Skip to main content

Advertisement

Log in

Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Prolactin (PRL) is reported to stimulate calcium absorption in the rat’s small intestine. However, little is known regarding its effects on the cecum, a part of the large intestine with the highest rate of intestinal calcium transport. We demonstrated herein by quantitative real-time polymerase chain reaction and Western blot analysis that the cecum could be a target organ of PRL since cecal epithelial cells strongly expressed PRL receptors. In Ussing chamber experiments, PRL enhanced the transcellular cecal calcium absorption in a biphasic dose–response manner. PRL also increased the paracellular calcium permeability and passive calcium transport in the cecum, which could be explained by the PRL-induced decrease in transepithelial resistance and increase in cation selectivity of the cecal epithelium. PRL actions in the cecum were abolished by inhibitors of phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK), but not inhibitors of gene transcription and protein biosynthesis. In conclusion, PRL directly enhanced the transcellular and paracellular calcium transport in the rat cecum through the nongenomic signaling pathways involving PI3K, PKC, and ROCK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arbogast LA, Voogt JL (1998) Endogenous opioid peptides contribute to suckling-induced prolactin release by suppressing tyrosine hydroxylase activity and messenger ribonucleic acid levels in tuberoinfundibular dopaminergic neurons. Endocrinology 139:2857–2862

    Article  PubMed  CAS  Google Scholar 

  2. Berlanga JJ, Garcia-Ruiz JP, Perrot-Applanat M, Kelly PA, Edery M (1997) The short form of the prolactin (PRL) receptor silences PRL induction of the β-casein gene promoter. Mol Endocrinol 11:1449–1457

    Article  PubMed  CAS  Google Scholar 

  3. Boass A, Lovdal JA, Toverud SU (1992) Pregnancy- and lactation-induced changes in active intestinal calcium transport in rats. Am J Physiol Gastrointest Liver Physiol 263:G127–G134

    CAS  Google Scholar 

  4. Brommage R, Binacua C, Carrie AL (1995) The cecum does not participate in the stimulation of intestinal calcium absorption by calcitriol. J Steroid Biochem Mol Biol 54:71–73

    Article  PubMed  CAS  Google Scholar 

  5. Charoenphandhu N, Krishnamra N (2007) Prolactin is an important regulator of intestinal calcium transport. Can J Physiol Pharmacol 85:569–581

    Article  PubMed  CAS  Google Scholar 

  6. Charoenphandhu N, Limlomwongse L, Krishnamra N (2001) Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can J Physiol Pharmacol 79:430–438

    Article  PubMed  CAS  Google Scholar 

  7. Charoenphandhu N, Limlomwongse L, Krishnamra N (2006) Prolactin directly enhanced Na+/K+- and Ca2+-ATPase activities in the duodenum of female rats. Can J Physiol Pharmacol 84:555–563

    PubMed  CAS  Google Scholar 

  8. Charoenphandhu N, Wongdee K, Teerapornpuntakit J, Thongchote K, Krishnamra N (2008) Transcriptome responses of duodenal epithelial cells to prolactin in pituitary-grafted rats. Mol Cell Endocrinol 296:41–52

    Article  PubMed  CAS  Google Scholar 

  9. de Boland AR, Norman A (1990) Evidence for involvement of protein kinase C and cyclic adenosine 3′, 5′ monophosphate-dependent protein kinase in the 1, 25-dihydroxyvitamin D3-mediated rapid stimulation of intestinal calcium transport, (transcaltachia). Endocrinology 127:39–45

    Article  PubMed  Google Scholar 

  10. Duflos C, Bellaton C, Pansu D, Bronner F (1995) Calcium solubility, intestinal sojourn time and paracellular permeability codetermine passive calcium absorption in rats. J Nutr 125:2348–2355

    PubMed  CAS  Google Scholar 

  11. Favus MJ (1985) Factors that influence absorption and secretion of calcium in the small intestine and colon. Am J Physiol 248:G147–G157

    PubMed  CAS  Google Scholar 

  12. Favus MJ, Pak C (2001) Evidence for absorption of ionic calcium and soluble calcium complexes by the duodenum and cecum in the rat. Am J Ther 8:425–431

    Article  PubMed  CAS  Google Scholar 

  13. Fuh G, Colosi P, Wood WI, Wells JA (1993) Mechanism-based design of prolactin receptor antagonists. J Biol Chem 268:5376–5381

