Skip to main content

Advertisement

Log in

Therapeutic Approaches to Alzheimer’s Disease Through Modulation of NRF2

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/NRF2) is a master transcription factor that regulates oxidative stress-related genes containing the antioxidant response element (ARE) in their promoters. The damaged function and altered localization of NRF2 are found in most neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis. These neurodegenerative diseases developed from various risk factors such as accumulated oxidative stress and genetic and environmental elements. NRF2 activation protects our bodies from detrimental stress by upregulating antioxidative defense pathway, inhibiting inflammation, and maintaining protein homeostasis. NRF2 has emerged as a new therapeutic target in AD. Indeed, recent studies revealed that NRF2 activators have therapeutic effects in AD animal models and in cultured human cells that express AD pathology. This review will focus on the NRF2 pathway and the role of NRF2 in AD and suggest some NRF2 inducers as therapeutic agents for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alumkal, J. J., Slottke, R., Schwartzman, J., Cherala, G., Munar, M., Graff, J. N., et al. (2015). A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational New Drugs, 33(2), 480–489.

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367–429.

    Article  Google Scholar 

  • Amin, F. U., Shah, S. A., & Kim, M. O. (2017). Vanillic acid attenuates Abeta1-42-induced oxidative stress and cognitive impairment in mice. Scientific Reports, 7, 40753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek, S. H., Park, S. J., Jeong, J. I., Kim, S. H., Han, J., Kyung, J. W., et al. (2017). Inhibition of Drp1 ameliorates synaptic depression, abeta deposition, and cognitive impairment in an Alzheimer’s disease model. The Journal of Neuroscience, 37(20), 5099–5110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biogen Idec. (2013). Tecfidera (dimethyl fumarate): US prescribing information. Available at http://www.tecfidera.com/pdfs/full-prescribing-information.pdf. Accessed 20 October 2014.

  • Bomprezzi, R. (2015). Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: An overview. Therapeutic Advances in Neurological Disorders, 8(1), 20–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonda, D. J., Wang, X., Perry, G., Nunomura, A., Tabaton, M., Zhu, X., et al. (2010). Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 59(4–5), 290–294.

    Article  CAS  PubMed  Google Scholar 

  • Branca, C., Ferreira, E., Nguyen, T.-V., Doyle, K., Caccamo, A., & Oddo, S. (2017). Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Human Molecular Genetics, 26(24), 4823–4835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, S. L., Sekhar, K. R., Rachakonda, G., Sasi, S., & Freeman, M. L. (2008). Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Research, 68(2), 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Calkins, M. J., Johnson, D. A., Townsend, J. A., Vargas, M. R., Dowell, J. A., Williamson, T. P., et al. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxidants & Redox Signaling, 11(3), 497–508.

    Article  CAS  Google Scholar 

  • Chang, W. H., Chen, M. C., & Cheng, I. H. (2015). Antroquinonol lowers Brain Amyloid-beta levels and improves spatial learning and memory in a transgenic mouse model of Alzheimer’s disease. Scientific Reports, 5, 15067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, M. P., Bakris, G. L., Block, G. A., Chertow, G. M., Goldsberry, A., Inker, L. A., et al. (2018). Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: Post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. American Journal of Nephrology, 47(1), 40–47.

    Article  CAS  PubMed  Google Scholar 

  • Chin, M. P., Wrolstad, D., Bakris, G. L., Chertow, G. M., de Zeeuw, D., Goldsberry, A., et al. (2014). Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. Journal of Cardiac Failure, 20(12), 953–958.

    Article  CAS  PubMed  Google Scholar 

  • Cho, D.-H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., et al. (2009). S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science, 324(5923), 102–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhry, S., Zhang, Y., McMahon, M., Sutherland, C., Cuadrado, A., & Hayes, J. D. (2013). Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene, 32(32), 3765.

    Article  CAS  PubMed  Google Scholar 

  • Congdon, E. E., & Sigurdsson, E. M. (2018). Tau-targeting therapies for Alzheimer disease. Nature Reviews Neurology, 14(7), 399–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuadrado, A., Kugler, S., & Lastres-Becker, I. (2018). Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biology, 14, 522–534.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Ma, S., Zhang, C., Li, D., Yang, B., Lv, P., et al. (2018). Pharmacological activation of the Nrf2 pathway by 3H-1, 2-dithiole-3-thione is neuroprotective in a mouse model of Alzheimer disease. Behavioural Brain Research, 336, 219–226.

