Skip to main content

Advertisement

Log in

Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abakumov, M. A., Shein, S. A., Vishvasrao, H., Nukolova, N. V, Sokol’ski-Papkov, M., Sandalova, T. O., et al. (2012). Visualization of experimental glioma C6 by MRI with magnetic nanoparticles conjugated with monoclonal antibodies to vascular endothelial growth factor. Bulletin of experimental biology and medicine, 154(2), 274–277. http://www.ncbi.nlm.nih.gov/pubmed/23330142. Accessed September 21, 2014.

  • Adachi, M., Barrot, M., Autry, A. E., Theobald, D., & Monteggia, L. M. (2008). Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biological Psychiatry, 63(7), 642–649. doi:10.1016/j.biopsych.2007.09.019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agasse, F., Xapelli, S., Coronas, V., Christiansen, S. H., Rosa, A. I., Sardá-Arroyo, L., et al. (2013). Galanin promotes neuronal differentiation in murine subventricular zone cell cultures. Stem Cells and Development, 22(11), 1693–1708. doi:10.1089/scd.2012.0161.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, Z., Mackenzie, I. R. A., Hutton, M. L., & Dickson, D. W. (2007). Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation, 4, 7. doi:10.1186/1742-2094-4-7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science (New York, N.Y.), 135(3509), 1127–1128. http://www.ncbi.nlm.nih.gov/pubmed/13860748. Accessed June 15, 2014.

  • Altman, J., & Das, G. D. (1965). Post-natal origin of microneurones in the rat brain. Nature, 207(5000), 953–956. http://www.ncbi.nlm.nih.gov/pubmed/5886931. Accessed June 3, 2014.

  • Anacker, C., Zunszain, P. A., Cattaneo, A., Carvalho, L. A., Garabedian, M. J., Thuret, S., et al. (2011). Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular psychiatry, 16(7), 738–750. doi:10.1038/mp.2011.26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anacker, C., Cattaneo, A., Luoni, A., Musaelyan, K., Zunszain, P. A., Milanesi, E., et al. (2013). Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 38(5), 872–883. doi:10.1038/npp.2012.253.

    Article  CAS  Google Scholar 

  • Angelov, B., Angelova, A., Filippov, S. K., Karlsson, G., Terrill, N., Lesieur, S., & Štěpánek, P. (2011). Topology and internal structure of PEGylated lipid nanocarriers for neuronal transfection: synchrotron radiation SAXS and cryo-TEM studies. Soft Matter, 7(20), 9714. doi:10.1039/c1sm06447a.

    Article  CAS  Google Scholar 

  • Arsenijevic, Y., Villemure, J. G., Brunet, J. F., Bloch, J. J., Déglon, N., Kostic, C., et al. (2001). Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Experimental Neurology, 170(1), 48–62. doi:10.1006/exnr.2001.7691.

    Article  CAS  PubMed  Google Scholar 

  • Azzouz, M., Ralph, G. S., Storkebaum, E., Walmsley, L. E., Mitrophanous, K. A., Kingsman, S. M., et al. (2004). VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 429(6990), 413–417. doi:10.1038/nature02544.

    Article  CAS  PubMed  Google Scholar 

  • Bellamy, V., Vanneaux, V., Bel, A., Nemetalla, H., Emmanuelle Boitard, S., Farouz, Y., et al. (2014). Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation,. doi:10.1016/j.healun.2014.10.008.

    Google Scholar 

  • Björklund, A., Kirik, D., Rosenblad, C., Georgievska, B., Lundberg, C., & Mandel, R. J. (2000). Towards a neuroprotective gene therapy for Parkinson’s disease: Use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain research, 886(1–2), 82–98. http://www.ncbi.nlm.nih.gov/pubmed/11119690. Accessed June 27, 2014.

  • Bliss, T. M., Kelly, S., Shah, A. K., Foo, W. C., Kohli, P., Stokes, C., et al. (2006). Transplantation of hNT neurons into the ischemic cortex: Cell survival and effect on sensorimotor behavior. Journal of Neuroscience Research, 83(6), 1004–1014. doi:10.1002/jnr.20800.

    Article  CAS  PubMed  Google Scholar 

  • Boado, R. J., & Pardridge, W. M. (2011). The Trojan horse liposome technology for nonviral gene transfer across the blood-brain barrier. Journal of Drug Delivery, 2011, 296151. doi:10.1155/2011/296151.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bohl, D., Liu, S., Blanchard, S., Hocquemiller, M., Haase, G., & Heard, J.-M. (2008). Directed evolution of motor neurons from genetically engineered neural precursors. Stem Cells (Dayton, Ohio), 26(10), 2564–2575. doi:10.1634/stemcells.2008-0371.

    Article  CAS  Google Scholar 

  • Boido, M., Rupa, R., Garbossa, D., Fontanella, M., Ducati, A., & Vercelli, A. (2009). Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice. The European journal of neuroscience, 30(5), 833–846. doi:10.1111/j.1460-9568.2009.06879.x.

    Article  PubMed  Google Scholar 

  • Bolognin, S., Buffelli, M., Puoliväli, J., & Iqbal, K. (2014). Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiology of Aging,. doi:10.1016/j.neurobiolaging.2014.02.017.

    PubMed  Google Scholar 

  • Bonhomme, D., Minni, A. M., Alfos, S., Roux, P., Richard, E., Higueret, P., et al. (2014). Vitamin A status regulates glucocorticoid availability in Wistar rats: Consequences on cognitive functions and hippocampal neurogenesis? Frontiers in Behavioral Neuroscience, 8, 20. doi:10.3389/fnbeh.2014.00020.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bothwell, M. (1995). Functional interactions of neurotrophins and neurotrophin receptors. Annual Review of Neuroscience, 18, 223–253. doi:10.1146/annurev.ne.18.030195.001255.

    Article  CAS  PubMed  Google Scholar 

  • Brinton, R. D., & Wang, J. M. (2006a). Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: Allopregnanolone as a proof of concept neurogenic agent. Current Alzheimer Research, 3(3), 185–190. http://www.ncbi.nlm.nih.gov/pubmed/16842093. Accessed June 5, 2014.

  • Brinton, R. D., & Wang, J. M. (2006b). Preclinical analyses of the therapeutic potential of allopregnanolone to promote neurogenesis in vitro and in vivo in transgenic mouse model of Alzheimer’s disease. Current Alzheimer Research, 3(1), 11–17. http://www.ncbi.nlm.nih.gov/pubmed/16472197. Accessed July 15, 2014.

  • Bristot, G., Ascoli, B., Gubert, C., Panizzutti, B., Kapczinski, F., & Rosa, A. R. (2014). Progesterone and its metabolites as therapeutic targets in psychiatric disorders. Expert Opinion on Therapeutic Targets, 18(6), 679–690. doi:10.1517/14728222.2014.897329.

    Article  CAS  PubMed  Google Scholar 

  • Brossaud, J., Roumes, H., Moisan, M.-P., Pallet, V., Redonnet, A., & Corcuff, J.-B. (2013). Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. Journal of Neurochemistry, 125(4), 518–531. doi:10.1111/jnc.12192.

    Article  CAS  PubMed  Google Scholar 

  • Bruno, M. A., & Cuello, A. C. (2006). Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6735–6740. doi:10.1073/pnas.0510645103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai, J., Hua, F., Yuan, L., Tang, W., Lu, J., Yu, S., et al. (2014). Potential therapeutic effects of neurotrophins for acute and chronic neurological diseases. BioMed Research International, 2014, 601084. doi:10.1155/2014/601084.

    PubMed Central  PubMed  Google Scholar 

  • Calza, L., Giuliani, A., Fernandez, M., Pirondi, S., D’Intino, G., Aloe, L., & Giardino, L. (2003). Neural stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7325–7330. doi:10.1073/pnas.1132092100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron, H. A., & Gould, E. (1994). Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 61(2), 203–209. http://www.ncbi.nlm.nih.gov/pubmed/7969902. Accessed June 17, 2014.

  • Canales, J. J. (2007). Adult neurogenesis and the memories of drug addiction. European Archives of Psychiatry and Clinical Neuroscience, 257(5), 261–270. doi:10.1007/s00406-007-0730-6.

    Article  PubMed  Google Scholar 

  • Capetian, P., Knoth, R., Maciaczyk, J., Pantazis, G., Ditter, M., Bokla, L., et al. (2009). Histological findings on fetal striatal grafts in a Huntington’s disease patient early after transplantation. Neuroscience, 160(3), 661–675. doi:10.1016/j.neuroscience.2009.02.035.

    Article  CAS  PubMed  Google Scholar 

  • Caravagna, C., Soliz, J., & Seaborn, T. (2013). Brain-derived neurotrophic factor interacts with astrocytes and neurons to control respiration. The European Journal of Neuroscience, 38(9), 3261–3269. doi:10.1111/ejn.12320.