    PubMed  CAS  Google Scholar 

  14. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921

    Article  PubMed  CAS  Google Scholar 

  15. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    Article  PubMed  CAS  Google Scholar 

  16. Garcia J, Carabano R, Perez-Alba L, de Blas JC (2000) Effect of fiber source on cecal fermentation and nitrogen recycled through cecotrophy in rabbits. J Anim Sci 78:638–646

    PubMed  CAS  Google Scholar 

  17. Greger R (1996) Epithelial transport. In: Greger R, Windhorst U (eds) Comprehensive human physiology: from cellular mechanisms to integration. Springer, Berlin, pp 1217–1232

    Google Scholar 

  18. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  PubMed  CAS  Google Scholar 

  19. Hirsch E, Costa C, Ciraolo E (2007) Phosphoinositide 3-kinases as a common platform for multi-hormone signaling. J Endocrinol 194:243–256

    Article  PubMed  CAS  Google Scholar 

  20. Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  PubMed  CAS  Google Scholar 

  21. Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118:5109–5118

    Article  PubMed  CAS  Google Scholar 

  22. Ilondo MM, Damholt AB, Cunningham BA, Wells JA, de Meyts P, Shymko RM (1994) Receptor dimerization determines the effects of growth hormone in primary rat adipocytes and cultured human IM-9 lymphocytes. Endocrinology 134:2397–2403

    Article  PubMed  CAS  Google Scholar 

  23. Imaizumi MO, Sakurai T, Nakamura S, Nakanishi S, Matsuda Y, Muramatsu S, Nonomura Y, Kumakura K (1992) Inhibition of Ca2+-dependent catecholamine release by myosin light chain kinase inhibitor, wortmannin, in adrenal chromaffin cells. Biochem Biophys Res Commun 185:1016–1021

    Article  Google Scholar 

  24. Jahn GA, Daniel N, Jolivet G, Belair L, Bole-Feysot C, Kelly PA, Djiane J (1997) In vivo study of prolactin (PRL) intracellular signalling during lactogenesis in the rat: JAK/STAT pathway is activated by PRL in the mammary gland but not in the liver. Biol Reprod 57:894–900

    Article  PubMed  CAS  Google Scholar 

  25. Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2007) Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 293:E372–E384

    Article  PubMed  CAS  Google Scholar 

  26. Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP (2004) Paracellular Cl permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proc Natl Acad Sci USA 101:14877–14882

    Article  PubMed  CAS  Google Scholar 

  27. Kapus A, Szászi K (2006) Coupling between apical and paracellular transport processes. Biochem Cell Biol 84:870–880

    Article  PubMed  CAS  Google Scholar 

  28. Karbach U, Feldmeier H (1993) The cecum is the site with the highest calcium absorption in rat intestine. Dig Dis Sci 38:1815–1824

    Article  PubMed  CAS  Google Scholar 

  29. Khanal RC, Nemere I (2008) Regulation of intestinal calcium transport. Annu Rev Nutr 28:179–196

    Article  PubMed  CAS  Google Scholar 

  30. Khanal RC, Nemere I (2008) Endocrine regulation of calcium transport in epithelia. Clin Exp Pharmacol Physiol 35:1277–1287

    Article  PubMed  CAS  Google Scholar 

  31. Kimizuka H, Koketsu K (1964) Ion transport through cell membrane. J Theor Biol 6:290–305

    Article  PubMed  CAS  Google Scholar 

  32. Kornberg A, Daft FS, Sebrell WH (1944) Mechanism of production of vitamin K deficiency in rats by sulfonamides. J Biol Chem 155:193–200

    CAS  Google Scholar 

  33. Krause LJ, Forsberg CW, O’Connor DL (1996) Feeding human milk to rats increases Bifidobacterium in the cecum and colon which correlates with enhanced folate status. J Nutr 126:1505–1511

    PubMed  CAS  Google Scholar 

  34. Krishnamra N, Ousingsawat J, Limlomwongse L (2001) Study of acute pharmacologic effects of prolactin on calcium and water transport in the rat colon by an in vivo perfusion technique. Can J Physiol Pharmacol 79:415–421

    Article  PubMed  CAS  Google Scholar 

  35. Kutuzova GD, DeLuca HF (2004) Gene expression profiles in rat intestine identify pathways for 1, 25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys 432:152–166

    Article  PubMed  CAS  Google Scholar 

  36. Levrat MA, Remesy C, Demigne C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121:1730–1737

    PubMed  CAS  Google Scholar 

  37. Little D, Dean RA, Young KM, McKane SA, Martin LD, Jones SL, Blikslager AT (2003) PI3K signaling is required for prostaglandin-induced mucosal recovery in ischemia-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol 284:G46–G56

