Skip to main content

Advertisement

Log in

B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren’s syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Hayter SM, Cook MC (2012) Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev 11(10):754–765. https://doi.org/10.1016/j.autrev.2012.02.001

    Article  PubMed  Google Scholar 

  2. Mitratza M, Klijs B, Hak AE, Kardaun JWPF, Kunst AE (2021) Systemic autoimmune disease as a cause of death: mortality burden and comorbidities. Rheumatology (Oxford) 60(3):1321–1330. https://doi.org/10.1093/rheumatology/keaa537

    Article  PubMed  Google Scholar 

  3. Carter EE, Barr SG, Clarke AE (2016) The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol 12(10):605–620. https://doi.org/10.1038/nrrheum.2016.137

    Article  PubMed  Google Scholar 

  4. Rubin SJS, Bloom MS, Robinson WH (2019) B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol 15(5):303–315. https://doi.org/10.1038/s41584-019-0211-0

    Article  PubMed  Google Scholar 

  5. Zheng B, Yang Y, Chen L, Wu M, Zhou S (2022) B-cell receptor repertoire sequencing: deeper digging into the mechanisms and clinical aspects of immune-mediated diseases. iScience 25(10):105002. https://doi.org/10.1016/j.isci.2022.105002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jabbour E et al (2023) The evolution of acute lymphoblastic leukemia research and therapy at MD Anderson over four decades. J Hematol Oncol 16(1):22. https://doi.org/10.1186/s13045-023-01409-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bashford-Rogers RJM et al (2019) Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574(7776):122–126. https://doi.org/10.1038/s41586-019-1595-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tipton CM et al (2015) Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol 16(7):755–765. https://doi.org/10.1038/ni.3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Early P, Huang H, Davis M, Calame K, Hood L (1980) An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell 19(4):981–992. https://doi.org/10.1016/0092-8674(80)90089-6

    Article  CAS  PubMed  Google Scholar 

  10. Weigert M, Gatmaitan L, Loh E, Schilling J, Hood L (1978) Rearrangement of genetic information may produce immunoglobulin diversity. Nature 276(5690):785–790. https://doi.org/10.1038/276785a0

    Article  CAS  PubMed  Google Scholar 

  11. Collins AM, Watson CT (2018) Immunoglobulin light chain gene rearrangements, receptor editing and the development of a self-tolerant antibody repertoire. Front Immunol 9:2249. https://doi.org/10.3389/fimmu.2018.02249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24:541–570. https://doi.org/10.1146/annurev.immunol.23.021704.115830

    Article  CAS  PubMed  Google Scholar 

  13. Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG (2010) The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141(3):419–431. https://doi.org/10.1016/j.cell.2010.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224(2):487–499. https://doi.org/10.1016/0022-2836(92)91010-m

    Article  CAS  PubMed  Google Scholar 

  15. Stewart AK, Schwartz RS (1994) Immunoglobulin V regions and the B cell. Blood 83(7):1717–1730

    Article  CAS  PubMed  Google Scholar 

  16. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22. https://doi.org/10.1146/annurev.biochem.76.061705.090740

    Article  CAS  PubMed  Google Scholar 

  17. Wilson PC et al (1998) Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med 187(1):59–70. https://doi.org/10.1084/jem.187.1.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cyster JG, Allen CDC (2019) B cell responses: cell interaction dynamics and decisions. Cell 177(3):524–540. https://doi.org/10.1016/j.cell.2019.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boyd SD et al (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1(12):12ra23. https://doi.org/10.1126/scitranslmed.3000540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein U, Küppers R, Rajewsky K (1997) Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89(4):1288–1298

    Article  CAS  PubMed  Google Scholar 

  21. Lin SG, Ba Z, Du Z, Zhang Y, Hu J, Alt FW (2016) Highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA 113(28):7846–7851. https://doi.org/10.1073/pnas.1608649113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mamanova L et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118. https://doi.org/10.1038/nmeth.1419

    Article  CAS  PubMed  Google Scholar 

  23. Bashford-Rogers RJM et al (2014) Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol 15:29. https://doi.org/10.1186/s12865-014-0029-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeku O, Frohman MA (2011) Rapid amplification of cDNA ends (RACE). Methods Mol Biol 703:107–122. https://doi.org/10.1007/978-1-59745-248-9_8

    Article  CAS  PubMed  Google Scholar 

  25. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA 108(23):9530–9535. https://doi.org/10.1073/pnas.1105422108