    Article  PubMed  Google Scholar 

  • Carpenter, M. K., Inokuma, M. S., Denham, J., Mujtaba, T., Chiu, C. P., & Rao, M. S. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Experimental Neurology, 172(2), 383–397. doi:10.1006/exnr.2001.7832.

    Article  CAS  PubMed  Google Scholar 

  • Castrén, E., & Tanila, H. (2006). Neurotrophins and dementia–keeping in touch. Neuron, 51(1), 1–3. doi:10.1016/j.neuron.2006.06.019.

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: An alternative approach to Huntington’s disease. Nature Reviews Neuroscience, 6(12), 919–930. doi:10.1038/nrn1806.

    Article  CAS  PubMed  Google Scholar 

  • Chaddah, R., Arntfield, M., Runciman, S., Clarke, L., & van der Kooy, D. (2012). Clonal neural stem cells from human embryonic stem cell colonies. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(23), 7771–7781. doi:10.1523/JNEUROSCI.3286-11.2012.

    Article  CAS  Google Scholar 

  • Chao, M. V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Reviews Neuroscience, 4(4), 299–309. doi:10.1038/nrn1078.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Jongkamonwiwat, N., Abbas, L., Eshtan, S. J., Johnson, S. L., Kuhn, S., et al. (2012). Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature, 490(7419), 278–282. doi:10.1038/nature11415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu, S., Terpstra, K. J., Bureau, Y., Hou, J., Raheb, H., Cernvosky, Z., et al. (2013). Liposomal-formulated curcumin [Lipocurc™] targeting HDAC (histone deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnology-driven drug platform. Journal of Complementary & Integrative Medicine,. doi:10.1515/jcim-2013-0020.

    Google Scholar 

  • Cho, M. S., Lee, Y.-E., Kim, J. Y., Chung, S., Cho, Y. H., Kim, D.-S., et al. (2008). Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3392–3397. doi:10.1073/pnas.0712359105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi-Lundberg, D. L., Lin, Q., Chang, Y. N., Chiang, Y. L., Hay, C. M., Mohajeri, H., et al. (1997). Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science (New York, N.Y.), 275(5301), 838–841. http://www.ncbi.nlm.nih.gov/pubmed/9012352. Accessed June 5, 2014.

  • Chong, J. J. H., Yang, X., Don, C. W., Minami, E., Liu, Y.-W., Weyers, J. J., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504), 273–277. doi:10.1038/nature13233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung, C.-Y., Yang, J.-T., & Kuo, Y.-C. (2013). Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials, 34(37), 9717–9727. doi:10.1016/j.biomaterials.2013.08.083.

    Article  CAS  PubMed  Google Scholar 

  • Connor, B., Young, D., Yan, Q., Faull, R. L., Synek, B., & Dragunow, M. (1997). Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Research Molecular Brain Research, 49(1–2), 71–81. http://www.ncbi.nlm.nih.gov/pubmed/9387865. Accessed July 6, 2014.

  • Conti, L., Cataudella, T., & Cattaneo, E. (2003). Neural stem cells: a pharmacological tool for brain diseases? Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 47(4), 289–297. http://www.ncbi.nlm.nih.gov/pubmed/12644385. Accessed June 28, 2014.

  • Corcoran, J., & Maden, M. (1999). Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nature Neuroscience, 2(4), 307–308. doi:10.1038/7214.

    Article  CAS  PubMed  Google Scholar 

  • Cowansage, K. K., LeDoux, J. E., & Monfils, M.-H. (2010). Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Current Molecular Pharmacology, 3(1), 12–29. http://www.ncbi.nlm.nih.gov/pubmed/20030625. Accessed July 7, 2014.

  • Crews, F. T., & Nixon, K. (2003). Alcohol, neural stem cells, and adult neurogenesis. Alcohol Research & Health: The Journal of the National Institute on Alcohol Abuse and Alcoholism, 27(2), 197–204. http://www.ncbi.nlm.nih.gov/pubmed/15303631. Accessed June 28, 2014.

  • Croce, N., Mathé, A. A., Gelfo, F., Caltagirone, C., Bernardini, S., & Angelucci, F. (2014). Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. Journal of Psychopharmacology (Oxford, England),. doi:10.1177/0269881114529379.

    Google Scholar 

  • Cuello, A. C., & Bruno, M. A. (2007). The failure in NGF maturation and its increased degradation as the probable cause for the vulnerability of cholinergic neurons in Alzheimer’s disease. Neurochemical Research, 32(6), 1041–1045. doi:10.1007/s11064-006-9270-0.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M. C., Butterworth, N. J., Dragunow, M., et al. (2003). Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 9023–9027. doi:10.1073/pnas.1532244100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science (New York, N.Y.), 315(5816), 1243–1249. doi:10.1126/science.1136281.

    Article  CAS  Google Scholar 

  • D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., et al. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24(11), 1392–1401. doi:10.1038/nbt1259.

    Article  PubMed  CAS  Google Scholar 

  • DeCarolis, N. A., & Eisch, A. J. (2010). Hippocampal neurogenesis as a target for the treatment of mental illness: A critical evaluation. Neuropharmacology, 58(6), 884–893. doi:10.1016/j.neuropharm.2009.12.013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodge, J. C., Haidet, A. M., Yang, W., Passini, M. A., Hester, M., Clarke, J., et al. (2008). Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Molecular Therapy: The Journal of the American Society of Gene Therapy, 16(6), 1056–1064. doi:10.1038/mt.2008.60.

    Article  CAS  Google Scholar 

  • Doetsch, F., & Alvarez-Buylla, A. (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14895–14900. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=26233&tool=pmcentrez&rendertype=abstract. Accessed June 15, 2014.

  • Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., et al. (2014). Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports, 2(3), 337–350. doi:10.1016/j.stemcr.2014.01.013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorsey, S. G., Renn, C. L., Carim-Todd, L., Barrick, C. A., Bambrick, L., Krueger, B. K., et al. (2006). In vivo restoration of physiological levels of truncated Trk.BT1 receptor rescues neuronal cell death in a trisomic mouse model. Neuron, 51(1), 21–28. doi:10.1016/j.neuron.2006.06.009.

    Article  CAS  PubMed  Google Scholar 

  • Drinkut, A., Tereshchenko, Y., Schulz, J. B., Bähr, M., & Kügler, S. (2012). Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(3), 534–543. doi:10.1038/mt.2011.249.

    Article  CAS  Google Scholar 

  • Duman, R. S., Malberg, J., & Nakagawa, S. (2001). Regulation of adult neurogenesis by psychotropic drugs and stress. The Journal of Pharmacology and Experimental Therapeutics, 299(2), 401–407. http://www.ncbi.nlm.nih.gov/pubmed/11602648. Accessed June 28, 2014.

  • Duman, R. S., Nakagawa, S., & Malberg, J. (2001b). Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 25(6), 836–844. doi:10.1016/S0893-133X(01)00358-X.

    Article  CAS  Google Scholar 

  • Dwivedi, Y. (2009). Brain-derived neurotrophic factor: Role in depression and suicide. Neuropsychiatric Disease and Treatment, 5, 433–449. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2732010&tool=pmcentrez&rendertype=abstract. Accessed June 5, 2014.

  • Eggert, K., Schlegel, J., Oertel, W., Würz, C., Krieg, J. C., & Vedder, H. (1999). Glial cell line-derived neurotrophic factor protects dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neuroscience Letters, 269(3), 178–182. http://www.ncbi.nlm.nih.gov/pubmed/10454161. Accessed July 4, 2014.

  • Eisch, A. J., Barrot, M., Schad, C. A., Self, D. W., & Nestler, E. J. (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7579–7584. doi:10.1073/pnas.120552597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisch, A. J., Cameron, H. A., Encinas, J. M., Meltzer, L. A., Ming, G.-L., & Overstreet-Wadiche, L. S. (2008). Adult neurogenesis, mental health, and mental illness: Hope or hype? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 28(46), 11785–11791. doi:10.1523/JNEUROSCI.3798-08.2008.

    Article  CAS  Google Scholar 

  • Elizalde, C., Campa, V. M., Caro, M., Schlangen, K., Aransay, A. M., Vivanco, M. dM, & Kypta, R. M. (2011). Distinct roles for Wnt-4 and Wnt-11 during retinoic acid-induced neuronal differentiation. Stem cells (Dayton, Ohio), 29(1), 141–153. doi:10.1002/stem.562.

  • Erceg, S., Ronaghi, M., Oria, M., Roselló, M. G., Aragó, M. A. P., Lopez, M. G., et al. (2010). Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem cells (Dayton, Ohio), 28(9), 1541–1549. doi:10.1002/stem.489.

  • Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317. doi:10.1038/3305.

    Article  CAS  PubMed  Google Scholar 

  • Eslamboli, A., Georgievska, B., Ridley, R. M., Baker, H. F., Muzyczka, N., Burger, C., et al. (2005). Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(4), 769–777. doi:10.1523/JNEUROSCI.4421-04.2005.

