Skip to main content

Advertisement

Log in

Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): an update

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

Polycystic ovarian syndrome (PCOS) is the most prevalent metabolic disorder in reproductive-age women. It is indeed a multifactorial condition evidenced by ovarian dysfunction, hyperandrogenaemia, infertility, hormonal imbalance and chronic anovulation. Experimental evidence infers that PCOS women are prone to cardiovascular problems and insulin resistance.

Purpose

To furnish the details about the association of inflammatory markers in PCOS.

Design

An extensive literature search on PubMed, science direct and google scholar has been performed for articles about PCOS and inflammation in PCOS. A comprehensive analysis using original articles, reviews, systemic and meta-analysis was conducted for better understanding the relationship between inflammatory cytokines and PCOS.

Results

The inflammatory markers perform a substantial part in managing the functions of the ovary. Any disturbances in their levels can lead to ovarian dysfunction. Inflammatory markers are associated with PCOS pathogenesis. The interplay between inflammatory cytokines in the PCOS ovary strongly implies that inflammation is one of the most potent risk factors of PCOS.

Conclusion

Inflammatory markers have a significant role in regulating the ovary. This manuscript highlights the significance of metabolic and inflammatory markers with PCOS. Since PCOS is always considered as a metabolic disorder, researchers can also consider focusing on the relationship between the inflammatory markers in PCOS to establish a new treatment or management of the disease and to improve women's health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buvinic M, Médici A, Fernández E, Torres AC (2006) Gender differentials in health. Dis Control Prior Dev Ctries 2:195–210

    Google Scholar 

  2. Jia G, Tao H, Xue Y et al (2018) Analysis of secreted peptidome from omental adipose tissue in polycystic ovarian syndrome patients. J Cell Physiol 233:5885–5894

    Article  CAS  PubMed  Google Scholar 

  3. Louwers YV, Laven JSE (2020) The polycystic ovary syndrome (PCOS) BT—female reproductive dysfunction. In: Fauser BCJM (ed) Petraglia F. Springer International Publishing, Champaign, pp 1–23

    Google Scholar 

  4. Vidya Bharathi R, Swetha S, Neerajaa J et al (2017) An epidemiological survey: effect of predisposing factors for PCOS in Indian urban and rural population. Middle East Fertil Soc J 22:313–316. https://doi.org/10.1016/j.mefs.2017.05.007

    Article  Google Scholar 

  5. Brady C, Mousa SS, Mousa SA (2009) Polycystic ovary syndrome and its impact on women’s quality of life: more than just an endocrine disorder. Drug Healthc Patient Saf 1:9

    PubMed  PubMed Central  Google Scholar 

  6. Christakou CD, Diamanti-Kandarakis E (2008) Role of androgen excess on metabolic aberrations and cardiovascular risk in women with polycystic ovary syndrome. Women’s Heal 4:583–594

    CAS  Google Scholar 

  7. Hatziagelaki E, Pergialiotis V, Kannenberg JM et al (2019) Association between biomarkers of low-grade inflammation and sex hormones in women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-0992-9114

    Article  PubMed  Google Scholar 

  8. Azziz R, Carmina E, Chen Z et al (2016) Polycystic ovary syndrome. Nat rev Dis Prim 2:16057. https://doi.org/10.1038/nrdp.2016.57

    Article  PubMed  Google Scholar 

  9. Teede HJ, Misso ML, Costello MF et al (2018) Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 33:1602–1618

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hung J-H, Hu L-Y, Tsai S-J et al (2014) Risk of psychiatric disorders following polycystic ovary syndrome: a nationwide population-based cohort study. PLoS ONE 9:e97041

    Article  PubMed  PubMed Central  Google Scholar 

  11. Navaratnarajah R, Pillay OC, Hardiman P (2008) Polycystic ovary syndrome and endometrial cancer. Seminars in reproductive medicine. Thieme Medical Publishers, New York, pp 62–71

    Google Scholar 

  12. Mulders AG, Laven JSE, Eijkemans MJC et al (2004) Changes in anti-Müllerian hormone serum concentrations over time suggest delayed ovarian ageing in normogonadotrophic anovulatory infertility. Hum Reprod 19:2036–2042

    Article  CAS  PubMed  Google Scholar 

  13. Stein IF (1935) Amenorrhea associated with bilateral polycystic ovaries. Am J Obs Gynecol 29:181–191

    Article  Google Scholar 

  14. Fauser BCJM, Tarlatzis F et al (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum Reprod 19:41–47. https://doi.org/10.1093/humrep/deh098

    Article  Google Scholar 

  15. Legro RS, Arslanian SA, Ehrmann DA et al (2013) Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 98:4565–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Azziz R, Carmina E, Dewailly D et al (2006) Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab 91:4237–4245. https://doi.org/10.1210/jc.2006-0178

    Article  CAS  PubMed  Google Scholar 

  17. Moran L, Teede H (2009) Metabolic features of the reproductive phenotypes of polycystic ovary syndrome. Hum Reprod Update 15:477–488

    Article  CAS  PubMed  Google Scholar 

  18. De Leo V, Musacchio MC, Cappelli V et al (2016) Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol 14:1–17. https://doi.org/10.1186/s12958-016-0173-x

    Article  CAS  Google Scholar 

  19. Tan S, Hahn S, Benson S et al (2008) Psychological implications of infertility in women with polycystic ovary syndrome. Hum Reprod 23:2064–2071

