C, Stenman G, Ahlman H, Nilsson O (2009) High-resolution genomic profiling reveals gain of chromosome 14 as a predictor of poor outcome in ileal carcinoids. Endocr Relat Cancer 16: 953–966. ERC-09–0052 [pii];https://doi.org/10.1677/ERC-09-0052.

  129. Choi IS, Estecio MR, Nagano Y, Kim DH, White JA, Yao JC, Issa JP, Rashid A (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 20: 802–810. 3800825 [pii];https://doi.org/10.1038/modpathol.3800825.

  130. Stricker I, Tzivras D, Nambiar S, Wulf J, Liffers ST, Vogt M, Verdoodt B, Tannapfel A, Mirmohammadsadegh A (2012) Site- and grade-specific diversity of LINE1 methylation pattern in gastroenteropancreatic neuroendocrine tumours. Anticancer Res 32: 3699–3706. 32/9/3699 [pii].

  131. How-Kit A, Dejeux E, Dousset B, Renault V, Baudry M, Terris B, Tost J (2015) DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors. Epigenomics 7: 1245-1258. https://doi.org/10.2217/epi.15.85.

    Article  CAS  PubMed  Google Scholar 

  132. Edfeldt K, Ahmad T, Akerstrom G, Janson ET, Hellman P, Stalberg P, Bjorklund P, Westin G (2014) TCEB3C a putative tumor suppressor gene of small intestinal neuroendocrine tumors. Endocr Relat Cancer 21: 275–284. ERC-13–0419 [pii];https://doi.org/10.1530/ERC-13-0419.

  133. Zhang HY, Rumilla KM, Jin L, Nakamura N, Stilling GA, Ruebel KH, Hobday TJ, Erlichman C, Erickson LA, Lloyd RV (2006) Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine 30: 299–306. ENDO:30:3:299 [pii];https://doi.org/10.1007/s12020-006-0008-1.

  134. Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, Oukrif D, Mandair D, Pericleous M, Mohmaduvesh M, Serra S, Ogunbiyi O, Novelli M, Luong T, Asa SL, Kulke M, Toumpanakis C, Meyer T, Caplin M, Meyerson M, Beck S, Thirlwell C (2015) Prognostic Impact of Novel Molecular Subtypes of Small Intestinal Neuroendocrine Tumor. Clin Cancer Res . 1078–0432.CCR-15–0373 [pii];https://doi.org/10.1158/1078-0432.CCR-15-0373.

  135. Ruebel K, Leontovich AA, Stilling GA, Zhang S, Righi A, Jin L, Lloyd RV (2010) MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression. Mod Pathol 23: 367–375. modpathol2009161 [pii];https://doi.org/10.1038/modpathol.2009.161.

  136. Li SC, Essaghir A, Martijn C, Lloyd RV, Demoulin JB, Oberg K, Giandomenico V (2013) Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol 26: 685–696. modpathol2012216 [pii];https://doi.org/10.1038/modpathol.2012.216.

  137. Li SC, Khan M, Caplin M, Meyer T, Oberg K, Giandomenico V (2015) Somatostatin Analogs Treated Small Intestinal Neuroendocrine Tumor Patients Circulating MicroRNAs. PLoS One 10: e0125553. PONE-D-15-05666 [pii]; https://doi.org/10.1371/journal.pone.0125553.

  138. Rindi G, Komminoth P, Scoazec JY, Shia J (2019) Colorectal neuroendocrine neoplasms. In: WHO Classification of Digestive System Tumours. Lyon: IARC. pp. 188-191.

    Google Scholar 

  139. Misdraji J, Carr NJ, Pai RK (2019) Appendiceal goblet cell adenocarcinoma. In: WHO Classification of Digestive System Tumours. Lyon: IARC. pp. 149-151.

    Google Scholar 

  140. Wen KW, Grenert JP, Joseph NM, Shafizadeh N, Huang A, Hosseini M, Kakar S (2018) Genomic profile of appendiceal goblet cell carcinoid is distinct compared to appendiceal neuroendocrine tumor and conventional adenocarcinoma. Hum Pathol 77: 166–174. S0046–8177(18)30119–9 [pii];https://doi.org/10.1016/j.humpath.2018.03.026.

  141. Park HY, Kwon MJ, Kang HS, Kim YJ, Kim NY, Kim MJ, Min KW, Choi KC, Nam ES, Cho SJ, Park HR, Min SK, Seo J, Choe JY, Lee HK (2019) Targeted next-generation sequencing of well-differentiated rectal, gastric, and appendiceal neuroendocrine tumors to identify potential targets. Hum Pathol 87: 83–94. S0046–8177(19)30024–3 [pii];https://doi.org/10.1016/j.humpath.2019.02.007.

  142. Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M, Takahashi H, Tokino T, Maruyama R, Suzuki H, Imai K, Shinomura Y, Yamamoto H, Nosho K (2015) Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget 6: 22114–22125. 4294 [pii];https://doi.org/10.18632/oncotarget.4294.