    Article  CAS  PubMed  Google Scholar 

  • De Zeeuw, D., Akizawa, T., Audhya, P., Bakris, G. L., Chin, M., Christ-Schmidt, H., et al. (2013). Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. New England Journal of Medicine, 369(26), 2492–2503.

    Article  CAS  PubMed  Google Scholar 

  • Dixit, R., Ross, J. L., Goldman, Y. E., & Holzbaur, E. L. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866), 1086–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont, M., Wille, E., Calingasan, N. Y., Tampellini, D., Williams, C., Gouras, G. K., et al. (2009). Triterpenoid CDDO-methylamide improves memory and decreases amyloid plaques in a transgenic mouse model of Alzheimer’s disease. Journal of Neurochemistry, 109(2), 502–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Medicines Agency. (2013). Summary of opinion (initial authorisation): Tecfidera. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002601/WC500140695.pdf [cited 27 January 2014].

  • Feng, Y., & Wang, X. (2012). Antioxidant therapies for Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2012, 472932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fragoulis, A., Siegl, S., Fendt, M., Jansen, S., Soppa, U., Brandenburg, L. O., et al. (2017). Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer’s disease. Redox Biology, 12, 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara, K. T., Kataoka, K., & Nishizawa, M. (1993). Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene, 8(9), 2371–2380.

    CAS  PubMed  Google Scholar 

  • Giraldo, E., Lloret, A., Fuchsberger, T., & Viña, J. (2014). Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin E. Redox Biology, 2, 873–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Tung, Y.-C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences USA, 83(13), 4913–4917.

    Article  CAS  Google Scholar 

  • Gwon, A. R., Park, J. S., Arumugam, T. V., Kwon, Y. K., Chan, S. L., Kim, S. H., et al. (2012). Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer’s disease. Aging Cell, 11(4), 559–568.

    Article  CAS  PubMed  Google Scholar 

  • He, C. H., Gong, P., Hu, B., Stewart, D., Choi, M. E., Choi, A. M., et al. (2001). Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. Journal of Biological Chemistry, 276(24), 20858–20865.

    Article  CAS  PubMed  Google Scholar 

  • Hinoi, E., Fujimori, S., Wang, L., Hojo, H., Uno, K., & Yoneda, Y. (2006). Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. Journal of Biological Chemistry, 281(26), 18015–18024.

    Article  CAS  PubMed  Google Scholar 

  • Hu, C., Eggler, A. L., Mesecar, A. D., & Van Breemen, R. B. (2011). Modification of keap1 cysteine residues by sulforaphane. Chemical Research in Toxicology, 24(4), 515–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., et al. (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and Biophysical Research Communications, 236(2), 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Jazwa, A., Rojo, A. I., Innamorato, N. G., Hesse, M., Fernández-Ruiz, J., & Cuadrado, A. (2011). Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxidants & Redox Signaling, 14(12), 2347–2360.

    Article  CAS  Google Scholar 

  • Jiao, W., Wang, Y., Kong, L., Ou-Yang, T., Meng, Q., Fu, Q., et al. (2018). CART peptide activates the Nrf2/HO-1 antioxidant pathway and protects hippocampal neurons in a rat model of Alzheimer’s disease. Biochemical and Biophysical Research Communications, 501(4), 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  • Jing, X., Shi, H., Zhang, C., Ren, M., Han, M., Wei, X., et al. (2015). Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson’s disease by enhancing Nrf2 activity. Journal of Neuroscience, 286, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Jo, C., Gundemir, S., Pritchard, S., Jin, Y. N., Rahman, I., & Johnson, G. V. (2014). Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nature Communications, 5, 3496.

    Article  CAS  PubMed  Google Scholar 

  • Jo, D.-G., Arumugam, T. V., Woo, H.-N., Park, J.-S., Tang, S.-C., Mughal, M., et al. (2010). Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer’s disease. Neurobiology of Aging, 31(6), 917–925.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D. A., & Johnson, J. A. (2015). Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Biology & Medicine, 88, 253–267.