    Article  CAS  Google Scholar 

  • Fischer, W., Wictorin, K., Björklund, A., Williams, L. R., Varon, S., & Gage, F. H. (1987). Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature, 329(6134), 65–68. doi:10.1038/329065a0.

    Article  CAS  PubMed  Google Scholar 

  • Frank, L., Ventimiglia, R., Anderson, K., Lindsay, R. M., & Rudge, J. S. (1996). BDNF down-regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons. The European Journal of Neuroscience, 8(6), 1220–1230. http://www.ncbi.nlm.nih.gov/pubmed/8752592. Accessed September 14, 2014.

  • Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W. Y., DuMouchel, W., Kao, R., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. The New England Journal of Medicine, 344(10), 710–719. doi:10.1056/NEJM200103083441002.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity,. doi:10.1155/2014/541870.

    PubMed Central  PubMed  Google Scholar 

  • Fukuda, Y., Berry, T. L., Nelson, M., Hunter, C. L., Fukuhara, K., Imai, H., et al. (2010). Stimulated neuronal expression of brain-derived neurotrophic factor by Neurotropin. Molecular and Cellular Neurosciences, 45(3), 226–233. doi:10.1016/j.mcn.2010.06.013.

    Article  CAS  PubMed  Google Scholar 

  • Gage, F. H. (2000). Mammalian neural stem cells. Science (New York, N.Y.), 287(5457), 1433–1438. http://www.ncbi.nlm.nih.gov/pubmed/10688783. Accessed June 2, 2014.

  • Gaillard, A., Prestoz, L., Dumartin, B., Cantereau, A., Morel, F., Roger, M., & Jaber, M. (2007). Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nature Neuroscience, 10(10), 1294–1299. doi:10.1038/nn1970.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alloza, M., Borrelli, L. A., Rozkalne, A., Hyman, B. T., & Bacskai, B. J. (2007). Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. Journal of Neurochemistry, 102(4), 1095–1104. doi:10.1111/j.1471-4159.2007.04613.x.

    Article  CAS  PubMed  Google Scholar 

  • Géral, C., Angelova, A., Angelov, B., Nicolas, V., & Lesieur, S. (2012). Multicompartment lipid nanocarriers for targeting of cells expressing brain receptors. In N. Garti, R. Mezzenga, & P. Somasundaran (Eds.), Self-assembled supramolecular architectures: Lyotropic liquid crystals (pp. 319–355). New York, USA: Wiley.

    Chapter  Google Scholar 

  • Géral, C., Angelova, A., & Lesieur, S. (2013). From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics, 5(1), 127–167. doi:10.3390/pharmaceutics5010127.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gerrard, L., Rodgers, L., & Cui, W. (2005). Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells (Dayton, Ohio), 23(9), 1234–1241. doi:10.1634/stemcells.2005-0110.

    Article  CAS  Google Scholar 

  • Godman, C. A., Joshi, R., Giardina, C., Perdrizet, G., & Hightower, L. E. (2010). Hyperbaric oxygen treatment induces antioxidant gene expression. Annals of the New York Academy of Sciences, 1197, 178–183. doi:10.1111/j.1749-6632.2009.05393.x.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, S. L., Labombarda, F., Deniselle, M. C. G., Mougel, A., Guennoun, R., Schumacher, M., & De Nicola, A. F. (2005). Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons. The Journal of Steroid Biochemistry and Molecular Biology, 94(1–3), 143–149. doi:10.1016/j.jsbmb.2005.01.016.

    Article  CAS  PubMed  Google Scholar 

  • Grandoso, L., Ponce, S., Manuel, I., Arrúe, A., Ruiz-Ortega, J. A., Ulibarri, I., et al. (2007). Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. International Journal of Pharmaceutics, 343(1–2), 69–78. doi:10.1016/j.ijpharm.2007.05.027.

    Article  CAS  PubMed  Google Scholar 

  • Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., et al. (2014). Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s Disease. Cell Stem Cell, 15(5), 653–665. doi:10.1016/j.stem.2014.09.017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grondin, R., Zhang, Z., Yi, A., Cass, W. A., Maswood, N., Andersen, A. H., et al. (2002). Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain: Journal of Neurology, 125(Pt 10), 2191–2201. http://www.ncbi.nlm.nih.gov/pubmed/12244077. Accessed June 5, 2014.

  • Grondin, R., Zhang, Z., Ai, Y., Gash, D. M., & Gerhardt, G. A. (2003). Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Progress in drug research. Fortschritte der Arzneimittelforschung. Progrès des recherches pharmaceutiques, 61, 101–123. http://www.ncbi.nlm.nih.gov/pubmed/14674610. Accessed July 8, 2014.

  • Günther, A., Küppers-Tiedt, L., Schneider, P.-M., Kunert, I., Berrouschot, J., Schneider, D., & Rossner, S. (2005). Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. The European Journal of Neuroscience, 21(11), 3189–3194. doi:10.1111/j.1460-9568.2005.04151.x.

    Article  PubMed  Google Scholar 

  • Hádinger, N., Varga, B. V., Berzsenyi, S., Környei, Z., Madarász, E., & Herberth, B. (2009). Astroglia genesis in vitro: Distinct effects of retinoic acid in different phases of neural stem cell differentiation. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 27(4), 365–375. doi:10.1016/j.ijdevneu.2009.02.004.

    Article  CAS  Google Scholar 

  • Hanson, N. D., Nemeroff, C. B., & Owens, M. J. (2011). Lithium, but not fluoxetine or the corticotropin-releasing factor receptor 1 receptor antagonist R121919, increases cell proliferation in the adult dentate gyrus. The Journal of Pharmacology and Experimental Therapeutics, 337(1), 180–186. doi:10.1124/jpet.110.175372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harwood, A. J. (2003). Neurodevelopment and mood stabilizers. Current Molecular Medicine, 3(5), 472–482. http://www.ncbi.nlm.nih.gov/pubmed/12943000. Accessed June 28, 2014.

  • Haskell, G. T., & LaMantia, A.-S. (2005). Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(33), 7636–7647. doi:10.1523/JNEUROSCI.0485-05.2005.

    Article  CAS  Google Scholar 

  • He, J., Evans, C.-O., Hoffman, S. W., Oyesiku, N. M., & Stein, D. G. (2004). Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Experimental Neurology, 189(2), 404–412. doi:10.1016/j.expneurol.2004.06.008.

    Article  CAS  PubMed  Google Scholar 

  • Herrán, E., Pérez-González, R., Igartua, M., Pedraz, J. L., Carro, E., & Hernández, R. M. (2013). VEGF-releasing biodegradable nanospheres administered by craniotomy: A novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer’s disease. Journal of Controlled Release: Official Journal of the Controlled Release Society, 170(1), 111–119. doi:10.1016/j.jconrel.2013.04.028.

    Article  CAS  Google Scholar 

  • Herrán, E., Requejo, C., Ruiz-Ortega, J. A., Aristieta, A., Igartua, M., Bengoetxea, H., et al. (2014). Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson’s disease. International Journal of Nanomedicine, 9(Suppl 1), 2677–2687. doi:10.2147/IJN.S61940.

    PubMed Central  PubMed  Google Scholar 

  • Hester, M. E., Murtha, M. J., Song, S., Rao, M., Miranda, C. J., Meyer, K., et al. (2011). Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(10), 1905–1912. doi:10.1038/mt.2011.135.

    Article  CAS  Google Scholar 

  • Hicks, A. U., Lappalainen, R. S., Narkilahti, S., Suuronen, R., Corbett, D., Sivenius, J., et al. (2009). Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: Cell survival and functional recovery. The European Journal of Neuroscience, 29(3), 562–574. doi:10.1111/j.1460-9568.2008.06599.x.

    Article  PubMed  Google Scholar 

  • Huang, H.-C., Lin, C.-J., Liu, W.-J., Jiang, R.-R., & Jiang, Z.-F. (2011). Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 49(7), 1578–1583. doi:10.1016/j.fct.2011.04.004.

    Article  CAS  Google Scholar 

  • Inestrosa, N. C., & Arenas, E. (2010). Emerging roles of Wnts in the adult nervous system. Nature Reviews Neuroscience, 11(2), 77–86. doi:10.1038/nrn2755.

    Article  CAS  PubMed  Google Scholar 

  • Itsykson, P., Ilouz, N., Turetsky, T., Goldstein, R. S., Pera, M. F., Fishbein, I., et al. (2005). Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Molecular and Cellular Neurosciences, 30(1), 24–36. doi:10.1016/j.mcn.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, S., Lie, D. C., DeCicco, K. L., Shi, Y., DeLuca, L. M., Gage, F. H., & Evans, R. M. (2006). Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3902–3907. doi:10.1073/pnas.0511294103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagasia, R., Steib, K., Englberger, E., Herold, S., Faus-Kessler, T., Saxe, M., et al. (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(25), 7966–7977. doi:10.1523/JNEUROSCI.1054-09.2009.