    Article  PubMed  PubMed Central  Google Scholar 

  26. He L et al (2014) Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep 4:6778. https://doi.org/10.1038/srep06778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Streets AM et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci USA 111(19):7048–7053. https://doi.org/10.1073/pnas.1402030111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng GXY et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldstein LD et al (2019) Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol 2:304. https://doi.org/10.1038/s42003-019-0551-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nemazee D (2017) Mechanisms of central tolerance for B cells. Nat Rev Immunol 17(5):281–294. https://doi.org/10.1038/nri.2017.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Getahun A (2022) Role of inhibitory signaling in peripheral B cell tolerance. Immunol Rev 307(1):27–42. https://doi.org/10.1111/imr.13070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301(5638):1374–1377. https://doi.org/10.1126/science.1086907

    Article  CAS  PubMed  Google Scholar 

  33. Kinnunen T et al (2013) Specific peripheral B cell tolerance defects in patients with multiple sclerosis. J Clin Invest 123(6):2737–2741. https://doi.org/10.1172/JCI68775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lamoureux JL, Watson LC, Cherrier M, Skog P, Nemazee D, Feeney AJ (2007) Reduced receptor editing in lupus-prone MRL/lpr mice. J Exp Med 204(12):2853–2864. https://doi.org/10.1084/jem.20071268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y et al (2007) Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. J Immunol 179(2):1340–1352. https://doi.org/10.4049/jimmunol.179.2.1340

    Article  CAS  PubMed  Google Scholar 

  36. Yurasov S, Hammersen J, Tiller T, Tsuiji M, Wardemann H (2005) B-cell tolerance checkpoints in healthy humans and patients with systemic lupus erythematosus. Ann N Y Acad Sci 1062:165–174. https://doi.org/10.1196/annals.1358.019

    Article  CAS  PubMed  Google Scholar 

  37. Glauzy S et al (2022) Defective early B cell tolerance checkpoints in patients with systemic sclerosis allow the production of self antigen-specific clones. Arthritis Rheumatol 74(2):307–317. https://doi.org/10.1002/art.41927

    Article  CAS  PubMed  Google Scholar 

  38. Meng W et al (2012) B-cell tolerance defects in the B6.Aec1/2 mouse model of Sjögren’s syndrome. J Clin Immunol 32(3):551–564. https://doi.org/10.1007/s10875-012-9663-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Glauzy S et al (2017) Defective early B cell tolerance checkpoints in Sjögren’s syndrome patients. Arthritis Rheumatol 69(11):2203–2208. https://doi.org/10.1002/art.40215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meffre E (2011) The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci 1246:1–10. https://doi.org/10.1111/j.1749-6632.2011.06347.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328(6133):805–811. https://doi.org/10.1038/328805a0

    Article  CAS  PubMed  Google Scholar 

  42. Tiller T et al (2010) Development of self-reactive germinal center B cells and plasma cells in autoimmune Fc gammaRIIB-deficient mice. J Exp Med 207(12):2767–2778. https://doi.org/10.1084/jem.20100171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mak A, Tay SH (2014) Environmental factors, toxicants and systemic lupus erythematosus. Int J Mol Sci 15(9):16043–16056. https://doi.org/10.3390/ijms150916043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parks CG, de Souza Espindola Santos A, Barbhaiya M, Costenbader KH (2017) Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 31(3):306–320. https://doi.org/10.1016/j.berh.2017.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ha E, Bae S-C, Kim K (2022) Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 44(1):29–46. https://doi.org/10.1007/s00281-021-00900-w

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Lee T-Y (2022) Revealing the immune heterogeneity between systemic lupus erythematosus and rheumatoid arthritis based on multi-omics data analysis. Int J Mol Sci 23(9):5166. https://doi.org/10.3390/ijms23095166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ota M et al (2023) Multimodal repertoire analysis unveils B cell biology in immune-mediated diseases. Ann Rheum Dis 82:1455–1463. https://doi.org/10.1136/ard-2023-224421

  48. Zheng F et al (2021) Immune cell and TCR/BCR repertoire profiling in systemic lupus erythematosus patients by single-cell sequencing. Aging (Albany NY) 13(21):24432–24448. https://doi.org/10.18632/aging.203695

    Article  CAS  PubMed  Google Scholar 

  49. Liu S, Hou XL, Sui WG, Lu QJ, Hu YL, Dai Y (2017) Direct measurement of B-cell receptor repertoire’s composition and variation in systemic lupus erythematosus. Genes Immun 18(1):22–27. https://doi.org/10.1038/gene.2016.45

