Skip to main content
Log in

Distress response in granulosa cells of women affected by PCOS with or without insulin resistance

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In this study, we investigated whether metabolic dysfunction in women with Polycystic ovarian syndrome (PCOS) induces granulosa cell (GC) stress and activates in the endoplamatic reticulum and the mitochondria (UPRer and UPRmt, respectively).

Methods

Women who were diagnosed with PCOS (based on the Rotterdam criteria), were divided into two groups, PCOS with insulin resistance (PCOS-IR; n = 20) and PCOS with no insulin resistance (PCOS-nIR; n = 20), and compared to healthy oocyte donors (CONT; n = 20). Insulin resistance (IR) was assessed on the results of homeostasis model assessment (HOMA) that determines IR using the concentration of fasting plasma glucose and fasting insuline. Expression of UPRer genes (i.e., IRE1, ATF4, ATF6, XBP1, BIP, and CHOP), and UPRmt genes (i.e., HSP60, HSP10, CLPP, and HSP40) was assessed in cumulus GCs by qRT-PCR.

Results

We found that several genes involved in UPRer and UPRmt were overexpressed in the GCs of PCOS-IR and PCOS-nIR compared to CONT. IRE1, ATF4 and XBP1, that are activated by ER stress, were significantly overexpressed in PCOS-IR compared to CONT. BIP and CHOP were overexpressed in PCOS groups compared to CONT. HSP10 and HSP40 were upregulated in PCOS-IR and PCOS-nIR groups compared to the CONT. HSP60 and CLPP showed no statistical different expression in PCOS-IR and PCOS-nIR compared to CONT group.

Conclusion

Our findings suggest that the GCs of women with PCOS (with or without IR) are metabolically distressed and upregulate UPRer and UPRmt genes. Our study contributes to the understanding of the molecular mechanisms underlying the pathological changes that occur in the follicular microenvironment of women with PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data are included in the paper.

References

  1. M. Cozzolino, E. Seli, Mitochondrial function in women with polycystic ovary syndrome. Curr. Opin. Obstet. Gynecol. 32, 205–12. (2020)

    Article  Google Scholar 

  2. D.A. Dumesic, S.E. Oberfield, E. Stener-Victorin, J.C. Marshall, J.S. Laven, R.S. Legro, Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr. Rev. 36, 487–525 (2015)

    Article  CAS  Google Scholar 

  3. J.K. Zawadski, A. Dunaif. Diagnostic Criteria for Polycystic Ovary Syndrome: Towards a Rational Approach. In: Dunaif, A., Givens, J.R. and Haseltine, F., Eds., Polycystic Ovary Syndrome, Blackwell Scientific, Boston, 377–384 (1992)

  4. R. Azziz, E. Carmina, D. Dewailly, E. Diamanti-Kandarakis, H.F. Escobar-Morreale, W. Futterweit et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488 (2009)

    Article  Google Scholar 

  5. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group, Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004)

    Article  Google Scholar 

  6. F.J. Broekmans, E.A. Knauff, O. Valkenburg, J.S. Laven, M.J. Eijkemans, B.C. Fauser, PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors. BJOG 113, 1210–1217 (2006)

    Article  CAS  Google Scholar 

  7. J. Adams, Z. Liu, Y.A. Ren, W.S. Wun, W. Zhou, S. Kenigsberg et al. Enhanced Inflammatory Transcriptome in the Granulosa Cells of Women With Polycystic Ovarian Syndrome. J. Clin. Endocrinol. Metab. 101, 3459–3468 (2016)

    Article  CAS  Google Scholar 

  8. N.B. Karuputhula, R. Chattopadhyay, B. Chakravarty, K. Chaudhury, Oxidative status in granulosa cells of infertile women undergoing IVF. Syst. Biol. Reprod. Med. 59, 91–98 (2013)

    Article  CAS  Google Scholar 

  9. J. Schmidt, B. Weijdegard, A.L. Mikkelsen, S. Lindenberg, L. Nilsson, M. Brannstrom, Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol. Hum. Reprod. 20, 49–58 (2014)

    Article  CAS  Google Scholar 

  10. M. Cozzolino, A. Vitagliano, L. Pellegrini, M. Chiurazzi, A. Andriasani, G. Ambrosini, N. Garrido, Therapy with probiotics and synbiotics for polycystic ovarian syndrome: a systematic review and meta-analysis. Eur. J. Nutr. 59(7), 2841–2856 (2020).