  143. Kosaloglu Z, Zornig I, Halama N, Kaiser I, Buchhalter I, Grabe N, Eils R, Schlesner M, Califano A, Jager D (2016) Identification of immunotherapeutic targets by genomic profiling of rectal NET metastases. Oncoimmunology 5: e1213931. 1213931 [pii]; https://doi.org/10.1080/2162402X.2016.1213931.

  144. Kolin DL, Duan K, Ngan B, Gerstle JT, Krzyzanowska MK, Somers GR, Mete O (2018) Expanding the Spectrum of Colonic Manifestations in Tuberous Sclerosis: L-Cell Neuroendocrine Tumor Arising in the Background of Rectal PEComa. Endocr Pathol 29: 21-26. https://doi.org/10.1007/s12022-017-9497-0;https://doi.org/10.1007/s12022-017-9497-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  145. Sadot E, Reidy-Lagunes DL, Tang LH, Do RK, Gonen M, D'Angelica MI, DeMatteo RP, Kingham TP, Groot KB, Untch BR, Brennan MF, Jarnagin WR, Allen PJ (2016) Observation versus Resection for Small Asymptomatic Pancreatic Neuroendocrine Tumors: A Matched Case-Control Study. Ann Surg Oncol 23: 1361-1370. https://doi.org/10.1245/s10434-015-4986-1;https://doi.org/10.1245/s10434-015-4986-1 [pii].

    Article  PubMed  Google Scholar 

  146. Delle FG, O'Toole D, Sundin A, Taal B, Ferolla P, Ramage JK, Ferone D, Ito T, Weber W, Zheng-Pei Z, de Herder WW, Pascher A, Ruszniewski P (2016) ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 103: 119–124. 000443168 [pii];https://doi.org/10.1159/000443168.

  147. Yazici C, Boulay BR (2017) Evolving role of the endoscopist in management of gastrointestinal neuroendocrine tumors. World J Gastroenterol 23: 4847-4855. https://doi.org/10.3748/wjg.v23.i27.4847.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ramage JK, Davies AH, Ardill J, Bax N, Caplin M, Grossman A, Hawkins R, McNicol AM, Reed N, Sutton R, Thakker R, Aylwin S, Breen D, Britton K, Buchanan K, Corrie P, Gillams A, Lewington V, McCance D, Meeran K, Watkinson A (2005) Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours. Gut 54 Suppl 4: iv1–16. 54/suppl_4/iv1 [pii];https://doi.org/10.1136/gut.2004.053314.

  149. Singh S, Asa SL, Dey C, Kennecke H, Laidley D, Law C, Asmis T, Chan D, Ezzat S, Goodwin R, Mete O, Pasieka J, Rivera J, Wong R, Segelov E, Rayson D (2016) Diagnosis and management of gastrointestinal neuroendocrine tumors: An evidence-based Canadian consensus. Cancer Treat Rev 47: 32–45. S0305–7372(16)30021–4 [pii];https://doi.org/10.1016/j.ctrv.2016.05.003.

  150. Saxena A, Chua TC, Perera M, Chu F, Morris DL (2012) Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review. Surg Oncol 21: e131-e141. S0960–7404(12)00028-X [pii];https://doi.org/10.1016/j.suronc.2012.05.001.

  151. Oberg K, Krenning E, Sundin A, Bodei L, Kidd M, Tesselaar M, Ambrosini V, Baum RP, Kulke M, Pavel M, Cwikla J, Drozdov I, Falconi M, Fazio N, Frilling A, Jensen R, Koopmans K, Korse T, Kwekkeboom D, Maecke H, Paganelli G, Salazar R, Severi S, Strosberg J, Prasad V, Scarpa A, Grossman A, Walenkamp A, Cives M, Virgolini I, Kjaer A, Modlin IM (2016) A Delphic consensus assessment: imaging and biomarkers in gastroenteropancreatic neuroendocrine tumor disease management. Endocr Connect 5: 174–187. EC-16–0043 [pii];https://doi.org/10.1530/EC-16-0043.

  152. Akirov A, Larouche V, Alshehri S, Asa SL, Ezzat S (2019) Treatment Options for Pancreatic Neuroendocrine Tumors. Cancers (Basel) 11. cancers11060828 [pii];https://doi.org/10.3390/cancers11060828.

  153. Larouche V, Akirov A, Alshehri S, Ezzat S (2019) Management of Small Bowel Neuroendocrine Tumors. Cancers (Basel) 11. cancers11091395 [pii];https://doi.org/10.3390/cancers11091395.

  154. Merola E, Panzuto F, Delle FG (2017) Antiproliferative effect of somatostatin analogs in advanced gastro-entero-pancreatic neuroendocrine tumors: a systematic review and meta-analysis. Oncotarget 8: 46624–46634. 16686 [pii];https://doi.org/10.18632/oncotarget.16686.

  155. Cakir M, Dworakowska D, Grossman A (2010) Somatostatin receptor biology in neuroendocrine and pituitary tumours: part 2--clinical implications. J Cell Mol Med 14: 2585–2591. JCMM1125_1 [pii];https://doi.org/10.1111/j.1582-4934.2010.01125_1.x.

  156. Theodoropoulou M, Stalla GK (2013) Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 34: 228–252. S0091–3022(13)00039–3 [pii];https://doi.org/10.1016/j.yfrne.2013.07.005.