    Article  CAS  Google Scholar 

  • Je, H. S., Yang, F., Ji, Y., Potluri, S., Fu, X.-Q., Luo, Z.-G., et al. (2013). ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(24), 9957–9962. doi:10.1523/JNEUROSCI.0163-13.2013.

    Article  CAS  Google Scholar 

  • Jepson, B., Granpeesheh, D., Tarbox, J., Olive, M. L., Stott, C., Braud, S., et al. (2011). Controlled evaluation of the effects of hyperbaric oxygen therapy on the behavior of 16 children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 41(5), 575–588. doi:10.1007/s10803-010-1075-y.

    Article  PubMed  Google Scholar 

  • Johansson, A. G. M., Nikamo, P., Schalling, M., & Landén, M. (2011). AKR1C4 gene variant associated with low euthymic serum progesterone and a history of mood irritability in males with bipolar disorder. Journal of Affective Disorders, 133(1–2), 346–351. doi:10.1016/j.jad.2011.04.009.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, D. R., Hempstead, B. L., Martin-Zanca, D., Chao, M. V, & Parada, L. F. (1991). The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science (New York, N.Y.), 252(5005), 554–558. http://www.ncbi.nlm.nih.gov/pubmed/1850549. Accessed June 29, 2014.

  • Kaspar, B. K., Lladó, J., Sherkat, N., Rothstein, J. D., & Gage, F. H. (2003). Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science (New York, N.Y.), 301(5634), 839–842. doi:10.1126/science.1086137.

    Article  CAS  Google Scholar 

  • Katz, D. M. (2014). Brain-derived neurotrophic factor and Rett syndrome. Handbook of Experimental Pharmacology, 220, 481–495. doi:10.1007/978-3-642-45106-5_18.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata, T., Dietrich, W. D., Schallert, T., Gotts, J. E., Cocke, R. R., Benowitz, L. I., & Finklestein, S. P. (1997). Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proceedings of the National Academy of Sciences of the United States of America, 94(15), 8179–8184. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=21577&tool=pmcentrez&rendertype=abstract. Accessed June 30, 2014.

  • Kells, A. P., Eberling, J., Su, X., Pivirotto, P., Bringas, J., Hadaczek, P., et al. (2010). Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(28), 9567–9577. doi:10.1523/JNEUROSCI.0942-10.2010.

    Article  CAS  Google Scholar 

  • Kelly, O. G., Chan, M. Y., Martinson, L. A., Kadoya, K., Ostertag, T. M., Ross, K. G., et al. (2011). Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nature Biotechnology, 29(8), 750–756. doi:10.1038/nbt.1931.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G., Krebs, J., & Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21(3), 290–295. doi:10.1097/YCO.0b013e3282fad375.

    Article  PubMed  Google Scholar 

  • Kernie, S. G., & Parent, J. M. (2010). Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiology of Disease, 37(2), 267–274. doi:10.1016/j.nbd.2009.11.002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim, D. S., Park, S. Y., & Kim, J. K. (2001). Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neuroscience Letters, 303(1), 57–61. http://www.ncbi.nlm.nih.gov/pubmed/11297823. Accessed July 29, 2014.

  • Kim, J.-H., Auerbach, J. M., Rodríguez-Gómez, J. A., Velasco, I., Gavin, D., Lumelsky, N., et al. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature, 418(6893), 50–56. doi:10.1038/nature00900.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Lee, S.-T., Chu, K., & Kim, S. U. (2008a). Stem cell-based cell therapy for Huntington disease: A review. Neuropathology: Official Journal of the Japanese Society of Neuropathology, 28(1), 1–9. doi:10.1111/j.1440-1789.2007.00858.x.

    Article  CAS  Google Scholar 

  • Kim, S. J., Son, T. G., Park, H. R., Park, M., Kim, M.-S., Kim, H. S., et al. (2008b). Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. The Journal of biological chemistry, 283(21), 14497–14505. doi:10.1074/jbc.M708373200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimbrel, E. A., & Lanza, R. (2015). Hope for regenerative treatments: Toward safe transplantation of human pluripotent stem-cell-based therapies. Regenerative Medicine, 10(2), 99–102. doi:10.2217/rme.14.89.

    Article  CAS  PubMed  Google Scholar 

  • Klein, R., Jing, S. Q., Nanduri, V., O’Rourke, E., & Barbacid, M. (1991a). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell, 65(1), 189–197. http://www.ncbi.nlm.nih.gov/pubmed/1849459. Accessed June 29, 2014.

  • Klein, R., Nanduri, V., Jing, S. A., Lamballe, F., Tapley, P., Bryant, S., et al. (1991b). The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 66(2), 395–403. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2710095&tool=pmcentrez&rendertype=abstract. Accessed June 29, 2014.

  • Knusel, B., Gao, H., Okazaki, T., Yoshida, T., Mori, N., Hefti, F., & Kaplan, D. R. (1997). Ligand-induced down-regulation of Trk messenger RNA, protein and tyrosine phosphorylation in rat cortical neurons. Neuroscience, 78(3), 851–862. http://www.ncbi.nlm.nih.gov/pubmed/9153663. Accessed September 14, 2014.

  • Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brüstle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3225–3230. doi:10.1073/pnas.0808387106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J., & Zhang, S.-C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology, 29(6), 528–534. doi:10.1038/nbt.1877.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ku, B., Kim, J., Chung, B. H., & Chung, B. G. (2013). Retinoic acid-polyethyleneimine complex nanoparticles for embryonic stem cell-derived neuronal differentiation. Langmuir: The ACS Journal of Surfaces and Colloids, 29(31), 9857–9862. doi:10.1021/la4015543.

    Article  CAS  Google Scholar 

  • Kuhn, H. G., Palmer, T. D., & Fuchs, E. (2001). Adult neurogenesis: compensatory mechanism for neuronal damage. European Archives of Psychiatry and Clinical Neuroscience, 251(4), 152–158. http://www.ncbi.nlm.nih.gov/pubmed/11697579. Accessed June 28, 2014.

  • Kukekov, V. G., Laywell, E. D., Suslov, O., Davies, K., Scheffler, B., Thomas, L. B., et al. (1999). Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Experimental Neurology, 156(2), 333–344. doi:10.1006/exnr.1999.7028.

    Article  CAS  PubMed  Google Scholar 

  • Kurakhmaeva, K. B., Djindjikhashvili, I. A., Petrov, V. E., Balabanyan, V. U., Voronina, T. A., Trofimov, S. S., et al. (2009). Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. Journal of Drug Targeting, 17(8), 564–574. doi:10.1080/10611860903112842.

    Article  CAS  PubMed  Google Scholar 

  • Lamballe, F., Klein, R., & Barbacid, M. (1991). trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell, 66(5), 967–979. doi:10.1016/0092-8674(91)90442-2.

    Article  CAS  PubMed  Google Scholar 

  • Lamm, O., Ganz, J., Melamed, E., & Offen, D. (2014). Harnessing neurogenesis for the possible treatment of Parkinson’s disease. The Journal of Comparative Neurology,. doi:10.1002/cne.23607.

    PubMed  Google Scholar 

  • Lee, G., Kim, H., Elkabetz, Y., Al Shamy, G., Panagiotakos, G., Barberi, T., et al. (2007a). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology, 25(12), 1468–1475. doi:10.1038/nbt1365.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Shamy, G. Al, Elkabetz, Y., Schofield, C. M., Harrsion, N. L., Panagiotakos, G., et al. (2007b). Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells (Dayton, Ohio), 25(8), 1931–1939. doi:10.1634/stemcells.2007-0097.

    Article  CAS  Google Scholar 

  • Lee, Y.-C., Chio, C.-C., Chang, C.-P., Wang, L.-C., Chiang, P.-M., Niu, K.-C., & Tsai, K.-J. (2013). Long course hyperbaric oxygen stimulates neurogenesis and attenuates inflammation after ischemic stroke. Inflammatory Mediators, 2013, 13.

    Google Scholar 

  • Leonard, B. W., Mastroeni, D., Grover, A., Liu, Q., Yang, K., Gao, M., et al. (2009). Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. The Journal of Comparative Neurology, 515(3), 269–294. doi:10.1002/cne.22040.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lepski, G. (2012). What do we know about the neurogenic potential of different stem cell types? Arquivos de Neuro-Psiquiatria, 70(7), 540–546. doi:10.1590/S0004-282X2012000700013.

    Article  PubMed  Google Scholar 

  • Levin, H. S. (2003). Neuroplasticity following non-penetrating traumatic brain injury. Brain Injury : [BI], 17(8), 665–674. doi:10.1080/0269905031000107151.

