Skip to main content
Log in

Estimating the Parameters of the Epileptor Model for Epileptic Seizure Suppression

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common brain disorders worldwide, affecting millions of people every year. Given the partially successful existing treatments for epileptiform activity suppression, dynamic mathematical models have been proposed with the purpose of better understanding the factors that might trigger an epileptic seizure and how to mitigate it, among which Epileptor stands out, due to its relative simplicity and consistency with experimental observations. Recent studies using this model have provided evidence that establishing a feedback-based control approach is possible. However, for this strategy to work properly, Epileptor’s parameters, which describe the dynamic characteristics of a seizure, must be known beforehand. Therefore, this work proposes a methodology for estimating such parameters based on a successive optimization technique. The results show that it is feasible to approximate their values as they converge to reference values based on different initial conditions, which are modeled by an uncertainty factor or noise addition. Also, interictal (healthy) and ictal (ongoing seizure) conditions, as well as time resolution, must be taken into account for an appropriate estimation. At last, integrating such a parameter estimation approach with observers and controllers for purposes of seizure suppression is carried out, which might provide an interesting alternative for seizure suppression in practice in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. See, for instance, references Hodgkin and Huxley (1952); FitzHugh (1961); Morris and Lecar (1981); Hindmarsh and Rose (1984); Izhikevich (2003); Grimbert and Faugeras (2006); Jirsa et al. (2014); Chizhov et al. (2018).

  2. In the context of system identification, this process is known as parameter estimation, which implies finding the parameters of a model that best describe the existing data Ljung (1998); Van den Bos (2007).

  3. An interesting investigation on this topic is provided by Luersen and Le Riche (2004).

  4. As stated by Ref. Luersen and Le Riche (2004), the number of analyses (in this case, optimizations) in real situations is usually restricted. Naturally, we take this fact into account by using a limited number of iterations and threshold, since computational applications are sometimes time-consuming and require a high processing. However, as seen in the next sections, our approach provides a good strategy for estimating the parameters of the system with a strong practical appeal.

  5. This formulation, although applied to the notation developed in this work, is consistent with Gao and Han (2012).

  6. A detailed formulation on how to obtain such an equivalence can be found in Tanaka and Wang (2004); Brogin et al. (20202021) and Appendix A.

  7. In practice, once the model and nonlinear functions are available, they are measured for a specific time interval of interest, so the model is exactly reconstructed for this period of time. Further details can be found in Brogin et al. (2020).

  8. Further details about how to obtain these MFs can be found in Appendix A.

  9. All the steps and derivatives for this formulation have been addressed elsewhere. For a detailed analysis, refer to Brogin et al. (2021).

  10. Although II is considered as the best region for \(I_{\text{rest2}}\), note that there is not a clear visual distinction between II and IC, in terms of estimation.

  11. The effect of progressive degradation caused by noise is commonly found in applications envolving brain signals, in which the source can be from eye movements, muscle artifacts or the environment, for example Agarwal et al. (2017); Hussein et al. (2018).

References

  • Abuhasel, K. A., Iliyasu, A. M., & Fatichah, C. (2015). A hybrid particle swarm optimization and neural network with fuzzy membership function technique for epileptic seizure classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 19(3), 447–455.

    Article  Google Scholar 

  • Agarwal, S., Rani, A., Singh, V., & Mittal, A. P. (2017). EEG signal enhancement using cascaded S-Golay filter. Biomedical Signal Processing and Control, 36, 194–204.

    Article  Google Scholar 

  • Altan, A. (2020). Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following. In: 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–6.) IEEE

  • Altan, A & Parlak, A. (2020). Adaptive control of a 3D printer using whale optimization algorithm for bio-printing of artificial tissues and organs. In: Innovations in Intelligent Systems and Applications Conference (ASYU) (pp.  pp. 1–5). IEEE.

  • Boyd, S., El Ghaoui, L., & Feron, E. (1994). & Balakrishnan (Vol. Linear). SIAM-Philadelphia, Pennsylvania: Matrix Inequalities in System and Control Theory.

    Google Scholar 

  • Brogin, J. A. F., Faber, J., & Bueno, D. D. (2020). An efficient approach to define the input stimuli to suppress epileptic seizures described by the epileptor model. Journal of Neural Systems, 2050062.

  • Brogin, J. A. F., Faber, J., & Bueno, D. D. (2021). Burster reconstruction considering unmeasurable variables in the Epileptor model. Neural Computation, 33(12), 3288–3333.