  157. Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Blaker M, Harder J, Arnold C, Gress T, Arnold R (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27: 4656-4663.

    Article  CAS  Google Scholar 

  158. Caplin ME, Pavel M, Cwikla JB, Phan AT, Raderer M, Sedlackova E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Langley A, Martinez S, Blumberg J, Ruszniewski P (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 371: 224-233. https://doi.org/10.1056/NEJMoa1316158.

    Article  CAS  PubMed  Google Scholar 

  159. Butturini G, Bettini R, Missiaglia E, Mantovani W, Dalai I, Capelli P, Ferdeghini M, Pederzoli P, Scarpa A, Falconi M (2006) Predictive factors of efficacy of the somatostatin analogue octreotide as first line therapy for advanced pancreatic endocrine carcinoma. Endocr Relat Cancer 13: 1213–1221. 13/4/1213 [pii];https://doi.org/10.1677/erc.1.01200.

  160. Cwikla JB, Bodei L, Kolasinska-Cwikla A, Sankowski A, Modlin IM, Kidd M (2015) Circulating Transcript Analysis (NETest) in GEP-NETs Treated With Somatostatin Analogs Defines Therapy. J Clin Endocrinol Metab 100: E1437-E1445. https://doi.org/10.1210/jc.2015-2792.

    Article  CAS  PubMed  Google Scholar 

  161. Kulke MH, Horsch D, Caplin ME, Anthony LB, Bergsland E, Oberg K, Welin S, Warner RR, Lombard-Bohas C, Kunz PL, Grande E, Valle JW, Fleming D, Lapuerta P, Banks P, Jackson S, Zambrowicz B, Sands AT, Pavel M (2017) Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome. J Clin Oncol 35: 14-23. https://doi.org/10.1200/JCO.2016.69.2780 [pii];https://doi.org/10.1200/JCO.2016.69.2780.

    Article  CAS  PubMed  Google Scholar 

  162. Pavel M, Horsch D, Caplin M, Ramage J, Seufferlein T, Valle J, Banks P, Lapuerta P, Sands A, Zambrowicz B, Fleming D, Wiedenmann B (2015) Telotristat etiprate for carcinoid syndrome: a single-arm, multicenter trial. J Clin Endocrinol Metab 100: 1511-1519. https://doi.org/10.1210/jc.2014-2247.

    Article  CAS  PubMed  Google Scholar 

  163. Sbardella E, Grossman A (2016) New Developments in the Treatment of Neuroendocrine Tumours - RADIANT-4, NETTER-1 and Telotristat Etiprate. Eur Endocrinol 12: 44–46. https://doi.org/10.17925/EE.2016.12.01.44.

  164. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, Mittra E, Kunz PL, Kulke MH, Jacene H, Bushnell D, O'Dorisio TM, Baum RP, Kulkarni HR, Caplin M, Lebtahi R, Hobday T, Delpassand E, Van CE, Benson A, Srirajaskanthan R, Pavel M, Mora J, Berlin J, Grande E, Reed N, Seregni E, Oberg K, Lopera SM, Santoro P, Thevenet T, Erion JL, Ruszniewski P, Kwekkeboom D, Krenning E (2017) Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 376: 125-135. https://doi.org/10.1056/NEJMoa1607427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bodei L, Kidd MS, Singh A, van der Zwan WA, Severi S, Drozdov IA, Cwikla J, Baum RP, Kwekkeboom DJ, Paganelli G, Krenning EP, Modlin IM (2018) PRRT genomic signature in blood for prediction of (177)Lu-octreotate efficacy. Eur J Nucl Med Mol Imaging 45: 1155-1169. https://doi.org/10.1007/s00259-018-3967-6;https://doi.org/10.1007/s00259-018-3967-6 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, Jacobs C, Mares JE, Landgraf AN, Rashid A, Meric-Bernstam F (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26: 4311-4318.

    Article  Google Scholar 

  167. Yao JC, Pavel M, Lombard-Bohas C, Van CE, Voi M, Brandt U, He W, Chen D, Capdevila J, de Vries EGE, Tomassetti P, Hobday T, Pommier R, Oberg K (2016) Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers From the Randomized, Phase III RADIANT-3 Study. J Clin Oncol 34: 3906–3913. JCO.2016.68.0702 [pii];https://doi.org/10.1200/JCO.2016.68.0702.

  168. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, Tomasek J, Raderer M, Lahner H, Voi M, Pacaud LB, Rouyrre N, Sachs C, Valle JW, Fave GD, Van CE, Tesselaar M, Shimada Y, Oh DY, Strosberg J, Kulke MH, Pavel ME (2016) Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387: 968–977. S0140–6736(15)00817-X [pii];https://doi.org/10.1016/S0140-6736(15)00817-X.

  169. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A, Chen JS, Horsch D, Hammel P, Wiedenmann B, Van Cutsem E, Patyna S, Lu DR, Blanckmeister C, Chao R, Ruszniewski P (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364: 501-513.