    Article  Google Scholar 

  • Liebau, S., Vaida, B., Storch, A., & Boeckers, T. M. (2007). Maturation of synaptic contacts in differentiating neural stem cells. Stem cells (Dayton, Ohio), 25(7), 1720–1729. doi:10.1634/stemcells.2006-0823.

    Article  CAS  Google Scholar 

  • Lindvall, O., & Wahlberg, L. U. (2008). Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson’s disease? Experimental Neurology, 209(1), 82–88. doi:10.1016/j.expneurol.2007.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., & Holmes, G. L. (1997). Basic fibroblast growth factor is highly neuroprotective against seizure-induced long-term behavioural deficits. Neuroscience, 76(4), 1129–1138. http://www.ncbi.nlm.nih.gov/pubmed/9027873. Accessed June 30, 2014.

  • Liu, D., Wang, Z., Gao, Z., Xie, K., Zhang, Q., Jiang, H., & Pang, Q. (2014). Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behavioural Brain Research, 271C, 116–121. doi:10.1016/j.bbr.2014.05.068.

    Article  CAS  Google Scholar 

  • Lois, C., García-Verdugo, J. M., & Alvarez-Buylla, A. (1996). Chain migration of neuronal precursors. Science (New York, N.Y.), 271(5251), 978–981. http://www.ncbi.nlm.nih.gov/pubmed/8584933. Accessed June 15, 2014.

  • Lovell, M. A., Geiger, H., Van Zant, G. E., Lynn, B. C., & Markesbery, W. R. (2006). Isolation of neural precursor cells from Alzheimer’s disease and aged control postmortem brain. Neurobiology of Aging, 27(7), 909–917. doi:10.1016/j.neurobiolaging.2005.05.004.

    Article  PubMed  Google Scholar 

  • Lu, P., Jones, L. L., Snyder, E. Y., & Tuszynski, M. H. (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Experimental Neurology, 181(2), 115–129. http://www.ncbi.nlm.nih.gov/pubmed/12781986. Accessed May 31, 2014.

  • Lu, J., Tan, L., Li, P., Gao, H., Fang, B., Ye, S., et al. (2009). All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biology, 10, 57. doi:10.1186/1471-2121-10-57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma, Y.-P., Ma, M.-M., Cheng, S.-M., Ma, H.-H., Yi, X.-M., Xu, G.-L., & Liu, X.-F. (2008). Intranasal bFGF-induced progenitor cell proliferation and neuroprotection after transient focal cerebral ischemia. Neuroscience Letters, 437(2), 93–97. doi:10.1016/j.neulet.2008.04.003.

    Article  CAS  PubMed  Google Scholar 

  • Macas, J., Nern, C., Plate, K. H., & Momma, S. (2006). Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(50), 13114–13119. doi:10.1523/JNEUROSCI.4667-06.2006.

    Article  CAS  Google Scholar 

  • Maia, J., Santos, T., Aday, S., Agasse, F., Cortes, L., Malva, J. O., et al. (2011). Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. ACS Nano, 5(1), 97–106. doi:10.1021/nn101724r.

    Article  CAS  PubMed  Google Scholar 

  • Malberg, J. E. (2004). Implications of adult hippocampal neurogenesis in antidepressant action. Journal of Psychiatry & Neuroscience: PN, 29(3), 196–205. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=400689&tool=pmcentrez&rendertype=abstract. Accessed June 28, 2014.

  • Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(24), 9104–9110. http://www.ncbi.nlm.nih.gov/pubmed/11124987. Accessed June 13, 2014.

  • Mansouri, Z., Sabetkasaei, M., Moradi, F., Masoudnia, F., & Ataie, A. (2012). Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. Journal of Molecular Neuroscience: MN, 47(2), 234–242. doi:10.1007/s12031-012-9727-3.

    Article  CAS  PubMed  Google Scholar 

  • Marlatt, M. W., Lucassen, P. J., & van Praag, H. (2010). Comparison of neurogenic effects of fluoxetine, duloxetine and running in mice. Brain Research, 1341, 93–99. doi:10.1016/j.brainres.2010.03.086.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martina, M.-S., Wilhelm, C., & Lesieur, S. (2008). The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by human prostatic adenocarcinoma cells. Biomaterials, 29(30), 4137–4145. doi:10.1016/j.biomaterials.2008.07.011.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fong, D., Bannon, M. J., Trudeau, L.-E., Gonzalez-Barrios, J. A., Arango-Rodriguez, M. L., Hernandez-Chan, N. G., et al. (2012). NTS-Polyplex: A potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine: Nanotechnology, Biology and Medicine, 8(7), 1052–1069. doi:10.1016/j.nano.2012.02.009.

    Article  CAS  Google Scholar 

  • Marx, C. E., VanDoren, M. J., Duncan, G. E., Lieberman, J. A., & Morrow, A. L. (2003). Olanzapine and clozapine increase the GABAergic neuroactive steroid allopregnanolone in rodents. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 28(1), 1–13. doi:10.1038/sj.npp.1300015.

    Article  CAS  Google Scholar 

  • Mattson, M. P. (2008). Glutamate and neurotrophic factors in neuronal plasticity and disease. Annals of the New York Academy of Sciences, 1144, 97–112. doi:10.1196/annals.1418.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maucksch, C., Vazey, E. M., Gordon, R. J., & Connor, B. (2013). Stem cell-based therapy for Huntington’s disease. Journal of Cellular Biochemistry, 114(4), 754–763. doi:10.1002/jcb.24432.

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar, J., O’Brien, W. T., Johnson, R. S., LaManna, J. C., Chavez, J. C., Klein, P. S., & Simon, M. C. (2010). O2 regulates stem cells through Wnt/β-catenin signalling. Nature Cell Biology, 12(10), 1007–1013. doi:10.1038/ncb2102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McAvoy, K., Russo, C., Kim, S., Rankin, G., & Sahay, A. (2015). Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age. Hippocampus,. doi:10.1002/hipo.22464.

    PubMed  Google Scholar 

  • McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105–122. doi:10.1146/annurev.neuro.22.1.105.

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra, S., Lynam, D., Maloney, R., Pawelec, K. M., Tuszynski, M. H., Lee, I., et al. (2010). Time controlled protein release from layer-by-layer assembled multilayer functionalized agarose hydrogels. Advanced Functional Materials, 20(2), 247–258. doi:10.1002/adfm.200901172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menasché, P., Vanneaux, V., Fabreguettes, J.-R., Bel, A., Tosca, L., Garcia, S., et al. (2015). Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: A translational experience. European Heart Journal, 36(12), 743–750. doi:10.1093/eurheartj/ehu192.

    Article  PubMed  Google Scholar 

  • Mendez, I., Sanchez-Pernaute, R., Cooper, O., Viñuela, A., Ferrari, D., Björklund, L., et al. (2005). Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain: A Journal of Neurology, 128(Pt 7), 1498–1510. doi:10.1093/brain/awh510.

    Article  Google Scholar 

  • Migliore, M. M., Ortiz, R., Dye, S., Campbell, R. B., Amiji, M. M., & Waszczak, B. L. (2014). Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease. Neuroscience, 274, 11–23. doi:10.1016/j.neuroscience.2014.05.019.

    Article  CAS  PubMed  Google Scholar 

  • Milosevic, J., Adler, I., Manaenko, A., Schwarz, S. C., Walkinshaw, G., Arend, M., et al. (2009). Non-hypoxic stabilization of hypoxia-inducible factor alpha (HIF-alpha): Relevance in neural progenitor/stem cells. Neurotoxicity Research, 15(4), 367–380. doi:10.1007/s12640-009-9043-z.

    Article  CAS  PubMed  Google Scholar 

  • Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., et al. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10827–10832. doi:10.1073/pnas.0402141101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monteggia, L. M., Luikart, B., Barrot, M., Theobold, D., Malkovska, I., Nef, S., et al. (2007). Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biological Psychiatry, 61(2), 187–197. doi:10.1016/j.biopsych.2006.03.021.

    Article  CAS  PubMed  Google Scholar 

  • Mu, J., Krafft, P. R., & Zhang, J. H. (2011). Hyperbaric oxygen therapy promotes neurogenesis: Where do we stand? Medical Gas Research, 1(1), 14. doi:10.1186/2045-9912-1-14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee, A., Raison, M., Sahni, T., Arya, A., Lambert, J., Marois, P., et al. (2014). Intensive rehabilitation combined with HBO2 therapy in children with cerebral palsy: a controlled longitudinal study. Undersea & Hyperbaric Medicine: Journal of the Undersea and Hyperbaric Medical Society, Inc, 41(2), 77–85. http://www.ncbi.nlm.nih.gov/pubmed/24851544. Accessed July 29, 2014.