    Article  CAS  PubMed  Google Scholar 

  50. Odendahl M et al (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165(10):5970–5979. https://doi.org/10.4049/jimmunol.165.10.5970

    Article  CAS  PubMed  Google Scholar 

  51. Schickel J-N et al (2017) Self-reactive VH4-34-expressing IgG B cells recognize commensal bacteria. J Exp Med 214(7):1991–2003. https://doi.org/10.1084/jem.20160201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pascual V et al (1991) Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype. J Immunol 146(12):4385–4391

    Article  CAS  PubMed  Google Scholar 

  53. Pugh-Bernard AE et al (2001) Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest 108(7):1061–1070. https://doi.org/10.1172/JCI12462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yin L et al (2013) IgM repertoire biodiversity is reduced in HIV-1 infection and systemic lupus erythematosus. Front Immunol 4:373. https://doi.org/10.3389/fimmu.2013.00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clarke T et al (2023) Autoantibody repertoire characterization provides insight into the pathogenesis of monogenic and polygenic autoimmune diseases. Front Immunol 14:1106537. https://doi.org/10.3389/fimmu.2023.1106537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakakibara S et al (2017) Clonal evolution and antigen recognition of anti-nuclear antibodies in acute systemic lupus erythematosus. Sci Rep 7(1):16428. https://doi.org/10.1038/s41598-017-16681-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jenks SA, Cashman KS, Woodruff MC, Lee FE-H, Sanz I (2019) Extrafollicular responses in humans and SLE. Immunol Rev 288(1):136–148. https://doi.org/10.1111/imr.12741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sankar K, Hoi KH, Hötzel I (2020) Dynamics of heavy chain junctional length biases in antibody repertoires. Commun Biol 3(1):207. https://doi.org/10.1038/s42003-020-0931-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yurasov S et al (2005) Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 201(5):703–711. https://doi.org/10.1084/jem.20042251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meffre E, Milili M, Blanco-Betancourt C, Antunes H, Nussenzweig MC, Schiff C (2001) Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J Clin Invest 108(6):879–886. https://doi.org/10.1172/JCI13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu M et al (2022) Systemic lupus erythematosus patients contain B-cell receptor repertoires sensitive to immunosuppressive drugs. Eur J Immunol 52(4):669–680. https://doi.org/10.1002/eji.202149596

    Article  CAS  PubMed  Google Scholar 

  62. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire, Nat Biotechnol 32:158–168. https://doi.org/10.1038/nbt.2782

  63. Cappione A et al (2005) Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest 115(11):3205–3216. https://doi.org/10.1172/JCI24179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. You X et al (2020) Double negative B cell is associated with renal impairment in systemic lupus erythematosus and acts as a marker for nephritis remission,. Front Med (Lausanne) 7:85. https://doi.org/10.3389/fmed.2020.00085

    Article  PubMed  Google Scholar 

  65. Moysidou E et al (2023) Increase in double negative B lymphocytes in patients with systemic lupus erythematosus in remission and their correlation with early differentiated T lymphocyte subpopulations. Curr Issues Mol Biol 45(8):6667–6681. https://doi.org/10.3390/cimb45080421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sachinidis A, Xanthopoulos K, Garyfallos A (2020) Age-associated B cells (ABCs) in the prognosis, diagnosis and therapy of systemic lupus erythematosus (SLE). Mediterr J Rheumatol 31(3):311–318. https://doi.org/10.31138/mjr.31.3.311

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jenks SA et al (2018) Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49(4):725-739.e6. https://doi.org/10.1016/j.immuni.2018.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stewart A, Ng JC-F, Wallis G, Tsioligka V, Fraternali F, Dunn-Walters DK (2021) Single-cell transcriptomic analyses define distinct peripheral B cell subsets and discrete development pathways. Front Immunol 12:602539. https://doi.org/10.3389/fimmu.2021.602539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maul RW et al (2021) Transcriptome and IgH repertoire analyses show that CD11chi B cells are a distinct population with similarity to B cells arising in autoimmunity and infection. Front Immunol 12:649458. https://doi.org/10.3389/fimmu.2021.649458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nickerson KM et al (2023) Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J Exp Med 220(5):e20221346. https://doi.org/10.1084/jem.20221346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aranburu A et al (2018) Age-associated B cells expanded in autoimmune mice are memory cells sharing H-CDR3-selected repertoires. Eur J Immunol 48(3):509–521. https://doi.org/10.1002/eji.201747127