    Article  Google Scholar 

  11. J. Kataoka, I. Larsson, S. Bjorkman, B. Eliasson, J. Schmidt, E. Stener-Victorin, Prevalence of polycystic ovary syndrome in women with severe obesity - Effects of a structured weight loss programme. Clin. Endocrinol. (Oxf.) 91, 750–758 (2019)

    Article  CAS  Google Scholar 

  12. S. Sam, Obesity and Polycystic Ovary Syndrome. Obes Manag. 3(2), 69–73 (2007)

    Article  Google Scholar 

  13. B.O. Yildiz, E.S. Knochenhauer, R. Azziz, Impact of obesity on the risk for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 162–168 (2008)

    Article  CAS  Google Scholar 

  14. N. Takahashi, M. Harada, Y. Hirota, E. Nose, J.M. Azhary, H. Koike et al. Activation of Endoplasmic Reticulum Stress in Granulosa Cells from Patients with Polycystic Ovary Syndrome Contributes to Ovarian Fibrosis. Sci. Rep. 7(10824), 017–11252-7 (2017)

    Google Scholar 

  15. J.M.K. Azhary, M. Harada, N. Takahashi, E. Nose, C. Kunitomi, H. Koike et al. Endoplasmic Reticulum Stress Activated by Androgen Enhances Apoptosis of Granulosa Cells via Induction of Death Receptor 5 in PCOS. Endocrinology 160, 119–132 (2019)

    Article  CAS  Google Scholar 

  16. P. Walter, D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011)

    Article  CAS  Google Scholar 

  17. S.Z. Hasnain, R. Lourie, I. Das, A.C. Chen, M.A. McGuckin, The interplay between endoplasmic reticulum stress and inflammation. Immunol. Cell Biol. 90, 260–70. (2012)

    Article  CAS  Google Scholar 

  18. J. Grootjans, A. Kaser, R.J. Kaufman, R.S. Blumberg, The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016)

    Article  CAS  Google Scholar 

  19. D.T. Rutkowski, R.J. Kaufman, A trip to the ER: coping with stress. Trends Cell Biol. 14, 20–28 (2004)

    Article  CAS  Google Scholar 

  20. D. Ron, P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007)

    Article  CAS  Google Scholar 

  21. M. Schroder, R.J. Kaufman, The mammalian unfolded protein response. Annu Rev. Biochem 74, 739–789 (2005)

    Article  Google Scholar 

  22. C. Xu, B. Bailly-Maitre, J.C. Reed, Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Investig. 115, 2656–2664 (2005)

    Article  CAS  Google Scholar 

  23. Y.C. Chae, A. Angelin, S. Lisanti, A.V. Kossenkov, K.D. Speicher, H. Wang et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat. Commun. 4, 2139 (2013)

    Article  Google Scholar 

  24. J.E. Aldridge, T. Horibe, N.J. Hoogenraad, Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2, e874 (2007)

    Article  Google Scholar 

  25. A.J. Caplan, A.K. Mandal, M.A. Theodoraki, Molecular chaperones and protein kinase quality control. Trends Cell Biol. 17, 87–92 (2007)

    Article  CAS  Google Scholar 

  26. T. Wang, E. Babayev, Z. Jiang, G. Li, M. Zhang, E. Esencan, et al. Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell. 17(4), e12784 (2018)

    Article  Google Scholar 

  27. Z. Huang, D. Wells, The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 16, 715–725 (2010)

    Article  CAS  Google Scholar 

  28. A. Uyar, S. Torrealday, E. Seli, Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99, 979–97. (2013)

    Article  CAS  Google Scholar 

  29. M. Harada, E. Nose, N. Takahashi, Y. Hirota, T. Hirata, O. Yoshino et al. Evidence of the activation of unfolded protein response in granulosa and cumulus cells during follicular growth and maturation. Gynecol. Endocrinol. 31, 783–787 (2015)

    Article  CAS  Google Scholar 

  30. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group, Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004)

    Article  Google Scholar 

  31. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)

    Article  CAS  Google Scholar 

  32. M. Cozzolino, M. Cruz, A. Patel, J. Patel, A. Pacheco, J.A. Garcia-Velasco, Serum and follicular fluid Stem Cell Factor assay in IVF poor responder and normal responder patients: a predictive biomarker of oocyte retrieval. Arch. Gynecol. Obstet. 300, 447–54. (2019)

    Article  CAS  Google Scholar 

  33. R. Azziz, How polycystic ovary syndrome came into its own. F. S Sci. 2, 2–10 (2021)

    Google Scholar 

  34. L. Harborne, R. Fleming, H. Lyall, J. Norman, N. Sattar, Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 361, 1894–1901 (2003)

    Article  CAS  Google Scholar 

  35. A.S. Lee, Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 14(4), 263–76. (2004)

    Article  CAS  Google Scholar 

  36. P. Walter, D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011)

    Article  CAS  Google Scholar 

  37. C.M. Haynes, K. Petrova, C. Benedetti, Y. Yang, D. Ron, ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467–480 (2007)

    Article  CAS  Google Scholar 

  38. T. Nakagawa, H. Zhu, N. Morishima, E. Li, J. Xu, B.A. Yankner et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103 (2000)

    Article  CAS  Google Scholar 

  39. J. Jin, Y. Ma, X. Tong, W. Yang, Y. Dai, Y. Pan et al. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum. Reprod. 35, 1145–58. (2020)

    Article  CAS  Google Scholar 

  40. M. Harada, E. Nose, N. Takahashi, Y. Hirota, T. Hirata, O. Yoshino et al. Evidence of the activation of unfolded protein response in granulosa and cumulus cells during follicular growth and maturation. Gynecol. Endocrinol. 31, 783–787 (2015)

    Article  CAS  Google Scholar 

  41. H.J. Park, J.Y. Park, J.W. Kim, S.G. Yang, J.M. Jung, M.J. Kim, et al. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J. Pineal. Res. 2018;64:https://doi.org/10.1111/jpi.12458. Epub 2017 Dec 4.