    Article  CAS  Google Scholar 

  170. Faivre S, Niccoli P, Castellano D, Valle JW, Hammel P, Raoul JL, Vinik A, Van CE, Bang YJ, Lee SH, Borbath I, Lombard-Bohas C, Metrakos P, Smith D, Chen JS, Ruszniewski P, Seitz JF, Patyna S, Lu DR, Ishak KJ, Raymond E (2017) Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study. Ann Oncol 28: 339–343. S0923–7534(19)32208–2 [pii];https://doi.org/10.1093/annonc/mdw561.

  171. Blumenthal GM, Cortazar P, Zhang JJ, Tang S, Sridhara R, Murgo A, Justice R, Pazdur R (2012) FDA approval summary: sunitinib for the treatment of progressive well-differentiated locally advanced or metastatic pancreatic neuroendocrine tumors. Oncologist 17: 1108–1113. theoncologist.2012–0044 [pii];https://doi.org/10.1634/theoncologist.2012-0044.

  172. Kolby L, Persson G, Franzen S, Ahren B (2003) Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 90: 687-693. https://doi.org/10.1002/bjs.4149.

    Article  CAS  PubMed  Google Scholar 

  173. Yao JC, Guthrie KA, Moran C, Strosberg JR, Kulke MH, Chan JA, LoConte N, McWilliams RR, Wolin EM, Mattar B, McDonough S, Chen H, Blanke CD, Hochster HS (2017) Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus Bevacizumab in Patients With Advanced Carcinoid Tumors: SWOG S0518. J Clin Oncol 35: 1695-1703. https://doi.org/10.1200/JCO.2016.70.4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Janson ET, Oberg K (1993) Long-term management of the carcinoid syndrome. Treatment with octreotide alone and in combination with alpha-interferon. Acta Oncol 32: 225-229. https://doi.org/10.3109/02841869309083916.

    Article  CAS  PubMed  Google Scholar 

  175. Pavel ME, Baum U, Hahn EG, Schuppan D, Lohmann T (2006) Efficacy and tolerability of pegylated IFN-alpha in patients with neuroendocrine gastroenteropancreatic carcinomas. J Interferon Cytokine Res 26: 8-13. https://doi.org/10.1089/jir.2006.26.8.

    Article  CAS  PubMed  Google Scholar 

  176. Garcia-Carbonero R, Rinke A, Valle JW, Fazio N, Caplin M, Gorbounova V, Connor O, Eriksson B, Sorbye H, Kulke M, Chen J, Falkerby J, Costa F, De HW, Lombard-Bohas C, Pavel M (2017) ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasms. Systemic Therapy 2: Chemotherapy. Neuroendocrinology 105: 281–294. 000473892 [pii];https://doi.org/10.1159/000473892.

  177. Sorbye H, Welin S, Langer SW, Vestermark LW, Holt N, Osterlund P, Dueland S, Hofsli E, Guren MG, Ohrling K, Birkemeyer E, Thiis-Evensen E, Biagini M, Gronbaek H, Soveri LM, Olsen IH, Federspiel B, Assmus J, Janson ET, Knigge U (2013) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24: 152–160. S0923–7534(19)37048–6 [pii];https://doi.org/10.1093/annonc/mds276.

  178. Gaudenzi G, Dicitore A, Carra S, Saronni D, Pozza C, Giannetta E, Persani L, Vitale G (2019) Management of endocrine disease: Precision medicine in neuroendocrine neoplasms: an update on current management and future perspectives. Eur J Endocrinol 181: R1-R10. EJE-19-0021.R1 [pii]; https://doi.org/10.1530/EJE-19-0021.

  179. Lamberti G, Faggiano A, Brighi N, Tafuto S, Ibrahim T, Brizzi MP, Pusceddu S, Albertelli M, Massironi S, Panzuto F, Badalamenti G, Riccardi F, Butturini G, Gelsomino F, De DC, Modica R, Bongiovanni A, La SA, Torchio M, Colao A, Ferone D, Campana D (2020) Nonconventional Doses of Somatostatin Analogs in Patients With Progressing Well-Differentiated Neuroendocrine Tumor. J Clin Endocrinol Metab 105. 5572657 [pii];https://doi.org/10.1210/clinem/dgz035.

  180. Sharp AJ, Hayes AR, Grossman A (2020) High-dose Somatostatin Analogues for Progressive Neuroendocrine Tumours. Eur Endocrinol 16: 93–95. https://doi.org/10.17925/EE.2020.16.2.93.

  181. Wolin EM, Jarzab B, Eriksson B, Walter T, Toumpanakis C, Morse MA, Tomassetti P, Weber MM, Fogelman DR, Ramage J, Poon D, Gadbaw B, Li J, Pasieka JL, Mahamat A, Swahn F, Newell-Price J, Mansoor W, Oberg K (2015) Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Devel Ther 9: 5075-5086. dddt-9-5075 [pii]; https://doi.org/10.2147/DDDT.S84177.

  182. Moschetta M, Reale A, Marasco C, Vacca A, Carratu MR (2014) Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br J Pharmacol 171: 3801-3813. https://doi.org/10.1111/bph.12749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Reidy-Lagunes DL, Vakiani E, Segal MF, Hollywood EM, Tang LH, Solit DB, Pietanza MC, Capanu M, Saltz LB (2012) A phase 2 study of the insulin-like growth factor-1 receptor inhibitor MK-0646 in patients with metastatic, well-differentiated neuroendocrine tumors. Cancer 118: 4795-4800. https://doi.org/10.1002/cncr.27459.