  • Mychaskiw, G. (2010). Hyperbaric oxygen therapy and neurologic disease: the time has come. Undersea & Hyperbaric Medicine: Journal of the Undersea and Hyperbaric Medical Society, Inc, 37(2), xi–xiii. http://www.ncbi.nlm.nih.gov/pubmed/20462138. Accessed July 29, 2014.

  • Nair, S. S., Prathibha, P., Syam Das, S., Kavitha, S., & Indira, M. (2015). All trans retinoic acid (ATRA) mediated modulation of N-methyl d-aspartate receptor (NMDAR) and Kruppel like factor 11 (KLF11) expressions in the mitigation of ethanol induced alterations in the brain. Neurochemistry International, 83–84, 41–47. doi:10.1016/j.neuint.2015.02.007.

    Article  PubMed  CAS  Google Scholar 

  • Narkilahti, S., Rajala, K., Pihlajamäki, H., Suuronen, R., Hovatta, O., & Skottman, H. (2007). Monitoring and analysis of dynamic growth of human embryonic stem cells: Comparison of automated instrumentation and conventional culturing methods. Biomedical Engineering Online, 6, 11. doi:10.1186/1475-925X-6-11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Narvekar, M., Xue, H. Y., & Wong, H. L. (2012). A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA). International Journal of Pharmaceutics, 436(1–2), 721–731. doi:10.1016/j.ijpharm.2012.07.042.

    Article  CAS  PubMed  Google Scholar 

  • Noisa, P., & Parnpai, R. (2011). Technical challenges in the derivation of human pluripotent cells. Stem cells international, 2011, 907961. doi:10.4061/2011/907961.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann, G., Jiang, L., et al. (2003). Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nature Medicine, 9(4), 439–447. doi:10.1038/nm837.

    Article  CAS  PubMed  Google Scholar 

  • Ormerod, B. K., Palmer, T. D., & Caldwell, M. A. (2008). Neurodegeneration and cell replacement. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363(1489), 153–170. doi:10.1098/rstb.2006.2018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pagliuca, F. W., Millman, J. R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J. H., et al. (2014). Generation of functional human pancreatic β cells in vitro. Cell, 159(2), 428–439. doi:10.1016/j.cell.2014.09.040.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palencia, G., Hernández-Pedro, N., Saavedra-Perez, D., Peña-Curiel, O., Ortiz-Plata, A., Ordoñez, G., et al. (2014). Retinoic acid reduces solvent-induced neuropathy and promotes neural regeneration in mice. Journal of Neuroscience Research, 92(8), 1062–1070. doi:10.1002/jnr.23376.

    Article  CAS  PubMed  Google Scholar 

  • Pang, Z., Lu, W., Gao, H., Hu, K., Chen, J., Zhang, C., et al. (2008). Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. Journal of Controlled Release: Official Journal of the Controlled Release Society, 128(2), 120–127. doi:10.1016/j.jconrel.2008.03.007.

    Article  CAS  Google Scholar 

  • Park, T. I.-H., Monzo, H., Mee, E. W., Bergin, P. S., Teoh, H. H., Montgomery, J. M., et al. (2012). Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons. PLoS ONE, 7(6), e37742. doi:10.1371/journal.pone.0037742.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paschaki, M., Cammas, L., Muta, Y., Matsuoka, Y., Mak, S.-S., Rataj-Baniowska, M., et al. (2013). Retinoic acid regulates olfactory progenitor cell fate and differentiation. Neural Development, 8, 13. doi:10.1186/1749-8104-8-13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2004). Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 63(6), 641–649. http://www.ncbi.nlm.nih.gov/pubmed/15217092. Accessed June 15, 2014.

  • Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., et al. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12543–12548. doi:10.1073/pnas.0404700101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pettus, E. H., Wright, D. W., Stein, D. G., & Hoffman, S. W. (2005). Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Research, 1049(1), 112–119. doi:10.1016/j.brainres.2005.05.004.

    Article  CAS  PubMed  Google Scholar 

  • Pibiri, F., Nelson, M., Guidotti, A., Costa, E., & Pinna, G. (2008). Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5567–5572. doi:10.1073/pnas.0801853105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pillai, A. (2008). Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neuro-Signals, 16(2–3), 183–193. doi:10.1159/000111562.

    Article  CAS  PubMed  Google Scholar 

  • Piña-Crespo, J. C., Talantova, M., Cho, E.-G., Soussou, W., Dolatabadi, N., Ryan, S. D., et al. (2012). High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(45), 15837–15842. doi:10.1523/JNEUROSCI.3735-12.2012.

    Article  CAS  Google Scholar 

  • Rangarajan, P., Eng-Ang, L., & Dheen, S. T. (2013). Potential drugs targeting microglia: current knowledge and future prospects. CNS & Neurological Disorders Drug Targets, 12(6), 799–806. http://www.ncbi.nlm.nih.gov/pubmed/24047522. Accessed June 5, 2014.

  • Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., & Ben-Hur, T. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19(12), 1134–1140. doi:10.1038/nbt1201-1134.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, B., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710. doi:10.1126/science.1553558.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, R. M., Holloway, K. L., Bullock, M. R., Broaddus, W. C., & Fillmore, H. L. (2006). Isolation of neuronal progenitor cells from the adult human neocortex. Acta Neurochirurgica, 148(7), 773–777. doi:10.1007/s00701-006-0778-5.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, R. M., Sun, D., & Bullock, M. R. (2007). Neurogenesis after traumatic brain injury. Neurosurgery Clinics of North America, 18(1), 169–181, xi. doi:10.1016/j.nec.2006.10.007.

  • Rockswold, S. B., Rockswold, G. L., & Defillo, A. (2007). Hyperbaric oxygen in traumatic brain injury. Neurological Research, 29(2), 162–172. doi:10.1179/016164107X181798.

    Article  PubMed  Google Scholar 

  • Roof, R. L., Hoffman, S. W., & Stein, D. G. (1997). Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Molecular and Chemical Neuropathology/Sponsored by the International Society for Neurochemistry and the World Federation of Neurology and Research Groups on Neurochemistry and Cerebrospinal Fluid, 31(1), 1–11. http://www.ncbi.nlm.nih.gov/pubmed/9271001. Accessed July 15, 2014.

  • Rossignol, D. A., Rossignol, L. W., Smith, S., Schneider, C., Logerquist, S., Usman, A., et al. (2009). Hyperbaric treatment for children with autism: A multicenter, randomized, double-blind, controlled trial. BMC Pediatrics, 9, 21. doi:10.1186/1471-2431-9-21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saarelainen, T., Hendolin, P., Lucas, G., Koponen, E., Sairanen, M., MacDonald, E., et al. (2003). Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23(1), 349–357. http://www.ncbi.nlm.nih.gov/pubmed/12514234. Accessed July 7, 2014.

  • Sajadi, A., Bensadoun, J.-C., Schneider, B. L., Lo Bianco, C., & Aebischer, P. (2006). Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiology of Disease, 22(1), 119–129. doi:10.1016/j.nbd.2005.10.006.

    Article  CAS  PubMed  Google Scholar 

  • Sakane, T., & Pardridge, W. M. (1997). Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharmaceutical Research, 14(8), 1085–1091. http://www.ncbi.nlm.nih.gov/pubmed/9279893. Accessed September 22, 2014.

  • Sampanthavivat, M., Singkhwa, W., Chaiyakul, T., Karoonyawanich, S., & Ajpru, H. (2012). Hyperbaric oxygen in the treatment of childhood autism: a randomised controlled trial. Diving and Hyperbaric Medicine: the Journal of the South Pacific Underwater Medicine Society, 42(3), 128–133. http://www.ncbi.nlm.nih.gov/pubmed/22987458. Accessed July 24, 2014.

  • Sanai, N., Tramontin, A. D., Quiñones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427(6976), 740–744. doi:10.1038/nature02301.

    Article  CAS  PubMed  Google Scholar 

  • Sandhir, R., Yadav, A., Mehrotra, A., Sunkaria, A., Singh, A., & Sharma, S. (2014). Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. NeuroMolecular Medicine, 16(1), 106–118. doi:10.1007/s12017-013-8261-y.

    Article  CAS  PubMed  Google Scholar 

  • Sandur, S. K., Pandey, M. K., Sung, B., Ahn, K. S., Murakami, A., Sethi, G., et al. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 28(8), 1765–1773. doi:10.1093/carcin/bgm123.

    Article  CAS  PubMed  Google Scholar 

  • Santos, T., Ferreira, R., Maia, J., Agasse, F., Xapelli, S., Cortes, L., et al. (2012). Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS Nano, 6(12), 10463–10474. doi:10.1021/nn304541h.

    CAS  PubMed  Google Scholar 

  • Schulz, T. C., Young, H. Y., Agulnick, A. D., Babin, M. J., Baetge, E. E., Bang, A. G., et al. (2012). A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE, 7(5), e37004. doi:10.1371/journal.pone.0037004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwartz, S. D., Hubschman, J.-P., Heilwell, G., Franco-Cardenas, V., Pan, C. K., Ostrick, R. M., et al. (2012). Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet, 379(9817), 713–720. doi:10.1016/S0140-6736(12)60028-2.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., et al. (2014). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. The Lancet, 385(9967), 509–516. doi:10.1016/S0140-6736(14)61376-3.