    Article  CAS  PubMed  Google Scholar 

  20. Reddy KR, Deepika MLN, Ishaq M, Jahan P (2011) Haptoglobin a pleiotropic marker in polycystic ovary syndrome a study from south india. Am J Biochem Mol Biol 1:399–404

    Article  Google Scholar 

  21. Ranjith Reddy K, Deepika MLN, Latha KP, Sangurthi SR (2015) Polycystic ovary syndrome: role of aromatase gene variants in south Indian women. Int J Pharm Bio Sci 6:1283–1296

    Google Scholar 

  22. Zehra B, Khursheed AA (2018) Polycystic ovarian syndrome: symptoms, treatment and diagnosis: a review. J Pharmacogn Phytochem 7:875–880

    CAS  Google Scholar 

  23. Nisenblat V, Norman RJ (2009) Androgens and polycystic ovary syndrome. Curr Opin Endocrinol Diabetes Obes 16:224–231

    Article  CAS  PubMed  Google Scholar 

  24. Van Santbrink EJ, Hop WC, Fauser BCJM (1997) Classification of normogonadotropic infertility: polycystic ovaries diagnosed by ultrasound versus endocrine characteristics of polycystic ovary syndrome. Fertil Steril 67:452–458

    Article  PubMed  Google Scholar 

  25. Fauser BC, Pache TD, Lamberts SW et al (1991) Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease. J Clin Endocrinol Metab 73:811–817. https://doi.org/10.1210/jcem-73-4-811

    Article  CAS  PubMed  Google Scholar 

  26. Abbott DH, Barnett DK, Bruns CM, Dumesic DA (2005) Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 11:357–374

    Article  CAS  PubMed  Google Scholar 

  27. Diamanti-Kandarakis E, Dunaif A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33:981–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dumesic DA, Oberfield SE, Stener-Victorin E et al (2015) Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev 36:487–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pauli JM, Raja-Khan N, Wu X, Legro RS (2011) Current perspectives of insulin resistance and polycystic ovary syndrome. Diabet Med 28:1445–1454

    Article  CAS  PubMed  Google Scholar 

  30. Nestler JE, Jakubowicz DJ, Falcon de Vargas A et al (1998) Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 83:2001–2005

    CAS  PubMed  Google Scholar 

  31. Adashi ELIY, Hsueh AJW, Yen SSC (1981) Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology 108:1441–1449

    Article  CAS  PubMed  Google Scholar 

  32. Alesci S, Koch CA, Bornstein SR, Pacak K (2001) Adrenal androgens regulation and adrenopause. Endocr Regul 35:95–100

    CAS  PubMed  Google Scholar 

  33. Wallace IR, McKinley MC, Bell PM, Hunter SJ (2013) Sex hormone binding globulin and insulin resistance. Clin Endocrinol 78:321–329

    Article  CAS  Google Scholar 

  34. Selva DM, Hogeveen KN, Innis SM, Hammond GL (2007) Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest 117:3979–3987

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mounier C, Dumas V, Posner BI (2006) Regulation of hepatic insulin-like growth factor-binding protein-1 gene expression by insulin: central role for mammalian target of rapamycin independent of forkhead box O proteins. Endocrinology 147:2383–2391

    Article  CAS  PubMed  Google Scholar 

  36. van der Spuy ZM, Dyer SJ (2004) The pathogenesis of infertility and early pregnancy loss in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18:755–771

    Article  PubMed  Google Scholar 

  37. Jamnongjit M, Hammes SR (2006) Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle 5:1178–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cassar S, Misso ML, Hopkins WG et al (2016) Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Hum Reprod 31:2619–2631

    Article  CAS  PubMed  Google Scholar 

  39. Torchen LC (2017) Cardiometabolic risk in PCOS: more than a reproductive disorder. Curr Diab Rep. https://doi.org/10.1007/s11892-017-0956-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Randeva HS, Tan BK, Weickert MO et al (2012) Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev 33:812–841. https://doi.org/10.1210/er.2012-1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Escobar-Morreale HF, San Millán JL (2007) Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab 18:266–272

    Article  CAS  PubMed  Google Scholar 

  42. Pasquali R, Gambineri A, Pagotto U (2006) The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG An Int J Obstet Gynaecol 113:1148–1159

    Article  CAS  Google Scholar 

  43. Sam S, Dunaif A (2003) Polycystic ovary syndrome: syndrome XX? Trends Endocrinol Metab 14:365–370

    Article  CAS  PubMed  Google Scholar 

  44. Stocco C (2012) Tissue physiology and pathology of aromatase. Steroids 77:27–35

    Article  CAS  PubMed  Google Scholar 

  45. Pasquali R, Casimirri F (1993) The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clin Endocrinol (Oxf) 39:1–16

    Article  CAS  Google Scholar 

  46. Sirotkin AV (2011) Cytokines: signalling molecules controlling ovarian functions. Int J Biochem Cell Biol 43:857–861

    Article  CAS  PubMed  Google Scholar 

  47. Qiao J, Feng HL (2011) Extra-and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update 17:17–33

    Article  PubMed  Google Scholar 

  48. Richards JS, Pangas SA (2010) The ovary: basic biology and clinical implications. J Clin Invest 120:963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. BrännströmNorman MRJ (1993) Involvement of leukocytes and cytokines in the ovulatory process and corpus luteum function. Hum Reprod 8:1762–1775