    Article  CAS  PubMed  Google Scholar 

  184. Salazar R, Garcia-Carbonero R, Libutti SK, Hendifar AE, Custodio A, Guimbaud R, Lombard-Bohas C, Ricci S, Klumpen HJ, Capdevila J, Reed N, Walenkamp A, Grande E, Safina S, Meyer T, Kong O, Salomon H, Tavorath R, Yao JC (2018) Phase II Study of BEZ235 versus Everolimus in Patients with Mammalian Target of Rapamycin Inhibitor-Naive Advanced Pancreatic Neuroendocrine Tumors. Oncologist 23: 766-e90. theoncologist.2017–0144 [pii];https://doi.org/10.1634/theoncologist.2017-0144.

  185. Fazio N, Buzzoni R, Baudin E, Antonuzzo L, Hubner RA, Lahner H, de Herder WW, Raderer M, Teule A, Capdevila J, Libutti SK, Kulke MH, Shah M, Dey D, Turri S, Aimone P, Massacesi C, Verslype C (2016) A Phase II Study of BEZ235 in Patients with Everolimus-resistant, Advanced Pancreatic Neuroendocrine Tumours. Anticancer Res 36: 713–719. 36/2/713 [pii].

  186. Wolin E, Mita A, Mahipal A, Meyer T, Bendell J, Nemunaitis J, Munster PN, Paz-Ares L, Filvaroff EH, Li S, Hege K, de HH, Mita M (2019) A phase 2 study of an oral mTORC1/mTORC2 kinase inhibitor (CC-223) for non-pancreatic neuroendocrine tumors with or without carcinoid symptoms. PLoS One 14: e0221994. PONE-D-18-34631 [pii]; https://doi.org/10.1371/journal.pone.0221994.

  187. Aristizabal Prada ET, Auernhammer CJ (2018) Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 7: R1-R25. EC-17–0286 [pii];https://doi.org/10.1530/EC-17-0286.

  188. Greenblatt DY, Ndiaye M, Chen H, Kunnimalaiyaan M (2010) Lithium inhibits carcinoid cell growth in vitro. Am J Transl Res 2: 248-253.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Lubner SJ, Kunnimalaiyaan M, Holen KD, Ning L, Ndiaye M, Loconte NK, Mulkerin DL, Schelman WR, Chen H (2011) A preclinical and clinical study of lithium in low-grade neuroendocrine tumors. Oncologist 16: 452–457. theoncologist.2010–0323 [pii];https://doi.org/10.1634/theoncologist.2010-0323.

  190. Pusceddu S, Vernieri C, Di MM, Marconcini R, Spada F, Massironi S, Ibrahim T, Brizzi MP, Campana D, Faggiano A, Giuffrida D, Rinzivillo M, Cingarlini S, Aroldi F, Antonuzzo L, Berardi R, Catena L, De DC, Ermacora P, Perfetti V, Fontana A, Razzore P, Carnaghi C, Davi MV, Cauchi C, Duro M, Ricci S, Fazio N, Cavalcoli F, Bongiovanni A, La SA, Brighi N, Colao A, Puliafito I, Panzuto F, Ortolani S, Zaniboni A, Di CF, Torniai M, Bajetta E, Tafuto S, Garattini SK, Femia D, Prinzi N, Concas L, Lo RG, Milione M, Giacomelli L, Buzzoni R, Delle FG, Mazzaferro V, de BF (2018) Metformin Use Is Associated With Longer Progression-Free Survival of Patients With Diabetes and Pancreatic Neuroendocrine Tumors Receiving Everolimus and/or Somatostatin Analogues. Gastroenterology 155: 479–489. S0016–5085(18)30443–8 [pii];https://doi.org/10.1053/j.gastro.2018.04.010.

  191. Cavalcoli F, Pusceddu S, Zilli A, Tamagno G, Femia D, Prinzi N, Travers J, Consonni D, Ciafardini C, Conte D, Massironi S (2019) Effects of low-dose aspirin on clinical outcome and disease progression in patients with gastroenteropancreatic neuroendocrine neoplasm. Scand J Gastroenterol 54: 1111-1117. https://doi.org/10.1080/00365521.2019.1656773.

    Article  CAS  PubMed  Google Scholar 

  192. Yao JC, Phan AT, Hess K, Fogelman D, Jacobs C, Dagohoy C, Leary C, Xie K, Ng CS (2015) Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendocrine tumors. Pancreas 44: 190-197. https://doi.org/10.1097/MPA.0000000000000255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hobday TJ, Qin R, Reidy-Lagunes D, Moore MJ, Strosberg J, Kaubisch A, Shah M, Kindler HL, Lenz HJ, Chen H, Erlichman C (2015) Multicenter Phase II Trial of Temsirolimus and Bevacizumab in Pancreatic Neuroendocrine Tumors. J Clin Oncol 33: 1551–1556. JCO.2014.56.2082 [pii];https://doi.org/10.1200/JCO.2014.56.2082.