    Article  Google Scholar 

  • Shin, H. Y., Kim, J. H., Phi, J. H., Park, C.-K., Kim, J. E., Kim, J.-H., et al. (2008). Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia. Journal of Neuroscience Research, 86(2), 356–367. doi:10.1002/jnr.21494.

    Article  CAS  PubMed  Google Scholar 

  • Shirakura, M., Inoue, M., Fujikawa, S., Washizawa, K., Komaba, S., Maeda, M., et al. (2004). Postischemic administration of Sendai virus vector carrying neurotrophic factor genes prevents delayed neuronal death in gerbils. Gene Therapy, 11(9), 784–790. doi:10.1038/sj.gt.3302224.

    Article  CAS  PubMed  Google Scholar 

  • Simon, A., Allais, D. P., Duroux, J. L., Basly, J. P., Durand-Fontanier, S., & Delage, C. (1998). Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships. Cancer Letters, 129(1), 111–116. http://www.ncbi.nlm.nih.gov/pubmed/9714342. Accessed July 29, 2014.

  • Skaper, S. D. (2012). The neurotrophin family of neurotrophic factors: an overview. Methods in Molecular Biology (Clifton, N.J.), 846, 1–12. doi:10.1007/978-1-61779-536-7_1.

  • Sommerfeld, M. T., Schweigreiter, R., Barde, Y. A., & Hoppe, E. (2000). Down-regulation of the neurotrophin receptor TrkB following ligand binding. Evidence for an involvement of the proteasome and differential regulation of TrkA and TrkB. The Journal of Biological Chemistry, 275(12), 8982–8990. http://www.ncbi.nlm.nih.gov/pubmed/10722747. Accessed September 14, 2014.

  • Squinto, S. P., Stitt, T. N., Aldrich, T. H., Davis, S., Bianco, S. M., Radziejewski, C., et al. (1991). trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell, 65(5), 885–893. http://www.ncbi.nlm.nih.gov/pubmed/1710174. Accessed June 29, 2014.

  • Stachowiak, E. K., Roy, I., Lee, Y.-W., Capacchietti, M., Aletta, J. M., Prasad, P. N., & Stachowiak, M. K. (2009). Targeting novel integrative nuclear FGFR1 signaling by nanoparticle-mediated gene transfer stimulates neurogenesis in the adult brain. Integrative Biology: Quantitative Biosciences from Nano to Macro, 1(5–6), 394–403. doi:10.1039/b902617g.

    Article  CAS  Google Scholar 

  • Stankowski, J. N., & Gupta, R. (2011). Therapeutic targets for neuroprotection in acute ischemic stroke: Lost in translation? Antioxidants & Redox Signaling, 14(10), 1841–1851. doi:10.1089/ars.2010.3292.

    Article  CAS  Google Scholar 

  • Stavridis, M. P., Collins, B. J., & Storey, K. G. (2010). Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development (Cambridge, England), 137(6), 881–890. doi:10.1242/dev.043117.

    Article  CAS  Google Scholar 

  • Steiner, B., Wolf, S., & Kempermann, G. (2006). Adult neurogenesis and neurodegenerative disease. Regenerative Medicine, 1(1), 15–28. doi:10.2217/17460751.1.1.15.

    Article  CAS  PubMed  Google Scholar 

  • Sumanont, Y., Murakami, Y., Tohda, M., Vajragupta, O., Watanabe, H., & Matsumoto, K. (2007). Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biological & Pharmaceutical Bulletin, 30(9), 1732–1739. http://www.ncbi.nlm.nih.gov/pubmed/17827730. Accessed July 10, 2014.

  • Suri, D., & Vaidya, V. A. (2013). Glucocorticoid regulation of brain-derived neurotrophic factor: Relevance to hippocampal structural and functional plasticity. Neuroscience, 239, 196–213. doi:10.1016/j.neuroscience.2012.08.065.

    Article  CAS  PubMed  Google Scholar 

  • Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., et al. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6), 1228–1238. doi:10.1016/j.cell.2013.05.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi, J., Palmer, T. D., & Gage, F. H. (1999). Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. Journal of Neurobiology, 38(1), 65–81. http://www.ncbi.nlm.nih.gov/pubmed/10027563. Accessed July 8, 2014.

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi:10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., Wang, Y., Yip, X., Glynn, F., Shepherd, R. K., & Caruso, F. (2012). Nanoporous peptide particles for encapsulating and releasing neurotrophic factors in an animal model of neurodegeneration. Advanced Materials (Deerfield Beach, Fla.), 24(25), 3362–3366. doi:10.1002/adma.201200634.

    Article  CAS  Google Scholar 

  • Tan, J., Shi, J., Shi, G., Liu, Y., Liu, X., Wang, C., et al. (2013). Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles. Neural Regeneration Research, 8(3), 233–243. doi:10.3969/j.issn.1673-5374.2013.03.005.

    PubMed Central  PubMed  Google Scholar 

  • Thapa, A., Vernon, B. C., De la Peña, K., Soliz, G., Moreno, H. A., López, G. P., & Chi, E. Y. (2013). Membrane-mediated neuroprotection by curcumin from amyloid-β-peptide-induced toxicity. Langmuir: The ACS Journal of Surfaces and Colloids, 29(37), 11713–11723. doi:10.1021/la4020459.

    Article  CAS  Google Scholar 

  • Theofilopoulos, S., Goggi, J., Riaz, S. S., Jauniaux, E., Stern, G. M., & Bradford, H. F. (2001). Parallel induction of the formation of dopamine and its metabolites with induction of tyrosine hydroxylase expression in foetal rat and human cerebral cortical cells by brain-derived neurotrophic factor and glial-cell derived neurotrophic factor. Brain Research. Developmental Brain Research, 127(2), 111–122. doi:10.1016/S0165-3806(01)00125-0.

    Article  CAS  PubMed  Google Scholar 

  • Thoenen, H. (1995). Neurotrophins and neuronal plasticity. Science (New York, N.Y.), 270(5236), 593–598. http://www.ncbi.nlm.nih.gov/pubmed/7570017. Accessed June 29, 2014.

  • Tian, X., Wang, J., Dai, J., Yang, L., Zhang, L., Shen, S., & Huang, P. (2012). Hyperbaric oxygen and Ginkgo Biloba extract inhibit Aβ25-35-induced toxicity and oxidative stress in vivo: A potential role in Alzheimer’s disease. The International Journal of Neuroscience, 122(10), 563–569. doi:10.3109/00207454.2012.690797.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, S. S. K., Agarwal, S., Seth, B., Yadav, A., Nair, S., Bhatnagar, P., et al. (2014). Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 8(1), 76–103. doi:10.1021/nn405077y.

    Article  CAS  PubMed  Google Scholar 

  • Tripanichkul, W., & Jaroensuppaperch, E.-O. (2013). Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. European Review for Medical and Pharmacological Sciences, 17(10), 1360–1368. http://www.ncbi.nlm.nih.gov/pubmed/23740450. Accessed July 10, 2014.

  • Trounson, A. (2006). The production and directed differentiation of human embryonic stem cells. Endocrine Reviews, 27(2), 208–219. doi:10.1210/er.2005-0016.

    Article  PubMed  Google Scholar 

  • Tsai, S.-J. (2006). TrkB partial agonists: potential treatment strategy for epilepsy, mania, and autism. Medical Hypotheses, 66(1), 173–175. doi:10.1016/j.mehy.2005.05.033.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, Y.-M., Chien, C.-F., Lin, L.-C., & Tsai, T.-H. (2011). Curcumin and its nano-formulation: The kinetics of tissue distribution and blood-brain barrier penetration. International Journal of Pharmaceutics, 416(1), 331–338. doi:10.1016/j.ijpharm.2011.06.030.

    Article  CAS  PubMed  Google Scholar 

  • Uchida, K., Momiyama, T., Okano, H., Yuzaki, M., Koizumi, A., Mine, Y., & Kawase, T. (2005). Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neuroscience Research, 52(3), 276–286. doi:10.1016/j.neures.2005.03.015.

    Article  CAS  PubMed  Google Scholar 

  • Uzun, G., Subhani, D., & Amor, S. (2010). Trophic factors and stem cells for promoting recovery in stroke. Journal of Vascular and Interventional Neurology, 3(1), 3–12. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3317290&tool=pmcentrez&rendertype=abstract. Accessed July 7, 2014.

  • Uzunova, V., Sheline, Y., Davis, J. M., Rasmusson, A., Uzunov, D. P., Costa, E., et al. (1998). Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3239–3244. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=19726&tool=pmcentrez&rendertype=abstract. Accessed July 15, 2014.