    Article  PubMed  Google Scholar 

  • Browne, T. R., & Holmes, G. L. (2008). Handbook of epilepsy. Pennsylvania: Lippincott Williams & Wilkins-Philadelphia.

    Google Scholar 

  • Chen, X., Liu, A., Chiang, J., Wang, Z. J., McKeown, M. J., & Ward, R. K. (2015). Removing muscle artifacts from EEG data: Multichannel or single-channel techniques? IEEE Sensors Journal, 16(7), 1986–1997.

    Article  Google Scholar 

  • Chizhov, A. V., Zefirov, A. V., Amakhin, D. V., Smirnova, E. Y., & Zaitsev, A. V. (2018). Minimal model of interictal and ictal discharges epileptor-2. PLOS Computational Biology, 14(5), 1–25.

    Article  Google Scholar 

  • Cota, V. R., de Castro Medeiros, D., da Páscoa Vilela, M. R. S., Doretto, M. C., & Moraes, M. F. D. (2009). Distinct patterns of electrical stimulation of the basolateral amygdala influence pentylenetetrazole seizure outcome. Epilepsy & Behavior, 14(1), 26–31.

    Article  Google Scholar 

  • D’Andrea Meira, I., Romão, T. T., Pires do Prado, H. J., Krüger, L. T., Pires, M. E. P. & da Conceição, P. O. (2019). Ketogenic diet and epilepsy: what we know so far. Frontiers in Neuroscience-Switz, 13, 5.

  • Dollfuss, P., Hartmann, M. M., Skupch, A., Frbass, F., & Kluge, T. (2013). Automatic optimization of parameters for seizure detection systems. In: 5th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1976–1979). IEE,.

  • El Houssaini, K., Ivanov, A. I., Bernard, C., & Jirsa, V. K. (2015). Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. Physical Review E, 91, 010701.

  • Fisher, R. S., & Schachter, S. C. (2000). The postictal state: a neglected entity in the management of epilepsy. Epilepsy & Behavior, 1(1), 52–59.

    Article  CAS  Google Scholar 

  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1(6), 445–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, F., & Han, L. (2012). Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, 51(1), 259–277.

    Article  Google Scholar 

  • Grimbert, F., & Faugeras, O. (2006). Bifurcation analysis of Jansen’s neural mass model. Neural Computation, 18(12), 3052–3068.

    Article  PubMed  Google Scholar 

  • Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2018). Hybrid grasshopper optimization algorithm and support vector machines for automatic seizure detection in EEG signals. In: International conference on advanced machine learning technologies and applications (pp. 82–91). Springer, Cham

  • Hardt, M., Schraknepper, D., & Bergs, T. (2021). Investigations on the application of the downhill-simplex-algorithm to the inverse determination of material model parameters for FE-machining simulations. Simulation Modelling Practice and Theory, 107, 102214.

  • Hashemi, M., Vattikonda, A. N., Sip, V., Guye, M., Bartolomei, F., Woodman, M. M., & Jirsa, V. K. (2020). The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. NeuroImage, 217, 116839.

  • Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and computer sciences, 44(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society B: Biological Sciences, 221(1222), 87–102.

    CAS  Google Scholar 

  • Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology London, 117(4), 500–544.

  • Hussein, R., Elgendi, M., Wang, Z. J., & Ward, R. K. (2018). Robust detection of epileptic seizures based on L1-penalized robust regression of EEG signals. Expert Systems with Applications, 104, 153–167.

    Article  Google Scholar 

  • Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5), 549–558.

    Article  PubMed  Google Scholar 

  • Ichalal, D., Arioui, H. & Mammar, S. (2011). Observer design for two-wheeled vehicle: A Takagi-Sugeno approach with unmeasurable premise variables. In: 2011 19th Mediterranean Conference on Control & Automation (MED) (pp. 934–939). IEEE.

  • Islam, M. K., Rastegarnia, A., & Yang, Z. (2015). A wavelet-based artifact reduction from scalp EEG for epileptic seizure detection. IEEE Journal of Biomedical and Health Informatics, 20(5), 1321–1332.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks and Learning Systems, 14(6), 1569–1572.