  194. Chan JA, Stuart K, Earle CC, Clark JW, Bhargava P, Miksad R, Blaszkowsky L, Enzinger PC, Meyerhardt JA, Zheng H, Fuchs CS, Kulke MH (2012) Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol 30: 2963–2968. JCO.2011.40.3147 [pii];https://doi.org/10.1200/JCO.2011.40.3147.

  195. Ducreux M, Dahan L, Smith D, O'Toole D, Lepere C, Dromain C, Vilgrain V, Baudin E, Lombard-Bohas C, Scoazec JY, Seitz JF, Bitoun L, Kone S, Mitry E (2014) Bevacizumab combined with 5-FU/streptozocin in patients with progressive metastatic well-differentiated pancreatic endocrine tumours (BETTER trial)--a phase II non-randomised trial. Eur J Cancer 50: 3098–3106. S0959–8049(14)01000–4 [pii];https://doi.org/10.1016/j.ejca.2014.10.002.

  196. Berruti A, Fazio N, Ferrero A, Brizzi MP, Volante M, Nobili E, Tozzi L, Bodei L, Torta M, D'Avolio A, Priola AM, Birocco N, Amoroso V, Biasco G, Papotti M, Dogliotti L (2014) Bevacizumab plus octreotide and metronomic capecitabine in patients with metastatic well-to-moderately differentiated neuroendocrine tumors: the XELBEVOCT study. BMC Cancer 14: 184. 1471–2407–14–184 [pii];https://doi.org/10.1186/1471-2407-14-184.

  197. Mitry E, Walter T, Baudin E, Kurtz JE, Ruszniewski P, Dominguez-Tinajero S, Bengrine-Lefevre L, Cadiot G, Dromain C, Farace F, Rougier P, Ducreux M (2014) Bevacizumab plus capecitabine in patients with progressive advanced well-differentiated neuroendocrine tumors of the gastro-intestinal (GI-NETs) tract (BETTER trial)--a phase II non-randomised trial. Eur J Cancer 50: 3107–3115. S0959–8049(14)00999-X [pii];https://doi.org/10.1016/j.ejca.2014.10.001.

  198. Phan AT, Halperin DM, Chan JA, Fogelman DR, Hess KR, Malinowski P, Regan E, Ng CS, Yao JC, Kulke MH (2015) Pazopanib and depot octreotide in advanced, well-differentiated neuroendocrine tumours: a multicentre, single-group, phase 2 study. Lancet Oncol 16: 695–703. S1470–2045(15)70136–1 [pii];https://doi.org/10.1016/S1470-2045(15)70136-1.

  199. Ahn HK, Choi JY, Kim KM, Kim H, Choi SH, Park SH, Park JO, Lim HY, Kang WK, Lee J, Park YS (2013) Phase II study of pazopanib monotherapy in metastatic gastroenteropancreatic neuroendocrine tumours. Br J Cancer 109: 1414–1419. bjc2013470 [pii];https://doi.org/10.1038/bjc.2013.470.

  200. Grande E, Capdevila J, Castellano D, Teule A, Duran I, Fuster J, Sevilla I, Escudero P, Sastre J, Garcia-Donas J, Casanovas O, Earl J, Ortega L, Apellaniz-Ruiz M, Rodriguez-Antona C, Alonso-Gordoa T, Diez JJ, Carrato A, Garcia-Carbonero R (2015) Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol 26: 1987–1993. S0923–7534(19)31759–4 [pii];https://doi.org/10.1093/annonc/mdv252.

  201. Strosberg JR, Cives M, Hwang J, Weber T, Nickerson M, Atreya CE, Venook A, Kelley RK, Valone T, Morse B, Coppola D, Bergsland EK (2016) A phase II study of axitinib in advanced neuroendocrine tumors. Endocr Relat Cancer 23: 411–418. ERC-16–0008 [pii];https://doi.org/10.1530/ERC-16-0008.

  202. Xu J, Li J, Bai C, Xu N, Zhou Z, Li Z, Zhou C, Jia R, Lu M, Cheng Y, Mao C, Wang W, Cheng K, Su C, Hua Y, Qi C, Li J, Wang W, Li K, Sun Q, Ren Y, Su W (2019) Surufatinib in Advanced Well-Differentiated Neuroendocrine Tumors: A Multicenter, Single-Arm, Open-Label, Phase Ib/II Trial. Clin Cancer Res 25: 3486–3494. 1078–0432.CCR-18–2994 [pii];https://doi.org/10.1158/1078-0432.CCR-18-2994.

  203. Iyer RV, Konda B, Fountzilas C, Mukherjee S, Owen D, Attwood K, Wang C, Suffren SA, Hicks K, Wilton J, Bies R, Casucci D, Reidy-Lagunes D, Shah M (2020) Multicenter phase 2 trial of nintedanib in advanced nonpancreatic neuroendocrine tumors. Cancer 126: 3689-3697. https://doi.org/10.1002/cncr.32994.