    Article  Google Scholar 

  50. Field SL, Dasgupta T, Cummings M, Orsi NM (2014) Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev 81:284–314

    Article  CAS  PubMed  Google Scholar 

  51. Niu Z, Ye Y, Xia L et al (2017) Follicular fluid cytokine composition and oocyte quality of polycystic ovary syndrome patients with metabolic syndrome undergoing in vitro fertilization. Cytokine 91:180–186

    Article  CAS  PubMed  Google Scholar 

  52. Vgontzas AN, Bixler EO, Chrousos GP (2003) Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J Intern Med 254:32–44

    Article  CAS  PubMed  Google Scholar 

  53. Zhang C, Zhao Y, Li R et al (2014) Metabolic heterogeneity of follicular amino acids in polycystic ovary syndrome is affected by obesity and related to pregnancy outcome. BMC Pregnancy Childbirth 14:11

    Article  PubMed  PubMed Central  Google Scholar 

  54. González F (2011) Inflammation in Polycystic Ovary Syndrome: Underpinning of insulin resistance and ovarian dysfunction. Steroids 77:300–305. https://doi.org/10.1016/j.steroids.2011.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374. https://doi.org/10.1038/nm.2627

    Article  CAS  PubMed  Google Scholar 

  56. Vural P, Deǧirmencioǧlu S, Saral NY, Akgül C (2010) Tumor necrosis factor α (-308), interleukin-6 (-174) and interleukin-10 (-1082) gene polymorphisms in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 150:61–65. https://doi.org/10.1016/j.ejogrb.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  57. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452

    Article  CAS  PubMed  Google Scholar 

  58. Zolti M, Meirom R, Shemesh M et al (1990) Granulosa cells as a source and target organ for tumor necrosis factor-α. FEBS Lett 261:253–255

    Article  CAS  PubMed  Google Scholar 

  59. Veldhuis JD, Garmey JC, Urban RJ et al (1991) Ovarian actions of tumor necrosis factor-α (TNFα): pleiotropic effects of TNFα on differentiated functions of untransformed swine granulosa cells. Endocrinology 129:641–648

    Article  CAS  PubMed  Google Scholar 

  60. Wang LJ, Brännström M, Robertson SA, Norman RJ (1992) Tumor necrosis factor α in the human ovary: presence in follicular fluid and effects on cell proliferation and prostaglandin production. Fertil Steril 58:934–940

    Article  CAS  PubMed  Google Scholar 

  61. Roby KF, Terranova PF (1990) Effects of tumor necrosis factor-α in vitro on steroidogenesis of healthy and atretic follicles of the rat: theca as a target. Endocrinology 126:2711–2718

    Article  CAS  PubMed  Google Scholar 

  62. Emoto N, Baird A (1988) The effect of tumor necrosis factor/cachectin on follicle-stimulating hormone-induced aromatase activity in cultured rat granulosa cells. Biochem Biophys Res Commun 153:792–798

    Article  CAS  PubMed  Google Scholar 

  63. Brannstrom M, Bonello N, Wang LJ, Norman RJ (1995) Effects of tumour necrosis factor alpha (TNF alpha) on ovulation in the rat ovary. Reprod Fertil Dev 7:67–73

    Article  CAS  PubMed  Google Scholar 

  64. Andreani CL, Payne DW, Packman JN et al (1991) Cytokine-mediated regulation of ovarian function. Tumor necrosis factor alpha inhibits gonadotropin-supported ovarian androgen biosynthesis. J Biol Chem 266:6761–6766

    Article  CAS  PubMed  Google Scholar 

  65. Kaipia A, Chun S-Y, Eisenhauer K, Hsueh AJ (1996) Tumor necrosis factor-alpha and its second messenger, ceramide, stimulate apoptosis in cultured ovarian follicles. Endocrinology 137:4864–4870

    Article  CAS  PubMed  Google Scholar 

  66. Soboloff J, Sasaki H, Tsang BK (2001) Follicular stage-dependent tumor necrosis factor α-induced hen granulosa cell integrin production and survival in the presence of transforming growth factor α in vitro. Biol Reprod 65:477–487

    Article  CAS  PubMed  Google Scholar 

  67. Crespo D, Bonnet E, Roher N et al (2010) Cellular and molecular evidence for a role of tumor necrosis factor alpha in the ovulatory mechanism of trout. Reprod Biol Endocrinol 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  68. Szlosarek PW, Grimshaw MJ, Wilbanks GD et al (2007) Aberrant regulation of argininosuccinate synthetase by TNF-α in human epithelial ovarian cancer. Int J cancer 121:6–11

    Article  CAS  PubMed  Google Scholar 

  69. Sethi G, Sung B, Aggarwal BB (2008) TNF: a master switch for inflammation to cancer. Front Biosci 13:5094–5107

    Article  CAS  PubMed  Google Scholar 

  70. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev cancer 9:361–371

    Article  CAS  PubMed  Google Scholar 

  71. Balkwill F (2006) TNF-α in promotion and progression of cancer. Cancer Metastasis Rev 25:409

    Article  CAS  PubMed  Google Scholar 

  72. Szlosarek PW, Grimshaw MJ, Kulbe H et al (2006) Expression and regulation of tumor necrosis factor α in normal and malignant ovarian epithelium. Mol Cancer Ther 5:382–390

