Skip to main content

Advertisement

Log in

Expression of prolactin receptors in the duodenum, kidneys and skeletal system during physiological and sulpiride-induced hyperprolactinaemia

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Introduction and aim

Hyperprolactinaemia in pregnancy leads to mild and reversible changes in the maternal skeletal system, and medicamentous hyperprolactinemia causes more detrimental effects. We conducted an experimental study to evaluate differences between Prlr gene expression in the duodenum, vertebrae and kidneys during physiological and medicamentous hyperprolactinaemia, which could influence calcium homeostasis.

Methods

Experimental animals (18 weeks old, Wistar female rats) were divided as follows: group P (nine rats that were 3 weeks pregnant), group M (ten rats that were intramuscularly administrated sulpiride (10 mg/kg) twice daily for 3 weeks), and the control group (C, ten age-matched nulliparous rats, 18-week-old). Laboratory investigations included measurements of serum ionized calcium, phosphorus, urinary calcium and phosphorus excretion, osteocalcin (OC), serum procollagen type 1 N-terminal propeptide (P1NP), vitamin D, parathyroid hormone (PTH) and prolactin (PRL). Relative quantification of gene expression for prolactin receptors in the duodenum, vertebrae and kidneys was determined using real-time PCR.

Results

Expression of the Prlr gene was significantly higher in the duodenum (p < 0.001) and lower in vertebrae (p < 0.001) and kidneys (p < 0.01) in rats with physiological hyperprolactinaemia (PHP) than in the control group. Significantly lower Prlr expression in the duodenum was verified (p < 0.001), along with increased Prlr gene expression in vertebrae (p < 0.001) and kidneys (p < 0.01), in rats with medicamentous hyperprolactinaemia (MHP) than in the C group.

Conclusions

Downregulation of Prlr gene expression in the duodenum may explain the diminished intestinal calcium absorption in medicamentous hyperprolactinaemia. Prolactin takes calcium from the skeletal system following increased Prlr gene expression in the vertebrae to maintain calcium homeostasis, which increases the harmful effect on bone metabolism compared to that of physiological hyperprolactinaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Goffin, N. Binart, P. Touraine, P.A. Kelly, Prolactin: the new biology of an old hormone. Annu. Rev. Physiol. 64, 47–67 (2002)

    Article  CAS  Google Scholar 

  2. A. Ouhtit, P.A. Kelly, G. Morel, Visualization of gene expression of short and long forms of prolactin receptor in rat digestive tissues. Am. J. Physiol. 266, 807–815 (1994)

    Google Scholar 

  3. N. Bataille-Simoneau, K. Gerland, D. Chappard, M.F. Basle, L. Mercier, Expression of prolactin receptors in human osteosarcoma cells. Biochem. Biophys. Res. Commun. 229, 323–328 (1996)

    Article  CAS  Google Scholar 

  4. N. Charoenphandhu, K. Tudpor, K. Thongchote, W. Saengamnart, S. Puntheeranurak, N. Krishnamra, High-calcium diet modulates effects of long term prolactin exposure on the cortical content in ovariectomized rats. Am. J. Physiol. Endocrinol. Metab. 292, 443–452 (2007)

    Article  Google Scholar 

  5. P. Clement-Lacroix, C. Ormandy, L. Lepescheux, P. Ammann, D. Damotte, V. Goffin, B. Bouchard, M. Amling, M. Gaillard-Kelly, N. Binart, N. Baron, P.A. Kelly , Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 140, 96–105 (1999).

    Article  CAS  Google Scholar 

  6. C. Bole-Feysot, H. Goffin, M. Edery, N. Binart, P.A. Kelly, Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19, 225–268 (1998)

    Article  CAS  Google Scholar 

  7. N. Charoenphandhu, N. Krishnamara, Prolactin is an important regulator of intestinal calcium transport. Can. J. Physiol. Pharmacol. 85(6), 569–581 (2007)

    Article  CAS  Google Scholar 

  8. K. Thongchote, N. Charoenphandhu, N. Krishnamra, High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J. Physiol. Sci. 58(1), 39–45 (2008)

    Article  CAS  Google Scholar 

  9. C.S. Kovacs, Calcium and bone metabolism in pregnancy and lactation. J. Clin. Endocrinol. Metab. 86(6), 2344–2348 (2001)

    CAS  PubMed  Google Scholar 

  10. C. Karlsson, K.J. Obrant, M. Karlsson, Pregnancy and lactation confer reversible bone loss in humans. Osteoporos. Int. 12, 828–834 (2001)