    Article  CAS  PubMed  Google Scholar 

  72. Russell Knode LM et al (2017) Age-associated B cells express a diverse repertoire of VH and Vκ genes with somatic hypermutation. The Journal of Immunology 198(5):1921–1927. https://doi.org/10.4049/jimmunol.1601106

    Article  CAS  PubMed  Google Scholar 

  73. Urowitz MB et al (2022) Impact of belimumab on organ damage in systemic lupus erythematosus. Arthritis Care Res (Hoboken) 74(11):1822–1828. https://doi.org/10.1002/acr.24901

    Article  CAS  PubMed  Google Scholar 

  74. Shi B et al (2016) Short-term assessment of BCR repertoires of SLE patients after high dose glucocorticoid therapy with high-throughput sequencing. Springerplus 5:75. https://doi.org/10.1186/s40064-016-1709-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang W et al (2018) Belimumab promotes negative selection of activated autoreactive B cells in systemic lupus erythematosus patients. JCI Insight 3(17):e122525. https://doi.org/10.1172/jci.insight.122525

    Article  PubMed  PubMed Central  Google Scholar 

  76. Meffre E, O’Connor KC (2019) Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev 292(1):90–101. https://doi.org/10.1111/imr.12821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kissel T et al (n.d.) Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci Adv 8:eabm1759. https://doi.org/10.1126/sciadv.abm1759

  78. Merino-Vico A, Frazzei G, van Hamburg JP, Tas SW (2023) Targeting B cells and plasma cells in autoimmune diseases: from established treatments to novel therapeutic approaches. Eur J Immunol 53(1):e2149675. https://doi.org/10.1002/eji.202149675

    Article  CAS  PubMed  Google Scholar 

  79. Blazso P, Csomos K, Tipton CM, Ujhazi B, Walter JE (2022) Lineage reconstruction of in vitro identified antigen-specific autoreactive B cells from adaptive immune receptor repertoires. Int J Mol Sci 24(1):225. https://doi.org/10.3390/ijms24010225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cowan GJM, Miles K, Capitani L, Giguere SSB, Johnsson H, Goodyear C, McInnes IB, Breusch S, Gray D, Gray M (2020) In Human Autoimmunity, a Substantial Component of the B Cell Repertoire Consists of Polyclonal, Barely Mutated IgG+ve B Cells. Front Immunol 11:395. https://doi.org/10.3389/fimmu.2020.00395

  81. Sabouri Z et al (2014) Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc Natl Acad Sci USA 111(25):E2567-2575. https://doi.org/10.1073/pnas.1406974111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kinslow JD et al (2016) Elevated IgA plasmablast levels in subjects at risk of developing rheumatoid arthritis. Arthritis Rheumatol 68(10):2372–2383. https://doi.org/10.1002/art.39771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aterido A, López-Lasanta M, Blanco F et al (2021) Seven chain adaptive immune receptor repertoire analysis in rheumatoid arthritis: association to disease and clinically relevant phenotypes. medRxiv. https://doi.org/10.1101/2021.11.26.21266347

  84. Itoh K et al (2000) Clonal expansion is a characteristic feature of the B-cell repetoire of patients with rheumatoid arthritis. Arthritis Res 2(1):50–58. https://doi.org/10.1186/ar68

    Article  CAS  PubMed  Google Scholar 

  85. Doorenspleet ME et al (2014) Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann Rheum Dis 73(4):756–762. https://doi.org/10.1136/annrheumdis-2012-202861

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y et al (2019) Rheumatoid arthritis patients display B-cell dysregulation already in the naïve repertoire consistent with defects in B-cell tolerance. Sci Rep 9(1):19995. https://doi.org/10.1038/s41598-019-56279-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wing E et al (2023) Double-negative-2 B cells are the major synovial plasma cell precursor in rheumatoid arthritis. Front Immunol 14:1241474. https://doi.org/10.3389/fimmu.2023.1241474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dunlap G et al (2023) Clonal associations of lymphocyte subsets and functional states revealed by single cell antigen receptor profiling of T and B cells in rheumatoid arthritis synovium. bioRxiv, p. 2023.03.18.533282. https://doi.org/10.1101/2023.03.18.533282.