    Article  CAS  PubMed  Google Scholar 

  73. Dobrzycka B, Terlikowski SJ, Garbowicz M et al (2009) Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer. Folia Histochem Cytobiol 47:609–613

    PubMed  Google Scholar 

  74. Daraï E, Detchev R, Hugol D, Quang NT (2003) Serum and cyst fluid levels of interleukin (IL)-6, IL-8 and tumour necrosis factor-alpha in women with endometriomas and benign and malignant cystic ovarian tumours. Hum Reprod 18:1681–1685

    Article  PubMed  Google Scholar 

  75. Hotamisligil GS, Budavari A, Murray D, Spiegelman BM (1994) Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 94:1543–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stephens JM, Pekala PH (1991) Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 266:21839–21845

    Article  CAS  PubMed  Google Scholar 

  77. Rojas J, Chávez M, Olivar L et al (2014) Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med. https://doi.org/10.1155/2014/719050

    Article  PubMed  PubMed Central  Google Scholar 

  78. Figueroa F, Davicino R, Micalizzi B et al (2012) Macrophage secretions modulate the steroidogenesis of polycystic ovary in rats: effect of testosterone on macrophage pro-inflammatory cytokines. Life Sci 90:733–739

    Article  CAS  PubMed  Google Scholar 

  79. Thathapudi S, Kodati V, Erukkambattu J et al (2014) Tumor necrosis factor-alpha and polycystic ovarian syndrome: a clinical, biochemical, and molecular genetic study. Genet Test Mol Biomarkers 18:605–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao L, Gu Y, Yin X (2016) High serum tumor necrosis factor-alpha levels in women with polycystic ovary syndrome: a meta-analysis. PLoS ONE 11:1–18. https://doi.org/10.1371/journal.pone.0164021

    Article  CAS  Google Scholar 

  81. Amato G, Conte M, Mazziotti G et al (2003) Serum and follicular fluid cytokines in polycystic ovary syndrome during stimulated cycles. Obstet Gynecol 101:1177–1182

    CAS  PubMed  Google Scholar 

  82. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  83. Nilsson MB, Langley RR, Fidler IJ (2005) Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 65:10794–10800. https://doi.org/10.1158/0008-5472.CAN-05-0623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adashi EY (1990) The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cell series. Endocr Rev 11:454–464. https://doi.org/10.1210/edrv-11-3-454

    Article  CAS  PubMed  Google Scholar 

  85. Łukaszewicz M, Mroczko B, Szmitkowski M (2007) Clinical significance of interleukin-6 (IL-6) as a prognostic factor of cancer disease. Pol Arch Med Wewn 117:247–251. https://doi.org/10.20452/pamw.144

    Article  PubMed  Google Scholar 

  86. Sanguinete MMM, De OPH, Martins-Filho A et al (2017) Serum IL-6 and IL-8 correlate with prognostic factors in ovarian cancer. Immunol Invest 46:677–688. https://doi.org/10.1080/08820139.2017.1360342

    Article  CAS  PubMed  Google Scholar 

  87. Bersinger NA, Kollmann Z, Von Wolff M (2014) Serum but not follicular fluid cytokine levels are increased in stimulated versus natural cycle IVF: a multiplexed assay study. J Reprod Immunol 106:27–33

    Article  CAS  PubMed  Google Scholar 

  88. Díaz PU, Stangaferro ML, Gareis NC, Silvia WJ, Matiller V, Salvetti NR, Rey F, Barberis F, Cattaneo L, HHO (2015) Characterization of persistent follicles induced by prolonged treatment with progesterone in dairy cows: an experimental model for the study of ovarian follicular cysts. Theriogenology 84:1149–1160

    Article  PubMed  Google Scholar 

  89. Abramov Y, Schenker JG, Lewin A et al (1996) Endocrinology: plasma inflammatory cytokines correlate to the ovarian hyperstimulation syndrome. Hum Reprod 11:1381–1386. https://doi.org/10.1093/oxfordjournals.humrep.a019404

    Article  CAS  PubMed  Google Scholar 

  90. Tarkun İ, Çetinarslan B, Türemen E et al (2006) Association between circulating tumor necrosis factor-alpha, interleukin-6, and insulin resistance in normal-weight women with polycystic ovary syndrome. Metab Syndr Relat Disord 4:122–128

    Article  CAS  PubMed  Google Scholar 

  91. González F, Sia CL, Stanczyk FZ et al (2012) Hyperandrogenism exerts an anti-inflammatory effect in obese women with polycystic ovary syndrome. Endocrine 42:726–735. https://doi.org/10.1007/s12020-012-9728-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Samy N, Hashim M, Sayed M, Said M (2009) Clinical significance of inflammatory markers in polycystic ovary syndrome: their relationship to insulin resistance and body mass index. Dis Markers 26:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391

    Article  CAS  PubMed  Google Scholar 

  94. Arici A, Oral E, Bukulmez O et al (1996) Interleukin-8 expression and modulation in human preovulatory follicles and ovarian cells. Endocrinology 137:3762–3769

    Article  CAS  PubMed  Google Scholar 

  95. Rizk B, Aboulghar M, Smitz J, Ron-El R (1997) The role of vascular endothelial growth factor and interleukins in the pathogenesis of severe ovarian hyperstimulation syndrome. Hum Reprod Update 3:255–266