    Article  CAS  Google Scholar 

  11. F.F. Bezerra, L.M. Mendonca, E.C. Lobato, K.O. O’Brein, C.M. Donagelo, Bone mass is recovered from lactation to postwening in adolescent mothers with low calcium intakes. Am. J. Clin. Nutr. 80(5), 1322–1326 (2004)

    Article  CAS  Google Scholar 

  12. E.A. Streeten, K.A. Ryan, D.J. McBride, T.I. Pollin, A.R. Shuldiner, B.D. Mitchell, The relationship between parity and bone mineral density in women characterized by a homogeneous lifestyle and high parity. J. Clin. Endocrinol. Metab. 90(8), 4536–4541 (2005)

    Article  CAS  Google Scholar 

  13. J. Lenora, S. Lekamwasam, M.K. Karlsson, Effects of multiparity and prolonged breast-feed. maternal bone mineral density: a community-based cross-sectional study. BMC. Women’s. Health. 9, 19–25 (2009).

    Article  Google Scholar 

  14. D.T. Gold, S. Solimeo, Osteoporosis and depression: a historical perspective. Curr. Osteoporos. Rep. 4, 134–139 (2006)

    Article  Google Scholar 

  15. M. Misra, G.I. Papakostas, A. Klibanski, Effects of psychiatric disorders and psychotropic medications on prolactin and bone metabolism. J. Clin. Psychiatry. 65, 1607–1618 (2004)

    Article  CAS  Google Scholar 

  16. J. Yang, S.H. Joe, M.S. Lee, Y.H. Ko, I.K. Jung, S.H. Kim, Effects of long-term combination treatment with valproate and atypical antipsychotics on bone mineral density and bone metabolism in premenopausal patients with bipolar disorder: a preliminary study. Psychiatry. Investig. 8, 256–261 (2011)

    Article  CAS  Google Scholar 

  17. P.M. Haddad, A. Wieck, Antipsychotic-induced hyperprolactinemia: mechanisms, clinical features and management. Drugs. 64, 2291–2314 (2004)

    Article  CAS  Google Scholar 

  18. T. Kunimatsu, J. Kimura, H. Funabashi, T. Inoue, T. Seki, The antipsychotics haloperidol and chlorpromazine increase bone metabolism and induce osteopenia in female rats. Regul. Toxicol. Pharmacol. 58(3), 360–368 (2010)

    Article  CAS  Google Scholar 

  19. R.C. Khanal, I. Nemere, Endocrine regulation of calcium transport in epithelia. Clin. Exp. Pharmacol. Physiol. 35, 1277–1287 (2008)

    Article  CAS  Google Scholar 

  20. N. Ben-Jonathan, C.R. LaPensee, E.W. LaPensee, What can we learn from rodents about prolactin in humans? Endocr. Rev. 29(1), 1–41 (2008)

    Article  CAS  Google Scholar 

  21. K. Scarbrough, N.G. Weiland, G.H. Larson, M.A. Sortino, S.F. Chiu, A.N. Hirshfield, P.M.Wise , Measurement of peptide secretion and gene expression in the same cell. Mol. Endocrinol. 5, 134–142 (1991).

    Article  CAS  Google Scholar 

  22. M.J. Soares, The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2, 51 (2004)

    Article  Google Scholar 

  23. Z.B. Andrews, Neuroendocrine regulation of prolactin secretion during late pregnancy: easing the transition into lactation. J. Neuroendocrinol. 17, 466–473 (2005)

    Article  CAS  Google Scholar 

  24. P.E. Mann, R.S. Bridges, Lactogenic hormone regulation of maternal behavior. Prog. Brain. Res. 133, 251–262 (2001)

    Article  CAS  Google Scholar 

  25. G. Gruender, H. Wetzel, R. Schloesser, Neuroendocrine response to antipsychotich: effect of drug type and gender. Biol. Psych. 45, 89–97 (1999)

    Article  Google Scholar 

  26. M. Tonini, L. Cipollina, E. Poluzzi, F. Cremas, G.R. Corazzas, F. De Ponti, Review article: clinical implications of enteric and central D2 receptor blocade by antidopaminergic gastrointestinal prokinetics. Aliment. Pharmacol. Ther. 19, 379–390 (2004)

    Article  CAS  Google Scholar 

  27. L.T. Fourman, P.K. Fazeli, Neuroendocrine causes of amenorrhea--an update. J. Clin. Endocrinol. Metab. 100(3), 812–824 (2015)

    Article  CAS  Google Scholar 

  28. G.D. Sievertsen, V.S. Lim, C. Nakawatase, L.A. Frohman, Metabolic clearance and secretion rates of human prolactin in normal subjects and in patients with chronic renal failure. J. Clin. Endocrinol. Metab. 50(5), 846–852 (1980)