    Article  CAS  Google Scholar 

  • Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Gonzalez-Martinez, J., et al. (2017). The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage, 145, 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., & Bernard, C. (2014). On the nature of seizure dynamics. Brain, 137(8), 2210–2230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luersen, M. A., & Le Riche, R. (2004). Globalized Nelder-Mead method for engineering optimization. Computers & Structures, 82(23–26), 2251–2260.

    Article  Google Scholar 

  • Kim, H., Bernhardt, B. C., Kulaga-Yoskovitz, J., Caldairou, B., Bernasconi, A., & Bernasconi, N. (2014). Multivariate hippocampal subfield analysis of local MRI intensity and volume: application to temporal lobe epilepsy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 170–178). Springer, Cham.

  • Li, Y., Wang, X. D., Luo, M. L., Li, K., Yang, X. F., & Guo, Q. (2017). Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions. IEEE Journal of Biomedical and Health Informatics, 22(2), 386–397.

    Article  PubMed  Google Scholar 

  • Liu, W., & Lin, W. (2006). Additive white Gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing., 22(3), 872–883.

    Article  Google Scholar 

  • Ljung, L. (1998). System identification: theory for the user. New Jersey: Prentice Hall.

  • Lofberg, J. (2011). YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE international conference on robotics and automation (pp. 284–289). IEEE.

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj, V., Lamperski, A. & Netoff, T. I. (2017). Seizure control in a computational model using a reinforcement learning stimulation paradigm. International Journal of Neural Systems, 27(07).

  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.

    Article  Google Scholar 

  • Neto L. A., Erasme D., Genay N, Chanclou P., Deniel Q., Traore F., Anfray T., Hmadou R. & Aupetit-Berthelemot C. (2012). Simple estimation of fiber dispersion and laser chirp parameters using the downhill simplex fitting algorithm. Journal of Lightwave Technology, 31(2), 334–342.

  • Pinheiro, D. J., Oliveira, L. F., Souza, I. N., Brogin, J. A. F., Bueno, D. D., Miranda, I. A., et al. (2020). Modulation in phase and frequency of neural oscillations during epileptiform activity induced by neonatal Zika virus infection in mice. Scientific Reports, 10(1), 1–14.

    Article  Google Scholar 

  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  • Powell, T. D. (2002). Automated tuning of an extended Kalman filter using the downhill simplex algorithm. Journal of Guidance, Control, and Dynamics, 25(5), 901–908.

    Article  Google Scholar 

  • Proix, T., Bartolomei, F., Guye, M., & Jirsa, V. K. (2017). Individual brain structure and modeling predict seizure propagation. Brain, 140(3), 641–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Proix, T., Bartolomei, F., Chauvel, P., Bernard, C., & Jirsa, V. K. (2014). Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. Journal of Neuroscience, 34(45), 15009–15021.

    Article  CAS  PubMed  Google Scholar 

  • Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M., & Truccolo, W. (2018). Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nature Communications, 9(1), 1–15.

    Article  CAS  Google Scholar 

  • Saggio, M. L., Crisp, D., Scott, J. M., Karoly, P., Kuhlmann, L., Nakatani, M., Murai, T., Dmpelmann, M., Schulze-Bonhage, A., Ikeda, A., Cook, M., Gliske, S. V., Lin, J., Bernard, C., Jirsa, V. & Stacey, W. C. (2020). A taxonomy of seizure dynamotypes. Elife, 9, e55632.

  • Sip, V., Guye, M., Bartolomei, F., & Jirsa, V. (2021). Computational modeling of seizure spread on a cortical surface. Journal of Computational Neuroscience, 1–15.

  • Subasi, A., Kevric, J., & Canbaz, M. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31(1), 317–325.

    Article  Google Scholar 

  • Ogata, K. (2010). Modern control engineering. Prentice Hall.

  • Oppenheim, A. V., Willsky, A. S., & Nawab, H. (1997). S. Prentice Hall-New Jersey: Signals and Systems.

    Google Scholar 

  • Reyhanoglu, M., van der Schaft, A., McClamroch, N. H., & Kolmanovsky, I. (1999). Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control, 44(9), 1663–1671.

    Article  Google Scholar 

  • Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery & Psychiatry, 71(2), 215–219.

    Article  CAS  Google Scholar 

  • Sagnol, G. (2012). Picos documentation. A Python interface to conic optimization solvers.

  • Slotine, J. J. E. (1991). & Li. Prentice hall-Englewood Cliffs, New Jersey: W. Applied Nonlinear Control.