    Article  CAS  Google Scholar 

  • Joshi, G., Gan, K. A., Johnson, D. A., & Johnson, J. A. (2015). Increased Alzheimer’s disease–like pathology in the APP/PS1∆E9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiology of Aging, 36(2), 664–679.

    Article  CAS  PubMed  Google Scholar 

  • Kanninen, K., Heikkinen, R., Malm, T., Rolova, T., Kuhmonen, S., Leinonen, H., et al. (2009). Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences USA, 106(38), 16505–16510.

    Article  Google Scholar 

  • Kanninen, K., Malm, T. M., Jyrkkänen, H.-K., Goldsteins, G., Keksa-Goldsteine, V., Tanila, H., et al. (2008). Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Molecular Cellular Neuroscience, 39(3), 302–313.

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder, S. S., Xu, H., Shi, Q., Chen, L. H., Pedrini, S., Pechman, D., et al. (2009). Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiology of Aging, 30(10), 1587–1600.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, Y., Itoh, K., Yoshida, E., Miyagishi, M., Fukamizu, A., & Yamamoto, M. (2001). Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes to Cells, 6(10), 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Keleku-Lukwete, N., Suzuki, M., & Yamamoto, M. (2017). An overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment. Antioxidants & Redox Signaling, 29(17), 1746–1755.

    Article  CAS  Google Scholar 

  • Kim, H. V., Kim, H. Y., Ehrlich, H. Y., Choi, S. Y., Kim, D. J., & Kim, Y. (2013a). Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid, 20(1), 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.-H., Yu, S., Chen, J. D., & Kong, A. (2013b). The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains. Oncogene, 32(4), 514.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Choi, K. J., Cho, S. J., Yun, S. M., Jeon, J. P., Koh, Y. H., et al. (2016). Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Scientific Reports, 6, 24933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, A., Kang, M.-I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., et al. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 24(16), 7130–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubben, N., Zhang, W., Wang, L., Voss, T. C., Yang, J., Qu, J., et al. (2016). Repression of the antioxidant NRF2 pathway in premature aging. Cell, 165(6), 1361–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastres-Becker, I., García-Yagüe, A. J., Scannevin, R. H., Casarejos, M. J., Kügler, S., Rábano, A., et al. (2016). Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxidants & Redox Signaling, 25(2), 61–77.

    Article  CAS  Google Scholar 

  • Lastres-Becker, I., Innamorato, N. G., Jaworski, T., Rabano, A., Kugler, S., Van Leuven, F., et al. (2014). Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain, 137(Pt 1), 78–91.

    Article  PubMed  Google Scholar 

  • Li, Z., Chen, X., Zhang, Y., Liu, X., Wang, C., Teng, L., et al. (2018). Protective roles of Amanita caesarea polysaccharides against Alzheimer’s disease via Nrf2 pathway. International Journal of Biological Macromolecules, 121, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Liby, K., Hock, T., Yore, M. M., Suh, N., Place, A. E., Risingsong, R., et al. (2005). The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Research, 65(11), 4789–4798.

    Article  CAS  PubMed  Google Scholar 

  • Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795.

    Article  CAS  PubMed  Google Scholar 

  • Lindwall, G., & Cole, R. D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. Journal of Biological Chemistry, 259(8), 5301–5305.

    CAS  PubMed  Google Scholar 

  • Lipton, S. A., Rezaie, T., Nutter, A., Lopez, K. M., Parker, J., Kosaka, K., et al. (2016). Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer’s disease models. Cell Death & Disease. 7(12), e2499.

    Article  CAS  Google Scholar 

  • Liu, P., Rojo de la Vega, M., Sammani, S., Mascarenhas, J. B., Kerins, M., Dodson, M., et al. (2018). RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proceedings of the National Academy of Sciences USA, 115(44), e10352–e10361.

    Article  CAS  Google Scholar 

  • Liu, Y., Deng, Y., Liu, H., Yin, C., Li, X., & Gong, Q. (2016). Hydrogen sulfide ameliorates learning memory impairment in APP/PS1 transgenic mice: A novel mechanism mediated by the activation of Nrf2. Pharmacology Biochemistry and Behavior, 150–151, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., & Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2017/2525967.