    Article  CAS  PubMed  Google Scholar 

  96. Chang RJ, Gougeon A, Erickson GF (1998) Evidence for a neutrophil–interleukin-8 system in human folliculogenesis. Am J Obstet Gynecol 178:650–657

    Article  CAS  PubMed  Google Scholar 

  97. Goto J, Suganuma N, Takata K et al (2002) Morphological analyses of interleukin-8 effects on rat ovarian follicles at ovulation and luteinization in vivo. Cytokine 20:168–173

    Article  CAS  PubMed  Google Scholar 

  98. Gazvani MR, Bates M, Vince G et al (2000) Follicular fluid concentrations of interleukin-12 and interleukin-8 in IVF cycles. Fertil Steril 74:953–958

    Article  CAS  PubMed  Google Scholar 

  99. Edgell T, Martin-Roussety G, Barker G et al (2010) Phase II biomarker trial of a multimarker diagnostic for ovarian cancer. J Cancer Res Clin Oncol 136:1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang Y, Xu RC, Zhang XL et al (2012) Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine 59:145–155

    Article  CAS  PubMed  Google Scholar 

  101. Fasciani A, D’ambrogio Bocci GG et al (2000) High concentrations of the vascular endothelial growth factor and interleukin-8 in ovarian endometriomata. Mol Hum Reprod 6:50–54

    Article  CAS  PubMed  Google Scholar 

  102. Ene Nicolae CD, Nicolae I (2016) Interleukin 8 serum concentration, but not lactate dehydrogenase activity, positively correlates to CD34 antigen in melanoma tumors. J Immunoass Immunochem 37:463–471

    Article  CAS  Google Scholar 

  103. Yoshimoto T, Yoshimoto T (2014) Cytokine Frontiers. Springer, Tokyo

    Book  Google Scholar 

  104. Cordero MD, Alcocer-Gómez E (2018) Inflammasomes: clinical and therapeutic implications. Springer, Tokyo

    Book  Google Scholar 

  105. Ali DES, Shah M, Ali A et al (2019) Treatment with metformin and combination of metformin plus pioglitazone on serum levels of IL-6 and IL-8 in polycystic ovary syndrome: a randomized clinical trial. Horm Metab Res 51:714–722. https://doi.org/10.1055/a-1018-9606

    Article  CAS  PubMed  Google Scholar 

  106. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  CAS  PubMed  Google Scholar 

  107. Fiorentino DF, Zlotnik A, Mosmann TR et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815–3822

    Article  CAS  PubMed  Google Scholar 

  108. Hashii K, Fujiwara H, Yoshioka S et al (1998) Peripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin-4 and interleukin-10 in corpus luteum function and differentiation. Hum Reprod 13:2738–2744. https://doi.org/10.1093/humrep/13.10.2738

    Article  CAS  PubMed  Google Scholar 

  109. Scarpelli D, Cardellini M, Andreozzi F et al (2006) Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in Caucasian Italian subjects. Diabetes 55:1529–1533

    Article  CAS  PubMed  Google Scholar 

  110. Talaat RM, Mohamed YA, Mohamad EH et al (2016) Interleukin 10 (−1082 G/A) and (−819 C/T) gene polymorphisms in Egyptian women with polycystic ovary syndrome (PCOS). Meta Gene 9:254–258

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sylus A, Hanumanthappa N, Sridhar M et al (2018) Clomiphene Citrate Increases Nitric Oxide, Interleukin-10 and reduces matrix metalloproteinase-9 in women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. https://doi.org/10.1016/j.ejogrb.2018.06.007

    Article  PubMed  Google Scholar 

  112. Karadeniz M, Erdogan M, Zengi A et al (2008) Polymorphism of the interleukin-10 gene in polycystic ovary syndrome. Int J Immunogenet 35:119–123. https://doi.org/10.1111/j.1744-313X.2007.00746.x

    Article  CAS  PubMed  Google Scholar 

  113. Lebel-Binay S, Berger A, Zinzindohoue F et al (2000) Interleukin-18: biological properties and clinical implications. Eur Cytokine Netw 11:15–26

    CAS  PubMed  Google Scholar 

  114. Kohka H, Yoshino T, Iwagaki H et al (1998) Interleukin-18/interferon-γ-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J Leukoc Biol 64:519–527

    Article  CAS  PubMed  Google Scholar 

  115. Dinarello CA (1999) IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103:11–24

    Article  CAS  PubMed  Google Scholar 

  116. Barak V, Elchalal U, Edelstein M et al (2004) Interleukin-18 levels correlate with severe ovarian hyperstimulation syndrome. Fertil Steril 82:415–420. https://doi.org/10.1016/j.fertnstert.2004.03.024

    Article  CAS  PubMed  Google Scholar 

  117. Bornstein SR, Rutkowski H, Vrezas I (2004) Cytokines and steroidogenesis. Mol Cell Endocrinol 215:135–141

    Article  CAS  PubMed  Google Scholar 

  118. Tsuji Y, Adachi S, Koyama K et al (2001) Expression of interleukin-18 and its receptor in mouse ovary. Am J Reprod Immunol 46:349–357

    Article  CAS  PubMed  Google Scholar 

  119. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12:53–72

    Article  CAS  PubMed  Google Scholar 

  120. Vidal-Vanaclocha F, Mendoza L, Telleria N et al (2006) Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 25:417–434