  42. L.L. Wu, D.L. Russell, R.J. Norman, R.L. Robker, Endoplasmic reticulum (ER) stress in cumulus-oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (DeltaPsi m), and embryo development. Mol. Endocrinol. 26, 562–573 (2012)

    Article  CAS  Google Scholar 

  43. L.M. Cree, E.R. Hammond, A.N. Shelling, M.C. Berg, J.C. Peek, M.P. Green, Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones. Hum. Reprod. 30, 1410–1420 (2015)

    Article  CAS  Google Scholar 

  44. J. Liu, L.F. Luo, D.L. Wang, W.X. Wang, J.L. Zhu, Y.C. Li et al. Cadmium induces ovarian granulosa cell damage by activating PERK-eIF2alpha-ATF4 through endoplasmic reticulum stress. Biol. Reprod. 100, 292–299 (2019)

    Article  Google Scholar 

  45. K. Vasickova, L. Moran, D. Gurin, P. Vanhara, Alleviation of endoplasmic reticulum stress by tauroursodeoxycholic acid delays senescence of mouse ovarian surface epithelium. Cell Tissue Res. 374, 643–52. (2018)

    Article  CAS  Google Scholar 

  46. J. Lee, U. Ozcan, Unfolded protein response signaling and metabolic diseases. J. Biol. Chem. 289, 1203–1211 (2014)

    Article  CAS  Google Scholar 

  47. S. Brenjian, A. Moini, N. Yamini, L. Kashani, M. Faridmojtahedi, M. Bahramrezaie et al. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am. J. Reprod. Immunol. 83, e13186 (2020)

    Article  Google Scholar 

  48. D. Lanneau, M. Brunet, E. Frisan, E. Solary, M. Fontenay, C. Garrido, Heat shock proteins: essential proteins for apoptosis regulation. J. Cell Mol. Med. 12, 743–761 (2008)

    Article  CAS  Google Scholar 

  49. L. Wang, J. Tang, L. Wang, F. Tan, H. Song, J. Zhou et al. Oxidative stress in oocyte aging and female reproduction. J. Cell Physiol. 236, 7966–83. (2021)

    Article  CAS  Google Scholar 

  50. E. Panagodimou, V. Koika, F. Markatos, A. Kaponis, G. Adonakis, N.A. Georgopoulos et al. Expression stability of ACTB, 18S, and GAPDH in human placental tissues from subjects with PCOS and controls: GAPDH expression is increased in PCOS. Hormones (Athens) 21, 329–33. (2022)

    Article  Google Scholar 

  51. M. Cozzolino, S. Herraiz, S. Titus, L. Roberts, M. Romeu, I. Peinado, R.T. Scott, A. Pellicer, E. Seli, Transcriptomic landscape of granulosa cells and peripheral blood mononuclear cells in women with PCOS compared to young poor responders and women with normal response. Hum. Reprod. 37(6), 1274–1286 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the participants of the study for making this work possible, as well as the medical staff that participated in sample collection and processing.

Author information

Authors and Affiliations

Authors

Contributions

M.C. take primary responsibility for the paper, collected data, made statistical analysis, and write the paper; S.H. edited the final version of the paper; Y.C., J.A.G.V., B.T., A.P., S.R., G.K., AB, recruited patients and collected data and E.S. reviewed the final version of the paper.

Funding

This study was supported by a grant from Foundation for Embryonic Competence to E.S.

Corresponding author

Correspondence to Mauro Cozzolino.

Ethics declarations

Conflict of interest

M.C., S.H., Y.C., J.A.G.V., B.T., A.P., S.R., G.K. A.B., A.P. declares no competing interests concerning this research. E.S. is a consultant for and receives research funding from the Foundation for Embryonic Competence.

Consent for publication

All patients were informed and gave written consent.

Ethical approval and consent to participate

All the procedures per- formed in the studies that involved human participants were made under the ethical standards of the Institutional and National Research Committee, and also with the 1964 Declaration of Helsinki as well as its later amendments, or comparable ethical standards. All study procedures were approved and conducted according to the Institutional Review Board of Hospital Universitario Puerta de Hierro, Madrid, Spain (1812-MAD-099-MC). Patients signed an informed consense.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzolino, M., Herraiz, S., Cakiroglu, Y. et al. Distress response in granulosa cells of women affected by PCOS with or without insulin resistance. Endocrine 79, 200–207 (2023). https://doi.org/10.1007/s12020-022-03192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03192-8

Keywords

Navigation