    Article  CAS  PubMed  Google Scholar 

  204. Castellano D, Capdevila J, Sastre J, Alonso V, Llanos M, Garcia-Carbonero R, Manzano Mozo JL, Sevilla I, Duran I, Salazar R (2013) Sorafenib and bevacizumab combination targeted therapy in advanced neuroendocrine tumour: a phase II study of Spanish Neuroendocrine Tumour Group (GETNE0801). Eur J Cancer 49: 3780–3787. S0959–8049(13)00549–2 [pii];https://doi.org/10.1016/j.ejca.2013.06.042.

  205. Chan JA, Mayer RJ, Jackson N, Malinowski P, Regan E, Kulke MH (2013) Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother Pharmacol 71: 1241-1246. https://doi.org/10.1007/s00280-013-2118-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Capdevila J, Fazio N, Lopez-Lopez C, et al (2019) Final results of the TALENT trial (GETNE1509): A prospective multicohort phase II study of lenvatinib in patients (pts) with G1/G2 advanced pancreatic (panNETs) and gastrointestinal (giNETs) neuroendocrine tumors (NETs). J Clin Oncol 37: 4106 (abstract).

  207. Modali SD, Parekh VI, Kebebew E, Agarwal SK (2015) Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol 29: 224-237. https://doi.org/10.1210/me.2014-1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chan JA, Faris JE, Murphy JE (2017) Phase II trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET) . J Clin Oncol 35: 228 (abstract).

  209. Lee ME, Tepede AA, Mandl A, Weinstein LS, Del RJ, Agarwal SK, Blau JE (2020) c-MET inhibition: novel treatment for sporadic and MEN1-associated GEP NETs. J Mol Endocrinol 65: R1-R17. JME-20-0020.R1 [pii]; https://doi.org/10.1530/JME-20-0020.

  210. Dasari A, Phan A, Gupta S, Rashid A, Yeung SC, Hess K, Chen H, Tarco E, Chen H, Wei C, Anh-Do K, Halperin D, Meric-Bernstam F, Yao J (2015) Phase I study of the anti-IGF1R antibody cixutumumab with everolimus and octreotide in advanced well-differentiated neuroendocrine tumors. Endocr Relat Cancer 22: 431–441. ERC-15–0002 [pii];https://doi.org/10.1530/ERC-15-0002.

  211. Alexander VM, Roy M, Steffens KA, Kunnimalaiyaan M, Chen H (2010) Azacytidine induces cell cycle arrest and suppression of neuroendocrine markers in carcinoids. Int J Clin Exp Med 3: 95-102.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Baradari V, Huether A, Hopfner M, Schuppan D, Scherubl H (2006) Antiproliferative and proapoptotic effects of histone deacetylase inhibitors on gastrointestinal neuroendocrine tumor cells. Endocr Relat Cancer 13: 1237–1250. 13/4/1237 [pii];https://doi.org/10.1677/erc.1.01249.

  213. Arvidsson Y, Johanson V, Pfragner R, Wangberg B, Nilsson O (2016) Cytotoxic Effects of Valproic Acid on Neuroendocrine Tumour Cells. Neuroendocrinology 103: 578–591. 000441849 [pii];https://doi.org/10.1159/000441849.

  214. Larsson C (2013) Epigenetic aspects on therapy development for gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 97: 19–25. 000336087 [pii];https://doi.org/10.1159/000336087.

  215. Alvarez MJ, Subramaniam PS, Tang LH, Grunn A, Aburi M, Rieckhof G, Komissarova EV, Hagan EA, Bodei L, Clemons PA, Dela Cruz FS, Dhall D, Diolaiti D, Fraker DA, Ghavami A, Kaemmerer D, Karan C, Kidd M, Kim KM, Kim HC, Kunju LP, Langel U, Li Z, Lee J, Li H, LiVolsi V, Pfragner R, Rainey AR, Realubit RB, Remotti H, Regberg J, Roses R, Rustgi A, Sepulveda AR, Serra S, Shi C, Yuan X, Barberis M, Bergamaschi R, Chinnaiyan AM, Detre T, Ezzat S, Frilling A, Hommann M, Jaeger D, Kim MK, Knudsen BS, Kung AL, Leahy E, Metz DC, Milsom JW, Park YS, Reidy-Lagunes D, Schreiber S, Washington K, Wiedenmann B, Modlin I, Califano A (2018) A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nat Genet 50: 979-989. https://doi.org/10.1038/s41588-018-0138-4;https://doi.org/10.1038/s41588-018-0138-4 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lin W, Watanabe H, Peng S, Francis JM, Kaplan N, Pedamallu CS, Ramachandran A, Agoston A, Bass AJ, Meyerson M (2015) Dynamic epigenetic regulation by menin during pancreatic islet tumor formation. Mol Cancer Res 13: 689–698. 1541–7786.MCR-14–0457 [pii];https://doi.org/10.1158/1541-7786.MCR-14-0457.

  217. Kim ST, Ha SY, Lee S, Ahn S, Lee J, Park SH, Park JO, Lim HY, Kang WK, Kim KM, Park YS (2016) The Impact of PD-L1 Expression in Patients with Metastatic GEP-NETs. J Cancer 7: 484-489. jcav07p0484 [pii]; https://doi.org/10.7150/jca.13711.