    Article  CAS  Google Scholar 

  29. S.C. Garner, T.C. Peng, S.U. Toverud, Modulation od serum parathyroid hormone and ionized calcium concentrations during reproduction in rats fed a low calcium diet. J. Bone. Mineral. Res. 3, 319–323 (1988)

    Article  CAS  Google Scholar 

  30. A. Boass, S.C. Garner, V.L. Schultz, S.U. Toverud, Regulation of serum calcitrol by serum ionized calcium in rats during pregnancy and lactation. J. Bone. Mineral. Res. 12, 909–914 (1997)

    Article  CAS  Google Scholar 

  31. H. Aydin, N. Mutlu, N.B. Akbas, Treatment of major depression episode suppresses markers of bone turnover in premenopausal women. J. Psychiatr. Res. 45(10), 1316–20 (2011)

    Article  Google Scholar 

  32. A. Wyszogrodzka-Kucharska, J. Rabe-Jablonska, Calcium balance regulation in schizophrenic patients treated with second generation antipsychotics. Psychiatr. Pol. 39(6), 1157–71 (2005)

    PubMed  Google Scholar 

  33. S. Lotinun, L. Limlomwongse, N. Krishnamra, The study of a physiological significance of prolactin in the regulation of calcium metabolism during pregnancy and lactation in rats. Can. J. Physiol. Pharmacol. 76(2), 218–228 (1998)

    Article  CAS  Google Scholar 

  34. N.A. Cross, L.S. Hillman, S.H. Allen, G.F. Krause, N.E. Vieira, Calcium homeostasis and bone metabolism during pregnancy, lactation and postweaning: al longitudinal study. Am. J. Clin. Nutr. 61(3), 514–523 (1995)

    Article  CAS  Google Scholar 

  35. C.S. Kovacs, H.M. Kronenberg, Maternal-fetal calcium and bone metabolism during pregnancy, puerperium and lactation. Endocr. Rev. 18(6), 832–872 (1997)

    CAS  PubMed  Google Scholar 

  36. M. Peacock, Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, 23–30 (2010)

    Article  Google Scholar 

  37. L.D. Ritchie, E.B. Fung, B.P. Halloran, J.R. Turnlund, L.M. Van, C.E. Cann, J.C. King , A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am. J. Clin. Nutr. 67(4), 693–701 (1998).

    Article  CAS  Google Scholar 

  38. K. Tudpor, N. Charoenphandhu, W. Saengamnart, N. Krishnamra, Long-term prolactin exposure differentially stimulated the transcellular and solvent drag-induced calcium transport in the duodenum of ovariectomized rats. Exp. Biol. Med. (Maywood). 230(11), 836–844 (2005)

    Article  CAS  Google Scholar 

  39. R.A. Adler, M.E. Farrell, R.J. Krieg, W.P. Deiss, Hypogonadism does not mediate urinary calcium loss in pituitary-grafted rats. Metabolism. 38(8), 805–809 (1989)

    Article  CAS  Google Scholar 

  40. D.E. Cole, C.M. Gundberg, L.J. Stirk, S.A. Atkinson, D.A. Hanley, L.M. Ayer, L.S. Baldwin, Changing osteocalcin concentrations during pregnancy and lactation: implications for maternal mineral metabolism. J. Clin. Endocrinol. Metab. 65(2), 290–4 (1987).

    Article  CAS  Google Scholar 

  41. S. Mahadevan, V. Kumaravel, R. Bharath, Calcium and bone disorders in pregnancy. Indian. J. Endocrinol. Metab. 16(3), 358–63 (2012)

    Article  CAS  Google Scholar 

  42. A. Herrán, J.A. Amado, M.T. García-Unzueta, J.L. Vázquez-Barquero, L. Perera, J. González-Macías, Increased bone remodeling in first-episode major depressive disorder. PsychosomMed. 62, 779–782 (2000)

    Google Scholar 

  43. T.Y. Lee, M.Y. Chung, H.K. Chung, J.H. Choi, T.Y. Kim, H.S. So, Bone density in chronic schizophrenia with long-term antipsychotic treatment: preliminary study. Psychiatry. Investig. 7, 278–284 (2010)

    Article  Google Scholar 

  44. L. Hellmeyer, V. Ziller, G. Anderer, A. Ossendorf, S. Schmidt, P. Hadji, Biochemical markers of bone turnover during pregnancy: a longitudinal study. Exp. Clin. Endocrinol. Diabetes. 114(9), 506–10 (2006)

    Article  CAS  Google Scholar 

  45. N. Charoenphandhu, L.I. Nakkrasae, K. Kraidith, J. Teerapornpuntakit, K. Thongchote, N. Thongon, N. Krishnamara, , Two-step stimulation for intestinal Ca2 + absorption during lactation by long-term prolactin exposure and suckling induced prolactin surge. Am. J. Physiol. Endocrinol. Metab. 297, E609–E619 (2009).