    Google Scholar 

  • Spong, M. W. (1998). Underactuated mechanical systems. In Control problems in robotics and automation (pp. 135-150). Springer, Berlin, Heidelberg.

  • Soong, T. T. (2004). Fundamentals of probability and statistics for engineers. John Wiley & Sons.

  • Tanaka, K., & Wang, H. O. (2004). Fuzzy control systems design and analysis: a linear matrix inequality approach. New York: Wiley-New York.

    Google Scholar 

  • Taniguchi, T., Tanaka, K., Ohtake, H., & Wang, H. O. (2001). Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 9(4), 525–538.

    Article  Google Scholar 

  • Tellez-Zenteno, J. F., McLachlan, R. S., Parrent, A., Kubu, C. S., & Wiebe, S. (2006). Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology, 66(10), 1490–1494.

    Article  CAS  PubMed  Google Scholar 

  • Van den Bos, A. (2007). Parameter estimation for scientists and engineers. New Jersey: John Wiley & Sons.

  • Velasco, F., Velasco, M., Velasco, A. L., Menez, D., & Rocha, L. (2001). Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotactic & Functional Neurosurgery, 77(1–4), 223–227.

    Article  CAS  Google Scholar 

  • Velasco, A. L., Velasco, F., Velasco, M., Trejo, D., Castro, G., & Carrillo-Ruiz, J. D. (2007). Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia, 48(10), 1895–1903.

    Article  PubMed  Google Scholar 

  • Vezzani, A., French, J., Bartfai, T., & Baram, T. Z. (2011). The role of inflammation in epilepsy. Nature Reviews Neurology, 7(1), 31.

    Article  CAS  PubMed  Google Scholar 

  • Walker, J. E., & Kozlowski, G. P. (2005). Neurofeedback treatment of epilepsy. Child and Adolescent Psychiatric Clinics, 14(1), 163–176.

    Article  Google Scholar 

  • Wendling, F., Benquet, P., Bartolomei, F., & Jirsa, V. (2015). Computational models of epileptiform activity. Journal of Neuroscience Methods, 260, 233–251.

    Article  PubMed  Google Scholar 

  • Zhang, H., & Xiao, P. (2018). Seizure dynamics of coupled oscillators with epileptor field model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 28(03), 1850041.

    Google Scholar 

  • Zhu, D., Bieger, J., Molina, G. G. & Aarts, R. M. (2010). A survey of stimulation methods used in SSVEP-based BCIs, Computational Intelligence and Neuroscience, 1–13.

Download references

Acknowledgements

The authors would like to thank São Paulo State University (UNESP), School of Engineering of Ilha Solteira (FEIS), Federal University of São Paulo (UNIFESP) and the Group of Intelligent Materials and Systems (GMSINT). The first author thanks to Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support, Grant Number 88887.481049/2020-00.

Funding

This work was funded by Coordination for the Improvement of Higher Education Personnel (CAPES), Grant Number 88887.481049/2020-00.

Author information

Authors and Affiliations

Authors

Contributions

J.A.F.B. carried out the simulations and wrote the paper; J.F. and D.D.B. wrote and revised the paper.

Corresponding author

Correspondence to João Angelo Ferres Brogin.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interests

None declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fuzzy Takagi-Sugeno Modeling

Fuzzy Takagi-Sugeno Modeling

Formulation for the Linear Sub-Systems of the Dynamic Matrix A

Consider the following nonlinear dynamic system:

$$\begin{aligned} \dot{\mathbf{x }}(t) = \mathbf{A} _{\text{nl}}{} \mathbf{x} (t) + \mathbf{B} _{\text{nl}}{} \mathbf{u} (t) \end{aligned}$$
(36)

For simplicity, if \(\mathbf{u} (t)=0\), each element of \(\dot{\mathbf{x }}\) can be expressed as:

$$\begin{aligned} x_{i}(t)=\sum _{j=1}^{N}f_{ij}(\mathbf{x} (t))x_{j}(t) \end{aligned}$$
(37)

where \(f_{ij}(\mathbf{x} (t))\) represents any function at position (ij), N is the dimension of the system, \(f_{ij}(\mathbf{x} (t))=f_{k}(\mathbf{x} (t))\), \(k=1,...,N_{\text{nl}}<N^{2}\), represents the \(N_{\text{nl}}\) nonlinear functions present in the system. According to the Fuzzy Takagi-Sugeno modeling (FTSM), this system can be rewritten as Tanaka and Wang (2004):