  218. Strosberg J, Mizuno N, Doi T, Grande E, Delord JP, Shapira-Frommer R, Bergsland E, Shah M, Fakih M, Takahashi S, Piha-Paul SA, O'Neil B, Thomas S, Lolkema MP, Chen M, Ibrahim N, Norwood K, Hadoux J (2020) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results From the Phase II KEYNOTE-158 Study. Clin Cancer Res 26: 2124–2130. 1078–0432.CCR-19–3014 [pii];https://doi.org/10.1158/1078-0432.CCR-19-3014.

  219. Yao JC, Strosberg J, Fazio N, et al (2018) Activity & safety of spartalizumab (PDR001) in patients (pts) with advanced neuroendocrine tumors (NET) of pancreatic (Pan), gastrointestinal (GI), or thoracic (T) origin, & gastroenteropancreatic neuroendocrine carcinoma (GEP NEC) who have progressed on prior treatment (Tx). Ann Oncol 29 (abstract).

  220. Oktay E, Yalcin GD, Ekmekci S, Kahraman DS, Yalcin A, Degirmenci M, Dirican A, Altin Z, Ozdemir O, Surmeli Z, Diniz G, Ayhan S, Bulut G, Erdogan A, Uslu R (2019) Programmed cell death ligand-1 expression in gastroenteropancreatic neuroendocrine tumors. J BUON 24: 779-790.

    PubMed  Google Scholar 

  221. Saupe F, Schwenzer A, Jia Y, Gasser I, Spenle C, Langlois B, Kammerer M, Lefebvre O, Hlushchuk R, Rupp T, Marko M, van der Heyden M, Cremel G, Arnold C, Klein A, Simon-Assmann P, Djonov V, Neuville-Mechine A, Esposito I, Slotta-Huspenina J, Janssen KP, de WO, Christofori G, Hussenet T, Orend G (2013) Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep 5: 482–492. S2211–1247(13)00522–6 [pii];https://doi.org/10.1016/j.celrep.2013.09.014.

  222. Kim JT, Liu C, Zaytseva YY, Weiss HL, Townsend CM, Jr., Evers BM (2015) Neurotensin, a novel target of Wnt/beta-catenin pathway, promotes growth of neuroendocrine tumor cells. Int J Cancer 136: 1475-1481. https://doi.org/10.1002/ijc.29123.

    Article  CAS  PubMed  Google Scholar 

  223. Spetz J, Langen B, Rudqvist N, Parris TZ, Helou K, Nilsson O, Forssell-Aronsson E (2017) Hedgehog inhibitor sonidegib potentiates (177)Lu-octreotate therapy of GOT1 human small intestine neuroendocrine tumors in nude mice. BMC Cancer 17: 528. https://doi.org/10.1186/s12885-017-3524-x;https://doi.org/10.1186/s12885-017-3524-x [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  224. Wyche TP, Dammalapati A, Cho H, Harrison AD, Kwon GS, Chen H, Bugni TS, Jaskula-Sztul R (2014) Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo. Cancer Gene Ther 21: 518–525. cgt201457 [pii];https://doi.org/10.1038/cgt.2014.57.

  225. Soucek L, Buggy JJ, Kortlever R, Adimoolam S, Monclus HA, Allende MT, Swigart LB, Evan GI (2011) Modeling pharmacological inhibition of mast cell degranulation as a therapy for insulinoma. Neoplasia 13: 1093-1100. https://doi.org/10.1593/neo.11980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Al-Toubah T, Schell MJ, Cives M, Zhou JM, Soares HP, Strosberg JR (2020) A Phase II Study of Ibrutinib in Advanced Neuroendocrine Neoplasms. Neuroendocrinology 110: 377–383. 000502383 [pii];https://doi.org/10.1159/000502383.

  227. Zitzmann K, Ailer G, Vlotides G, Spoettl G, Maurer J, Goke B, Beuschlein F, Auernhammer CJ (2013) Potent antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990 in neuroendocrine carcinoid cells. Int J Oncol 43: 1824-1832. https://doi.org/10.3892/ijo.2013.2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gloesenkamp C, Nitzsche B, Lim AR, Normant E, Vosburgh E, Schrader M, Ocker M, Scherubl H, Hopfner M (2012) Heat shock protein 90 is a promising target for effective growth inhibition of gastrointestinal neuroendocrine tumors. Int J Oncol 40: 1659-1667. https://doi.org/10.3892/ijo.2012.1328.

    Article  CAS  PubMed  Google Scholar 

  229. Serra S, Zheng L, Hassan M, Phan AT, Woodhouse LJ, Yao JC, Ezzat S, Asa SL (2012) The FGFR4-G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res 72: 5683–5691. 0008–5472.CAN-12–2102 [pii];https://doi.org/10.1158/0008-5472.CAN-12-2102.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia L. Asa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asa, S.L., La Rosa, S., Basturk, O. et al. Molecular Pathology of Well-Differentiated Gastro-entero-pancreatic Neuroendocrine Tumors. Endocr Pathol 32, 169–191 (2021). https://doi.org/10.1007/s12022-021-09662-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-021-09662-5

Keywords

Navigation