    Article  CAS  PubMed  Google Scholar 

  121. Okamura H (2003) Interleukin-18 [IL-1F4]. In: The cytokine handbook. Elsevier, Amsterdam

  122. Gaggero A, De Ambrosis A, Mezzanzanica D et al (2004) A novel isoform of pro-interleukin-18 expressed in ovarian tumors is resistant to caspase-1 and-4 processing. Oncogene 23:7552–7560

    Article  CAS  PubMed  Google Scholar 

  123. Escobar-Morreale HF, Villuendas G, Botella-Carretero JI et al (2003) Obesity, and not insulin resistance, is the major determinant of serum inflammatory cardiovascular risk markers in pre-menopausal women. Diabetologia 46:625–633

    Article  CAS  PubMed  Google Scholar 

  124. Gutman G, Soussan-Gutman L, Malcov M et al (2004) Interleukin-18 is high in the serum of IVF pregnancies with ovarian hyperstimulation syndrome. Am J Reprod Immunol 51:381–384

    Article  PubMed  Google Scholar 

  125. Lédée-Bataille N, Bonnet-Chea K, Hosny G et al (2005) Role of the endometrial tripod interleukin-18, -15, and -12 in inadequate uterine receptivity in patients with a history of repeated in vitro fertilization–embryo transfer failure. Fertil Steril 83:598–605. https://doi.org/10.1016/j.fertnstert.2004.11.021

    Article  CAS  PubMed  Google Scholar 

  126. Sugama S, Wirz SA, Barr AM et al (2004) Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine treatment. Neuroscience 128:451–458

    Article  CAS  PubMed  Google Scholar 

  127. Blankenberg S, Tiret L, Bickel C et al (2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 106:24–30

    Article  CAS  PubMed  Google Scholar 

  128. Esposito K, Pontillo A, Ciotola M et al (2002) Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 87:3864–3866. https://doi.org/10.1210/jcem.87.8.8781

    Article  CAS  PubMed  Google Scholar 

  129. Sugama S, Wang N, Shimokawa N et al (2006) The adrenal gland is a source of stress-induced circulating IL-18. J Neuroimmunol 172:59–65

    Article  CAS  PubMed  Google Scholar 

  130. Long X, Li R, Yang Y, Qiao J (2017) Overexpression of IL-18 in the proliferative phase endometrium of patients with polycystic ovary syndrome. Reprod Sci 24:252–257. https://doi.org/10.1177/1933719116653681

    Article  CAS  PubMed  Google Scholar 

  131. Dawood A, Alkafrawy N, Saleh S et al (2018) The relationship between IL-18 and atherosclerotic cardiovascular risk in Egyptian lean women with polycystic ovary syndrome. Gynecol Endocrinol 34:294–297

    Article  CAS  PubMed  Google Scholar 

  132. Sathyapalan T, Atkin SL (2010) Mediators of inflammation in polycystic ovary syndrome in relation to adiposity. Mediators Inflamm. https://doi.org/10.1155/2010/758656

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yang Y, Qiao J, Li R, Li M-Z (2011) Is interleukin-18 associated with polycystic ovary syndrome? Reprod Biol Endocrinol 9:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kaya C, Pabuccu R, Berker B, Satiroglu H (2009) Plasma interleukin-18 levels are increased in the polycystic ovary syndrome: relationship of carotid intima-media wall thickness and cardiovascular risk factors. Fertil Steril 93:1200–1207. https://doi.org/10.1016/j.fertnstert.2008.10.070

    Article  CAS  PubMed  Google Scholar 

  135. Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  CAS  PubMed  Google Scholar 

  136. Baekkevold ES, Roussigné M, Yamanaka T et al (2003) Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 163:69–79. https://doi.org/10.1016/S0002-9440(10)63631-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oboki K, Ohno T, Kajiwara N et al (2010) IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci 107:18581–18586

    Article  CAS  PubMed  Google Scholar 

  138. Bonilla WV, Fröhlich A, Senn K et al (2012) The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335:984–989

    Article  CAS  PubMed  Google Scholar 

  139. Carlock CI, Wu J, Zhou C et al (2020) Unique temporal and spatial expression patterns of IL-33 in ovaries during ovulation and estrous cycle are associated with ovarian tissue homeostasis. J Immunol. https://doi.org/10.4049/jimmunol.1400381

    Article  Google Scholar 

  140. Wu J, Carlock C, Zhou C et al (2015) IL-33 Is Required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration. J Immunol 194:2140–2147. https://doi.org/10.4049/jimmunol.1402503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santulli P, Borghese B, Chouzenoux S et al (2012) Serum and peritoneal interleukin-33 levels are elevated in deeply infiltrating endometriosis. Hum Reprod 27:2001–2009. https://doi.org/10.1093/humrep/des154

    Article  CAS  PubMed  Google Scholar 

  142. Granne I, Southcombe JH, Snider JV et al (2011) ST2 and IL-33 in pregnancy and pre-eclampsia. PLoS ONE 6:e24463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Al-Taie WF, Al-Ruaei ZM, Hassan AJ (2014) Interleukin-33, oxidaive stres in prediabetic polycystic ovary syndrome patients with insulin resistance. J Fac Med Baghadad 56:113–117