$$\begin{aligned} \text{ Rule } \;\; i: {\left\{ \begin{array}{ll} \text{ If } \;\; z_{1}(t) \;\; \text{ is } \;\; M_{i1} \;\; \text{ and } \;\; ... \;\; \text{ and } \;\; z_{p}(t) \;\; \text{ is } \;\; M_{ip} \\ \text{ Then, } \;\;\;\;\; \dot{\mathbf{x }}(t)=\mathbf{A _{i}}\mathbf{x }(t), \;\; \;\; i=1,...,r \;\;\;\;\;\;\;\;\;\;\; \end{array}\right. } \end{aligned}$$
(38)

where \(M_{ij}\) are called fuzzy sets, r is the total number of rules, \(z_{1}(t),...,z_{p}(t)\) are known as premise variables, and \(\mathbf{A} _{i}\) are linear sub-models that represent the original dynamics locally. To identify them, Taniguchi et al. (2001) proposed writting all of the nonlinear functions as linear combinations between their maximum and minimum values, which leads to their exact representation for a given time interval:

$$\begin{aligned} f_{k}(\mathbf{x} )=[g_{k}^{\text {min}}(\mathbf{x} )]\kern 0.1500em f_{k}^{\text {min}} + [g_{k}^{\text {max}}(\mathbf{x} )] \kern 0.1500em f_{k}^{\text {max}} \end{aligned}$$
(39)

where \(f_{k}^{\text {max}}=\) max\([\kern 0.1500em f_{k}(\mathbf{x} (t))]\), \(f_{k}^{\text {min}}=\) min\([\kern 0.1500em f_{k}(\mathbf{x} (t))]\), and:

$$\begin{aligned} \begin{array}{c} g_{k}^{\text {min}}(\mathbf{x} ) = \dfrac{[\kern 0.1500em f_{k}^{\text {max}}-f_{k}(\mathbf{x} )]}{f_{k}^{\text {max}}-f_{k}^{\text {min}}} \\ g_{k}^{\text {max}}(\mathbf{x} )=1-g_{k}^{\text {min}}(\mathbf{x} ) \end{array} \end{aligned}$$
(40)

known as membership functions (MF) Tanaka and Wang (2004), which must comply with the following restrictions: \(g_{k}^{\text {min}}(\mathbf{x} ) \ge 0\), \(g_{k}^{\text {max}}(\mathbf{x} ) \le 1\), and \(g_{k}^{\text {min}}(\mathbf{x} ) + g_{k}^{\text {max}}(\mathbf{x} ) = 1\). Based on the latter condition (\(g_{k}^{\text {min}}(\mathbf{x} ) + g_{k}^{\text {max}}(\mathbf{x} ) = 1\)), Eq. (39) can be expressed as:

$$\begin{aligned} f_{k}(\mathbf{x} )= \prod _{i=1,i \ne k}^{N_{nl}} \{ g_{i}^{\text {min}}(\mathbf{x} ) + g_{i}^{\text {max}}(\mathbf{x} ) \}\{ [g_{k}^{\text {min}}(\mathbf{x} )]\kern 0.1500em f_{k}^{\text {min}} + [g_{k}^{\text {max}}(\mathbf{x} )]\kern 0.1500em f_{k}^{\text {max}} \} \end{aligned}$$
(41)

or, alternatively:

$$\begin{aligned} f_{k}(\mathbf{x} )= \sum _{i=1}^{r_{1}}N_{i}(\mathbf{x} )f_{k}^{\text {min}} + \sum _{i=r_{1}+1}^{ (2^{N_{\text{nl}}}) }N_{i}(\mathbf{x} )f_{k}^{\text {max}} \end{aligned}$$
(42)

where \(r_{1}=2^{(N_{\text{nl}}-1)}\), and \(N_{i}(\mathbf{x} ) = \prod _{k=1}^{N_{\text{nl}}}g_{k}^{(.)}(\mathbf{x} )\),

which must meet the requirement: \(\sum _{i=1}^{2^{N_{\text{nl}}}}N_{i} (\mathbf {x})=1\). The superscript (.) indicates a combination between the maximum and minimum values for the kth nonlinear function \(g_{k}^{(.)} (\mathbf{x} )\). After substituting each \(f_{k}\) according to Eq. (42) into the matrix \(\mathbf {A}_{nl}\), the system in Eq. (36) is rewritten by

$$\begin{aligned} \dot{\mathbf {x}}(t) = \sum _{i=1}^{2^{N_{\text{nl}}}}N_{i} (\mathbf {x}) \left[ \mathbf {A}_{j} \mathbf {x}(t) \right] \end{aligned}$$
(43)