    PubMed  CAS  Google Scholar 

  38. Mineo H, Amano M, Minaminida K, Chiji H, Shigematsu N, Tomita F, Hara H (2006) Two-week feeding of difructose anhydride III enhances calcium absorptive activity with epithelial cell proliferation in isolated rat cecal mucosa. Nutrition 22:312–320

    Article  PubMed  CAS  Google Scholar 

  39. Nellans HN, Goldsmith RS (1981) Transepithelial calcium transport by rat cecum: high-efficiency absorptive site. Am J Physiol 240:G424–G431

    PubMed  CAS  Google Scholar 

  40. Nellans HN, Goldsmith RS (1983) Mucosal calcium uptake by rat cecum: identity with transcellular calcium absorption. Am J Physiol 244:G618–G622

    PubMed  CAS  Google Scholar 

  41. Pitcher T, Buffenstein R (1995) Intestinal calcium transport in mole-rats (Cryptomys damarensis and Heterocephalus glaber) is independent of both genomic and non-genomic vitamin D mediation. Exp Physiol 80:597–608

    PubMed  CAS  Google Scholar 

  42. Prentice A (2000) Calcium in pregnancy and lactation. Annu Rev Nutr 20:249–272

    Article  PubMed  CAS  Google Scholar 

  43. Puntheeranurak S, Schreiber R, Spitzner M, Ousingsawat J, Krishnamra N, Kunzelmann K (2007) Control of ion transport in mouse proximal and distal colon by prolactin. Cell Physiol Biochem 19:77–88

    Article  PubMed  CAS  Google Scholar 

  44. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82:559–567

    PubMed  CAS  Google Scholar 

  45. Samarin SN, Ivanov AI, Flatau G, Parkos CA, Nusrat A (2007) Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol Biol Cell 18:3429–3439

    Article  PubMed  CAS  Google Scholar 

  46. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase Cα-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281:8379–8388

    Article  PubMed  CAS  Google Scholar 

  47. Tang VW, Goodenough DA (2003) Paracellular ion channel at the tight junction. Biophys J 84:1660–1673

    Article  PubMed  CAS  Google Scholar 

  48. Thongon N, Nakkrasae LI, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2008) Prolactin stimulates transepithelial calcium transport and modulates paracellular permselectivity in Caco-2 monolayer: mediation by PKC and ROCK pathways. Am J Physiol Cell Physiol 294:C1158–C1168

    Article  PubMed  CAS  Google Scholar 

  49. Thongon N, Nakkrasae LI, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2009) Enhancement of calcium transport in Caco-2 monolayer through PKCζ-dependent Cav1.3-mediated transcellular and rectifying paracellular pathways by prolactin. Am J Physiol Cell Physiol (in press). doi: 10.1152/ajpcell.00053.2009

  50. Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  Google Scholar 

  51. Younes H, Demigne C, Remesy C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 75:301–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (RSA5180001 to N. Charoenphandhu) and the Mahidol University Postdoctoral Fellowship Program (to L.-i. Nakkrasae).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narattaphol Charoenphandhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

Transepithelial calcium flux in 800 ng/mL PRL-exposed cecal tissues under open- and short-circuit conditions. The tissue was bathed on both sides with 1.25 mmol/L Ca2+-containing solution. Numbers in parentheses represent the number of animals. **p < 0.01 compared with its respective control group (GIF 15 kb)

High resolution image file (EPS 390 kb)

Supplemental Figure S2

Mucosa (M)-to-serosa (S) and S-to-M calcium fluxes in 800 ng/mL PRL-exposed cecal tissues under short-circuit condition. The removed cecal tissue from a rat was divided into two pieces for M-to-S and S-to-M studies. Net calcium flux was calculated by subtracting S-to-M calcium flux from M-to-S calcium flux. Each tissue was bathed on both sides with 1.25 mmol/L Ca2+-containing solution. Numbers in parentheses represent the number of animals. **p < 0.01 compared with its respective control group (GIF 17 kb)

High resolution image file (EPS 383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraidith, K., Jantarajit, W., Teerapornpuntakit, J. et al. Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin. Pflugers Arch - Eur J Physiol 458, 993–1005 (2009). https://doi.org/10.1007/s00424-009-0679-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0679-6

Keywords

Navigation