    Article  PubMed  PubMed Central  Google Scholar 

  • McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., & Hayes, J. D. (2004). Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. Journal of Biological Chemistry, 279(30), 31556–31567.

    Article  CAS  PubMed  Google Scholar 

  • Moi, P., Chan, K., Asunis, I., Cao, A., & Kan, Y. W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences USA, 91(21), 9926–9930.

    Article  CAS  Google Scholar 

  • Murphy, K. E., Llewellyn, K., Wakser, S., Pontasch, J., Samanich, N., Flemer, M., et al. (2018). Mini-GAGR, an intranasally applied polysaccharide, activates the neuronal Nrf2-mediated antioxidant defense system. Journal of Biological Chemistry, 293(47), 18242–18269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niino, M., Ohashi, T., Ochi, H., Nakashima, I., Shimizu, Y., & Matsui, M. (2018). Japanese guidelines for dimethyl fumarate. Clinical and Experimental Neuroimmunology, 9(4), 235–243.

    Article  Google Scholar 

  • Nioi, P., Nguyen, T., Sherratt, P. J., & Pickett, C. B. (2005). The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Molecular and Cellular Biology, 25(24), 10895–10906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada, P., Rojo, A. I., Chowdhry, S., McMahon, M., Hayes, J. D., & Cuadrado, A. (2011). SCF (beta-TrCP) promotes Glycogen synthase kinase-3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Molecular and Cellular Biology, 31(6), 1121–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, A. K., Templeton, D. J., Deak, J. C., Perry, G., & Smith, M. A. (1999). Quinone reductase (NQO1), a sensitive redox indicator, is increased in Alzheimer’s disease. Redox Report, 4(1–2), 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey, C. P., Glass, C. A., Montgomery, M. B., Lindl, K. A., Ritson, G. P., Chia, L. A., et al. (2007). Expression of Nrf2 in neurodegenerative diseases. Journal of Neuropathology & Experimental Neurology, 66(1), 75–85.

    Article  CAS  Google Scholar 

  • René, C., Lopez, E., Claustres, M., Taulan, M., & Romey-Chatelain, M., C (2010). NF-E2-related factor 2, a key inducer of antioxidant defenses, negatively regulates the CFTR transcription. Cellular and Molecular Life Sciences, 67(13), 2297–2309.

    Article  CAS  PubMed  Google Scholar 

  • Rojo, A. I., Pajares, M., Rada, P., Nunez, A., Nevado-Holgado, A. J., Killik, R., et al. (2017). NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biology, 13, 444–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, R., Suzuki, T., Hiramoto, K., Asami, S., Naganuma, E., Suda, H., et al. (2016). Characterizations of three major cysteine sensors of Keap1 in stress response. Molecular and Cellular Biology, 36(2), 271–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • SantaCruz, K. S., Yazlovitskaya, E., Collins, J., Johnson, J., & DeCarli, C. (2004). Regional NAD (P) H: Quinone oxidoreductase activity in Alzheimer’s disease. Neurobiology of Aging, 25(1), 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, M. Y., & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron, 29(1), 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 87(1), 10–20.

    Article  CAS  PubMed  Google Scholar 

  • Suh, J. H., Shenvi, S. V., Dixon, B. M., Liu, H., Jaiswal, A. K., Liu, R.-M., et al. (2004). Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proceedings of the National Academy of Sciences USA, 101(10), 3381–3386.

    Article  CAS  Google Scholar 

  • Sun, Y., Yang, T., Mao, L., & Zhang, F. (2017). Sulforaphane protects against brain diseases: Roles of cytoprotective enzymes. Austin Journal of Cerebrovascular Disease & Stroke 4(1), 1054.

    Google Scholar 

  • Sykiotis, G. P., & Bohmann, D. (2010). Stress-activated cap’n’collar transcription factors in aging and human disease. Science Signaling, 3(112), re3–re3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji, K., Maruyama, A., Odagiri, S., Mori, F., Itoh, K., Kakita, A., et al. (2013). Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. Journal of Neuropathology & Experimental Neurology, 72(1), 18–28.

    Article  CAS  Google Scholar 

  • Tapias, V., Jainuddin, S., Ahuja, M., Stack, C., Elipenahli, C., Vignisse, J., et al. (2018). Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Human Molecular Genetics, 27(16), 2874–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venugopal, R., & Jaiswal, A. K. (1998). Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene, 17(24), 3145–3156.