Each \(\mathbf{A} _{j}\) is, thus, a linear sub-model. If matrix \(\mathbf{B} _{\text{nl}}\) and the input are considered back into the formulation:

$$\begin{aligned} \dot{\mathbf {x}}(t) = \sum _{i=1}^{2^{N_{\text{nl}}}}N_{i} (\mathbf {x}) \left[ \mathbf {A}_{i} \mathbf {x}(t) \right] + \sum _{i=1}^{2^{N_{\text{nl}}}}N_{i} (\mathbf {x}) \left[ \mathbf {B}_{i} \mathbf {u}(t) \right] \end{aligned}$$
(44)

or, alternatively:

$$\begin{aligned} \dot{\mathbf {x}}(t) = \sum _{i=1}^{2^{N_{\text{nl}}}}N_{i} (\mathbf {x}) \left[ \mathbf {A}_{i} \mathbf {x}(t) + \mathbf {B}_{i} \mathbf {u}(t) \right] \end{aligned}$$
(45)

For the sake of understanding, Fig. 16 presents an example of the exact reconstruction of a nonlinear function using the membership functions and linear submodels. In this case: \(f(t)=e^{-2t}\text {sin}(2\pi t)\), that is, \(N_{\text{nl}}=1\). The membership functions \(g_{1}^{\text{max}}(x(t))\) and \(g_{1}^{\text{min}}(x(t))\) weigh the maximum and minimum values of f(t) (\(f_{1}^{\text{max}}\) and \(f_{1}^{\text{min}}\), respectively) over time such that its exact representation is obtained as \(f_{1}(x(t))\).

Fig. 16
figure 16

Concept of sector nonlinearity to reconstruct \(f_{\text {sin}}(t)=e^{-2t}\text {sin}(2\pi t)\) (), using the exact solution Tanaka and Wang (2004); Taniguchi et al. (2001) based on the maximum and minimum values of \(f_{\text {sin}}(t)\), expressed by \(f_{1}^{\text {max}}\) and \(f_{1}^{\text {min}}\) ( ), and the membership functions: \(g_{1}^{\text {min}}(x(t))\) ( ) and \(g_{1}^{\text {max}}(x(t))\) ( ). The reconstructed model is represented by \(f_{1}(x(t))\) ( )

Formulation for the Linear Sub-Systems of the Error Dynamics e(t)

To obtain the membership functions (MFs) used to model the error dynamics, the concept of sector nonlinearity is applied once again Tanaka and Wang (2004); Ichalal et al. (2011). Each partial derivative can be rewritten as:

$$\begin{aligned} a_{ij}\le \frac{\partial f_{i}(z^{i})}{\partial z_{j}} \le b_{ij} \end{aligned}$$
(46)

assuming it is differentiable on the interval \([a_{ij},b_{ij}]\), where \(a_{ij}\) and \(b_{ij}\) are individual maximum and minimum values for each i and j, respectively. Therefore, the above equation can be conveniently rewritten as:

$$\begin{aligned} \frac{\partial f_{i}(z^{i})}{\partial z_{j}}=\sum _{k=1}^{2}v_{ij}^{k}(z^{i})\tilde{a}_{ijk} \end{aligned}$$
(47)

where:

$$\begin{aligned} v_{ij}^{1}(z^{i})=\frac{ \frac{\partial f_{i}(z^{i})}{\partial z_{j}}-a_{ij} }{ b_{ij}-a_{ij} }, \;\;\; v_{ij}^{2}(z^{i})= 1-v_{ij}^{1}(z^{i}) \end{aligned}$$
(48)

which must meet the following requirements of convexity Ichalal et al. (2011):

$$\begin{aligned} \sum _{k=1}^{2}v_{ij}^{k}(z^{i})=1, \;\;\; 0\le v_{ij}^{k}(z^{i})\le 1, \;\;\; k=1,2 \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brogin, J.A.F., Faber, J. & Bueno, D.D. Estimating the Parameters of the Epileptor Model for Epileptic Seizure Suppression. Neuroinform 20, 919–941 (2022). https://doi.org/10.1007/s12021-022-09583-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-022-09583-6

Keywords

Navigation