  • Van Kampen, J. M., Baranowski, D., & Kay, D. G. (2014). Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson’s disease. PLoS ONE, 9(5), e97032. doi:10.1371/journal.pone.0097032.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wakade, C. G., Mahadik, S. P., Waller, J. L., & Chiu, F.-C. (2002). Atypical neuroleptics stimulate neurogenesis in adult rat brain. Journal of Neuroscience Research, 69(1), 72–79. doi:10.1002/jnr.10281.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.-J., Lu, Y.-Y., Muramatsu, S., Ikeguchi, K., Fujimoto, K., Okada, T., et al. (2002). Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(16), 6920–6928.

    CAS  Google Scholar 

  • Wang, Q., Sun, A. Y., Simonyi, A., Jensen, M. D., Shelat, P. B., Rottinghaus, G. E., et al. (2005a). Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 82(1), 138–148. doi:10.1002/jnr.20610.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T.-W., Zhang, H., & Parent, J. M. (2005b). Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway. Development (Cambridge, England), 132(12), 2721–2732. doi:10.1242/dev.01867.

    Article  CAS  Google Scholar 

  • Wang, X.-L., Yang, Y.-J., Xie, M., Yu, X.-H., Liu, C.-T., & Wang, X. (2007a). Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. NeuroReport, 18(16), 1753–1756. doi:10.1097/WNR.0b013e3282f0ec09.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Mao, X. O., Xie, L., Banwait, S., Marti, H. H., Greenberg, D. A., & Jin, K. (2007b). Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(2), 304–307. doi:10.1523/JNEUROSCI.4433-06.2007.

    Article  CAS  Google Scholar 

  • Wang, X.-L., Yang, Y.-J., Xie, M., Yu, X.-H., & Wang, Q.-H. (2009). [Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic-ischemic brain damage]. Zhongguo dang dai er ke za zhi = Chinese Journal of Contemporary Pediatrics, 11(9), 749–52. http://www.ncbi.nlm.nih.gov/pubmed/19755026. Accessed July 24, 2014.

  • Webster, N. J. G., & Pirrung, M. C. (2008). Small molecule activators of the Trk receptors for neuroprotection. BMC Neuroscience, 9 Suppl 2(Suppl 2), S1. doi:10.1186/1471-2202-9-S2-S1.

  • Weissmiller, A. M., & Wu, C. (2012). Current advances in using neurotrophic factors to treat neurodegenerative disorders. Translational Neurodegeneration, 1(1), 14. doi:10.1186/2047-9158-1-14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5856–5861. doi:10.1073/pnas.0801677105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wichterle, H., Lieberam, I., Porter, J. A., & Jessell, T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 110(3), 385–97. http://www.ncbi.nlm.nih.gov/pubmed/12176325. Accessed May 27, 2014.

  • Wu, D. (2005). Neuroprotection in experimental stroke with targeted neurotrophins. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics, 2(1), 120–128. doi:10.1602/neurorx.2.1.120.

    Article  Google Scholar 

  • Xia, C.-F., Boado, R. J., Zhang, Y., Chu, C., & Pardridge, W. M. (2008). Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson’s disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. The Journal of Gene Medicine, 10(3), 306–315. doi:10.1002/jgm.1152.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Ye, L., Zhang, X., Cui, W., Lou, J., Nagai, T., & Hou, X. (2005). Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: In vitro and in vivo studies. Journal of Controlled Release: Official Journal of the Controlled Release Society, 105(1–2), 106–119. doi:10.1016/j.jconrel.2005.03.005.

    Article  CAS  Google Scholar 

  • Yanamoto, H., Nagata, I., Sakata, M., Zhang, Z., Tohnai, N., Sakai, H., & Kikuchi, H. (2000). Infarct tolerance induced by intra-cerebral infusion of recombinant brain-derived neurotrophic factor. Brain Research, 859(2), 240–248. http://www.ncbi.nlm.nih.gov/pubmed/10719070. Accessed July 1, 2014.

  • Yang, K., Clifton, G. L., & Hayes, R. L. (1997). Gene therapy for central nervous system injury: the use of cationic liposomes: an invited review. Journal of Neurotrauma, 14(5), 281–297. http://www.ncbi.nlm.nih.gov/pubmed/9199395. Accessed September 21, 2014.

  • Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. The Journal of biological chemistry, 280(7), 5892–5901. doi:10.1074/jbc.M404751200.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K.-Y., Lin, L.-C., Tseng, T.-Y., Wang, S.-C., & Tsai, T.-H. (2007). Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 853(1–2), 183–189. doi:10.1016/j.jchromb.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  • Yin, D., & Zhang, J. H. (2005). Delayed and multiple hyperbaric oxygen treatments expand therapeutic window in rat focal cerebral ischemic model. Neurocritical Care, 2(2), 206–211. doi:10.1385/NCC:2:2:206.

    Article  PubMed  Google Scholar 

  • Yin, D., Zhou, C., Kusaka, I., Calvert, J. W., Parent, A. D., Nanda, A., & Zhang, J. H. (2003). Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 23(7), 855–864. doi:10.1097/01.WCB.0000073946.29308.55.

    Article  CAS  Google Scholar 

  • Yoo, M., Joung, I., Han, A. M., Yoon, H. H., & Kwon, Y. K. (2007). Distinct effect of neurotrophins delivered simultaneously by an adenoviral vector on neurite outgrowth of neural precursor cells from different regions of the brain. Journal of Microbiology and Biotechnology, 17(12), 2033–2041. http://www.ncbi.nlm.nih.gov/pubmed/18167452. Accessed June 17, 2014.

  • Yurek, D. M., Fletcher, A. M., Smith, G. M., Seroogy, K. B., Ziady, A. G., Molter, J., et al. (2009). Long-term transgene expression in the central nervous system using DNA nanoparticles. Molecular Therapy: The Journal of the American Society of Gene Therapy, 17(4), 641–650. doi:10.1038/mt.2009.2.

    Article  CAS  Google Scholar 

  • Zeng, X., Chen, J., Deng, X., Liu, Y., Rao, M. S., Cadet, J.-L., & Freed, W. J. (2006). An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP + toxicity and GDNF neuroprotection. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 31(12), 2708–2715. doi:10.1038/sj.npp.1301125.

    Article  CAS  Google Scholar 

  • Zhang, S. C., Wernig, M., Duncan, I. D., Brüstle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19(12), 1129–1133. doi:10.1038/nbt1201-1129.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Yang, Q.-W., Wang, S.-N., Wang, J.-Z., Wang, Q., Wang, Y., & Luo, Y.-J. (2010). Hyperbaric oxygen therapy improves neurogenesis and brain blood supply in piriform cortex in rats with vascular dementia. Brain Injury : [BI], 24(11), 1350–1357. doi:10.3109/02699052.2010.504525.

    Article  Google Scholar 

  • Zhang, X.-Y., Yang, Y.-J., Xu, P.-R., Zheng, X.-R., Wang, Q.-H., Chen, C.-F., & Yao, Y. (2011a). The role of β-catenin signaling pathway on proliferation of rats neural stem cells after hyperbaric oxygen therapy in vitro. Cellular and Molecular Neurobiology, 31(1), 101–109. doi:10.1007/s10571-010-9559-z.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Wang, J., Chen, G., Fan, D., & Deng, M. (2011b). Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochemical and Biophysical Research Communications, 404(2), 610–614. doi:10.1016/j.bbrc.2010.12.014.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Kang, Z., Li, W., Xiao, Z., & Zhou, X. (2012). Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 19(7), 946–949. doi:10.1016/j.jocn.2011.12.022.

    Article  CAS  Google Scholar 

  • Zhang, E., Shen, J., & So, K. F. (2014). Chinese Traditional Medicine and Adult Neurogenesis in the Hippocampus. Journal of Traditional and Complementary Medicine, 4(2), 77–81. doi:10.4103/2225-4110.130372.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645–660. doi:10.1016/j.cell.2008.01.033.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, D. Y., Lau, L., Liu, S. H., Wei, J. S., & Lu, Y. M. (2004). Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 101(25), 9453–9457. doi:10.1073/pnas.0401063101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu, G., Chen, G., Shi, L., Feng, J., Wang, Y., Ye, C., et al. (2014). PEGylated rhFGF-2 conveys long-term neuroprotection and improves neuronal function in a rat model of Parkinson’s disease. Molecular Neurobiology,. doi:10.1007/s12035-014-8750-5.

    Google Scholar 

  • Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81(5–6), 294–330. doi:10.1016/j.pneurobio.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Ferreira.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest and have no proprietary or commercial interests in any concept or product discussed in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, I.M., Coelho, P.B., Costa, P.C. et al. Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromol Med 17, 404–422 (2015). https://doi.org/10.1007/s12017-015-8369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8369-3

Keywords

Navigation