    Article  CAS  PubMed  Google Scholar 

  • Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J., & Gross, S. P. (2007). Multiple-motor based transport and its regulation by Tau. Proceedings of the National Academy of Sciences USA, 104(1), 87–92.

    Article  CAS  Google Scholar 

  • Wang, C. Y., Wang, Z. Y., Xie, J. W., Wang, T., Wang, X., Xu, Y., et al. (2016). Dl-3-n-butylphthalide-induced upregulation of antioxidant defense is involved in the enhancement of cross talk between CREB and Nrf2 in an Alzheimer’s disease mouse model. Neurobiology of Aging, 38, 32–46.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Liu, K., Geng, M., Gao, P., Wu, X., Hai, Y., et al. (2013). RXRα Inhibits the NRF2-ARE signalling pathway through a direct interaction With the Neh7 domain of NRF2. Cancer Research, 73(10), 3097–3108.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Wang, M., Hu, J., Shen, W., Hu, J., Yao, Y., et al. (2017). Protective effect of 3H-1, 2-dithiole-3-thione on cellular model of Alzheimer’s disease involves Nrf2/ARE signaling pathway. European Journal of Pharmacology, 795, 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., & Jaiswal, A. K. (2006). Nuclear factor Nrf2 and antioxidant response element regulate NRH:quinone oxidoreductase 2 (NQO2) gene expression and antioxidant induction. Free Radical Biology & Medicine, 40(7), 1119–1130.

    Article  CAS  Google Scholar 

  • Wang, Y., Santa-Cruz, K., DeCarli, C., & Johnson, J. A. (2000). NAD (P) H: Quinone oxidoreductase activity is increased in hippocampal pyramidal neurons of patients with Alzheimer’s disease. Neurobiology of Aging, 21(4), 525–531.

    Article  CAS  PubMed  Google Scholar 

  • Woo, H.-N., Park, J.-S., Gwon, A.-R., Arumugam, T. V., & Jo, D.-G. (2009). Alzheimer’s disease and notch signaling. Biochemical and Biophysical Research Communications, 390(4), 1093–1097.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Zhao, F., Gao, B., Tan, C., Yagishita, N., Nakajima, T., et al. (2014). Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes & Development, 28(7), 708–722.

    Article  CAS  Google Scholar 

  • Xie, G., Tian, W., Wei, T., & Liu, F. (2015). The neuroprotective effects of beta-hydroxybutyrate on Abeta-injected rat hippocampus in vivo and in Abeta-treated PC-12 cells in vitro. Free Radical Research, 49(2), 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L., Wang, S., Chen, X., Yang, H., Li, X., Xu, Y., et al. (2015). Orientin alleviates cognitive deficits and oxidative stress in Abeta1-42-induced mouse model of Alzheimer’s disease. Life Sciences, 121, 104–109.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D. D., Lo, S.-C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24(24), 10941–10953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Thompson, R., Zhang, H., & Xu, H. (2011). APP processing in Alzheimer’s disease. Molecular Brain, 4(1), 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Xie, N., Li, L., Zou, Y., Zhang, X., & Dong, M. (2014). Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. International Journal of Neuropsychopharmacology, 17(4), 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y. F., Li, X. H., Yuan, Z. P., Li, C. Y., Tian, R. B., Jia, W., et al. (2015). Allicin improves endoplasmic reticulum stress-related cognitive deficits via PERK/Nrf2 antioxidative signaling pathway. European Journal of Pharmacology, 762, 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, L., Zhou, T., Pannell, B., Ziegler, A., & Best, T. M. (2015). Biological and physiological role of reactive oxygen species—the good, the bad and the ugly. Acta Physiologica, 214(3), 329–348.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants (2012R1A5A2A28671860, 2017M3C7A1048268, 2018M3C7A1021851) funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF), the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Gyu Jo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahn, G., Jo, DG. Therapeutic Approaches to Alzheimer’s Disease Through Modulation of NRF2. Neuromol Med 21, 1–11 (2019). https://doi.org/10.1007/s12017-018-08523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-018-08523-5

Keywords

Navigation