    Article  CAS  Google Scholar 

  46. K. Kraidith, W. Jantarajit, J. Teerapornpuntakit, L.I. Nakkrasae, N. Krishnamara, N. Charoenphandhu, Direct stimulation of the transcellular and paracellular calcium transport in the cecum by prolactin. Pflug. Arch. 458, 993–1005 (2009)

    Article  CAS  Google Scholar 

  47. J.G. Hoenderop, B. Nilius, R.J. Bindels, Calcium absorption across epithelia. Physiol. Rev. 85, 373–422 (2005)

    Article  CAS  Google Scholar 

  48. N. Charoenphandhu, K. Tudpor, N. Pulsook, N. Krishnamara, Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats. Am. J. Physiol. Gastrointest. Liver. Physiol. 291, G446–G455 (2006)

    Article  CAS  Google Scholar 

  49. D.N. Pahuja, H.F. DeLuca, Stimulation of intestinal calcium transport and bone calcium mobilization by prolactin in vitamin D-deficient rats. Science. 214, 1038–1039 (1981)

    Article  CAS  Google Scholar 

  50. N. Charoenphandhu, L. Limlomwongse, N. Krishnamara, Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can. J. Physiol. Pharmacol. 79, 430–438 (2001)

    Article  CAS  Google Scholar 

  51. N. Charoenphandhu, L. Limlomwongse, N. Krishnamara, Prolactin directly enhanced Na+/K+- and Ca2+-ATPase activities in the duodenum of female rats. Can. J. Physiol. Pharmacol. 84(5), 555–563 (2006)

    Article  CAS  Google Scholar 

  52. D. Seriwatanachai, N. Krishnamara, J.P. van Leeuwen, Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J. Cell. Biochem. 107(4), 677–85 (2009)

    Article  CAS  Google Scholar 

  53. D. Coss, L. Yang, C.B. Kuo, X. Xu, R.A. Luben, A.M. Walker, Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am. J. Physiol. Endocrinol. Metab. 279, 1216–1225 (2000)

    Article  Google Scholar 

  54. D. Seriwatanachai, K. Thongchote, N. Charoenphandhu, J. Pandaranandaka, K. Tudpor, J. Teerapornpuntakit, T. Suthiphongchai , N. Krishnamara , Prolactin directly enhances turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone. 42(3), 535–546 (2008).

    Article  CAS  Google Scholar 

  55. A. Prentice, Calcium in pregnancy and lactation. Annu. Rev. Nutr. 20, 249–272 (2000)

    Article  CAS  Google Scholar 

  56. C.S. Kovacs, Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol. Metab. Clin. North. Am. 40(4), 795–826 (2011)

    Article  CAS  Google Scholar 

  57. K.A. Krishnan, J.A. Proudman, J.M. Bahr, Radioligand receptor assay for prolactin using chicken and turkey kidney membranes. Comp. Biochem. Physiol. 100B, 769–774 (1991)

    CAS  Google Scholar 

  58. Y. Sakai, Y. Hiraoka, M. Ogawa, Y. Takeuchi, S. Aiso, The prolactin gene is expressed in the mouse kidney. Kidney. Int. 55, 833–840 (1999). pp

    Article  CAS  Google Scholar 

  59. S.K. Peirce, W.Y. Chen, Quantification of prolactin receptor mRNA in multiple human tissues and cancer cell lines by real time RT-PCR. J. Endocrinol. 171, R1–R4 (2001)

    Article  CAS  Google Scholar 

  60. F. Ibarra, S. Crambert, A.C. Eklof, P.H. Lundquist, U. Holtback, Prolactin, a natriuretic hormone, interacting with the renal dopamine system. Kidney. Int. 68, 1700–1707 (2005). pp

    Article  CAS  Google Scholar 

  61. S. Crambert, A. Sjoberg, A.C. Eklof, F. Ibarra, U. Holtback, Prolactin and dopamin 1-like receptor interaction in renal proximal tubular cells. Am. J. Physiol. Ren. Physiol. 299, 49–54 (2010)

    Article  Google Scholar 

Download references

Funding

There was no financial or material support for the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Radojkovic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The Ethical Committee of the Medical Faculty, University Nis, Serbia approved the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radojkovic, D., Pesic, M., Radojkovic, M. et al. Expression of prolactin receptors in the duodenum, kidneys and skeletal system during physiological and sulpiride-induced hyperprolactinaemia. Endocrine 62, 681–691 (2018). https://doi.org/10.1007/s12020-018-1730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1730-1

Keywords

Navigation