    Google Scholar 

  144. Miller AM (2011) Role of IL-33 in inflammation and disease. J Inflamm 8:22

    Article  CAS  Google Scholar 

  145. Karakose M, Demircan K, Tutal E et al (2016) Clinical significance of ADAMTS1, ADAMTS5, ADAMTS9 aggrecanases and IL-17A, IL-23, IL-33 cytokines in polycystic ovary syndrome. J Endocrinol Invest 39:1269–1275. https://doi.org/10.1007/s40618-016-0472-2

    Article  CAS  PubMed  Google Scholar 

  146. Demyanets S, Tentzeris I, Jarai R et al (2014) An increase of interleukin-33 serum levels after coronary stent implantation is associated with coronary in-stent restenosis. Cytokine 67:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang H-F, Xie S-L, Chen Y-X et al (2012) Altered serum levels of IL-33 in patients with advanced systolic chronic heart failure: correlation with oxidative stress. J Transl Med 10:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Duleba AJ, Dokras A (2012) Is PCOS an inflammatory process? Fertil Steril 97:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ (2004) C-reactive protein and the risk of incident colorectal cancer. JAMA 291:585–590

    Article  CAS  PubMed  Google Scholar 

  150. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jonjić N, Peri G, Bernasconi S et al (1992) Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 176:1165–1174

    Article  PubMed  Google Scholar 

  153. O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85:473–483

    Article  PubMed  PubMed Central  Google Scholar 

  154. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Seminars in cancer biology. Elsevier, Amsterdam, pp 433–439

    Google Scholar 

  155. Pikarsky E, Porat RM, Stein I et al (2004) NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    Article  CAS  PubMed  Google Scholar 

  156. McSorley MA, Alberg AJ, Allen DS et al (2007) C-reactive protein concentrations and subsequent ovarian cancer risk. Obstet Gynecol 109:933–941

    Article  CAS  PubMed  Google Scholar 

  157. Avall EL, Nordstroem L, Sjövall K, Eneroth P (1989) Evaluation of seven different tumour markers for the establishment of tumour marker panels in gynecologic malignancies. Eur J Gynaecol Oncol 10:395–405

    Google Scholar 

  158. Hefler LA, Concin N, Hofstetter G et al (2008) Serum C-reactive protein as independent prognostic variable in patients with ovarian cancer. Clin cancer Res 14:710–714

    Article  CAS  PubMed  Google Scholar 

  159. Dobrzycka B, Mackowiak-Matejczyk B, Terlikowska KM et al (2013) Serum levels of IL-6, IL-8 and CRP as prognostic factors in epithelial ovarian cancer. Eur Cytokine Netw 24:106–113

    Article  CAS  PubMed  Google Scholar 

  160. Kelly CCJ, Lyall H, Petrie JR et al (2001) Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 86:2453–2455

    Article  CAS  PubMed  Google Scholar 

  161. Engin-Üstün Y, Üstün Y, Meydanli MM et al (2006) Are polycystic ovaries associated with cardiovascular disease risk as polycystic ovary syndrome? Gynecol Endocrinol 22:324–328

    Article  PubMed  Google Scholar 

  162. Cakal E, Ustun Y, Engin-Ustun Y et al (2011) Serum vaspin and C-reactive protein levels in women with polycystic ovaries and polycystic ovary syndrome. Gynecol Endocrinol 27:491–495

    Article  CAS  PubMed  Google Scholar 

  163. Lakhani K, Prelevic GM, Seifalian AM et al (2004) Polycystic ovary syndrome, diabetes and cardiovascular disease: risks and risk factors. J Obstet Gynaecol 24:613–621

    Article  CAS  PubMed  Google Scholar 

  164. Festa A, D’Agostino R Jr, Howard G et al (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 102:42–47

    Article  CAS  PubMed  Google Scholar 

  165. Engeli S, Feldpausch M, Gorzelniak K et al (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52:942–947

    Article  CAS  PubMed  Google Scholar 

  166. Elci E, Kaya C, Cim N et al (2017) Evaluation of cardiac risk marker levels in obese and non-obese patients with polycystic ovaries. Gynecol Endocrinol 33:43–47. https://doi.org/10.1080/09513590.2016.1203893

    Article  CAS  PubMed  Google Scholar 

  167. Escobar-Morreale HF, Luque-Ramírez M, González F (2011) Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril 95:1048-1058.e2. https://doi.org/10.1016/j.fertnstert.2010.11.036

    Article  CAS  PubMed  Google Scholar 

  168. Fathi FH (2018) C-reactive protein and adiposity in women with polycystic ovary syndrome. Tikrit J Pure Sci 23:47–51

    Google Scholar 

  169. Neelaveni K, Menon R, Sahay R, Chandhrasekara Reddy G (2016) CRP levels and endothelial function in young women with PCOS. J Evol Med Dent Sci 5:5783–5786. https://doi.org/10.14260/jemds/2016/1305

    Article  CAS  Google Scholar 

  170. Conway G, Dewailly D, Diamanti-Kandarakis E et al (2014) The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol 171:P1–P29

    Article  CAS  PubMed  Google Scholar 

  171. Radosh L (2009) Drug treatments for polycystic ovary syndrome. Am Fam Physician 79:671–676

    PubMed  Google Scholar 

  172. PrabhuValsala YDGA (2020) γ-Linolenic acid ameliorates DHEA induced pro-inflammatory response in polycystic ovary syndrome via PPAR-γ signaling in rats. Reprod Biol 20:348–356. https://doi.org/10.1016/j.repbio.2020.05.004

    Article  Google Scholar 

  173. Pawelczak M, Rosenthal J, Milla S et al (2014) Evaluation of the pro-inflammatory cytokine tumor necrosis factor-α in adolescents with polycystic ovary syndrome. J Pediatr Adolesc Gynecol 27:356–359. https://doi.org/10.1016/j.jpag.2014.01.104

    Article  PubMed  PubMed Central  Google Scholar 

  174. Xiong Y, Liang X, Yang X et al (2011) Low-grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome. Eur J Obstet Gynecol Reprod Biol 159:148–150

    Article  CAS  PubMed  Google Scholar 

  175. Oróstica L, Astorga I, Plaza-Parrochia F et al (2016) Proinflammatory environment and role of TNF-α in endometrial function of obese women having polycystic ovarian syndrome. Int J Obes 40:1715–1722. https://doi.org/10.1038/ijo.2016.154

    Article  CAS  Google Scholar 

  176. Peng Z, Sun Y, Lv X et al (2016) Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0148531

    Article  CAS  Google Scholar 

  177. Ghowsi M, Khazali H, Sisakhtnezhad S (2018) Evaluation of Tnf-α and Il-6 mRNAs expressions in visceral and subcutaneous adipose tissues of polycystic ovarian rats and effects of resveratrol. Iran J Basic Med Sci 21:165–174. https://doi.org/10.22038/ijbms.2017.24801.6167

    Article  PubMed  PubMed Central  Google Scholar 

  178. Adams J, Liu Z, Ren YA et al (2016) Enhanced inflammatory transcriptome in the granulosa cells of women with polycystic ovarian syndrome. J Clin Endocrinol Metab 101:3459–3468. https://doi.org/10.1210/jc.2015-4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ravishankar Ram M, Sundararaman PG, Mahadevan S, Malathi R (2005) Cytokines and leptin correlation in patients with polycystic ovary syndrome: biochemical evaluation in south Indian population. Reprod Med Biol 4:247–254

    Article  PubMed  PubMed Central  Google Scholar 

  180. Xue J, Li X, Liu P et al (2019) Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice. Endocr J 66:859–870. https://doi.org/10.1507/endocrj.EJ18-0567

    Article  CAS  PubMed  Google Scholar 

  181. Zhang T, Tian F, Huo R et al (2017) Detection of dendritic cells and related cytokines in follicular fluid of patients with polycystic ovary syndrome. Am J Reprod Immunol 78:1–6. https://doi.org/10.1111/aji.12717

    Article  CAS  Google Scholar 

  182. Artimani T, Karimi J, Mehdizadeh M et al (2018) Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecol Endocrinol 34:148–152. https://doi.org/10.1080/09513590.2017.1371691

    Article  CAS  PubMed  Google Scholar 

  183. Escobar-Morreale HF, Botella-Carretero JI, Villuendas G et al (2004) Serum interleukin-18 concentrations are increased in the polycystic ovary syndrome: relationship to insulin resistance and to obesity. J Clin Endocrinol Metab 89:806–811. https://doi.org/10.1210/jc.2003-031365

    Article  CAS  PubMed  Google Scholar 

  184. Zhang H, Wang X, Xu J et al (2020) IL-18 and IL-18 binding protein concentration in ovarian follicular fluid of women with unexplained infertility to PCOS during in vitro fertilization. J Reprod Immunol 138:103083

    Article  CAS  PubMed  Google Scholar 

  185. Weiping L, Qingfeng C, Shikun M et al (2006) Elevated serum RBP4 is associated with insulin resistance in women with polycystic ovary syndrome. Endocrine 30:283–287. https://doi.org/10.1007/s12020-006-0006-3

    Article  PubMed  Google Scholar 

  186. Ruan X, Dai Y (2009) Study on chronic low-grade inflammation and influential factors of polycystic ovary syndrome. Med Princ Pract 18:118–122. https://doi.org/10.1159/000189809

    Article  PubMed  Google Scholar 

  187. Bannigida DM, Nayak BS, Vijayaraghavan R (2020) Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem 126:183–186. https://doi.org/10.1080/13813455.2018.1499120

    Article  CAS  PubMed  Google Scholar 

  188. Benson S, Janssen OE, Hahn S et al (2008) Obesity, depression, and chronic low-grade inflammation in women with polycystic ovary syndrome. Brain Behav Immun 22:177–184. https://doi.org/10.1016/j.bbi.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  189. Bednarska S, Siejka A (2017) The pathogenesis and treatment of polycystic ovary syndrome: what’s new. Adv Clin Exp Med 26:359–367

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Vellore Institute of Technology, Vellore for their valuable support.

Funding

This work was supported by the “VIT SEED GRANT” and ICMRNational Task Force Project [F.No. 5/7/482/2010-RBMH&CH].

Author information

Authors and Affiliations

Authors

Contributions

VGA contributed to project development, planning, data management and manuscript editing. YDP participated in project development, data analysis and checking and manuscript editing. SAG participated in data collection and manuscript writing. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Abilash Valsala Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham Gnanadass, S., Divakar Prabhu, Y. & Valsala Gopalakrishnan, A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): an update. Arch Gynecol Obstet 303, 631–643 (2021). https://doi.org/10.1007/s00404-020-05951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05951-2

Keywords

Navigation