  89. Hu F et al (2018) Impaired CD27+IgD+ B cells with altered gene signature in rheumatoid arthritis. Front Immunol 9:626. https://doi.org/10.3389/fimmu.2018.00626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang W et al (2022) Dysfunction of CD27+IgD+ B cells correlates with aggravated systemic lupus erythematosus. Clin Rheumatol 41(5):1551–1559. https://doi.org/10.1007/s10067-022-06051-z

    Article  PubMed  Google Scholar 

  91. Lu DR et al (2018) T cell-dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. Arthritis Rheumatol 70(11):1732–1744. https://doi.org/10.1002/art.40578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kongpachith S et al (2019) Affinity maturation of the anti-citrullinated protein antibody paratope drives epitope spreading and polyreactivity in rheumatoid arthritis. Arthritis Rheumatol 71(4):507–517. https://doi.org/10.1002/art.40760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bos WH, van de Stadt LA, Sohrabian A, Rönnelid J, van Schaardenburg D (2014) Development of anti-citrullinated protein antibody and rheumatoid factor isotypes prior to the onset of rheumatoid arthritis. Arthritis Res Ther 16(2):405. https://doi.org/10.1186/ar4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Derksen VFAM, Allaart CF, Van der Helm-Van Mil AHM, Huizinga TWJ, Toes REM, van der Woude D (2022) In rheumatoid arthritis patients, total IgA1 and IgA2 levels are elevated: implications for the mucosal origin hypothesis. Rheumatology (Oxford) 62(1):407–416. https://doi.org/10.1093/rheumatology/keac237

    Article  CAS  PubMed  Google Scholar 

  95. van der Woude D et al (2010) Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 69(8):1554–1561. https://doi.org/10.1136/ard.2009.124537

    Article  CAS  PubMed  Google Scholar 

  96. van de Stadt LA et al (2011) Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum 63(11):3226–3233. https://doi.org/10.1002/art.30537

    Article  CAS  PubMed  Google Scholar 

  97. Sokolove J et al (2012) Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7(5):e35296. https://doi.org/10.1371/journal.pone.0035296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Moel EC et al (2018) Baseline autoantibody profile in rheumatoid arthritis is associated with early treatment response but not long-term outcomes. Arthritis Res Ther 20(1):33. https://doi.org/10.1186/s13075-018-1520-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. de Moel EC et al (2019) In rheumatoid arthritis, changes in autoantibody levels reflect intensity of immunosuppression, not subsequent treatment response. Arthritis Res Ther 21(1):28. https://doi.org/10.1186/s13075-019-1815-0

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pollastro S et al (2019) Non-response to rituximab therapy in rheumatoid arthritis is associated with incomplete disruption of the B cell receptor repertoire. Ann Rheum Dis 78(10):1339–1345. https://doi.org/10.1136/annrheumdis-2018-214898

    Article  CAS  PubMed  Google Scholar 

  101. Gerlag DM et al (2019) Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Ann Rheum Dis 78(2):179–185. https://doi.org/10.1136/annrheumdis-2017-212763

    Article  CAS  PubMed  Google Scholar 

  102. Mariette X, Criswell LA (2018) Primary Sjögren's syndrome. N Engl J Med 378(10):931–939. https://doi.org/10.1056/NEJMcp1702514

  103. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM (2010) Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun 34(4):400–407. https://doi.org/10.1016/j.jaut.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  104. Theander E et al (2011) Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren’s syndrome. Ann Rheum Dis 70(8):1363–1368. https://doi.org/10.1136/ard.2010.144782

    Article  PubMed  Google Scholar 

  105. Sène D et al (2018) Ectopic germinal center-like structures in minor salivary gland biopsy tissue predict lymphoma occurrence in patients with primary Sjögren’s syndrome. Arthritis Rheumatol 70(9):1481–1488. https://doi.org/10.1002/art.40528

    Article  CAS  PubMed  Google Scholar 

  106. Nocturne G, Mariette X (2015) Sjögren syndrome-associated lymphomas: an update on pathogenesis and management. Br J Haematol 168(3):317–327. https://doi.org/10.1111/bjh.13192

    Article  CAS  PubMed  Google Scholar 

  107. Chen YH, Wang XY, Jin X, Yang Z, Xu J (2021) Rituximab therapy for primary Sjögren’s syndrome. Front Pharmacol 12:731122. https://doi.org/10.3389/fphar.2021.731122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abdulahad WH, Kroese FGM, Vissink A, Bootsma H (2012) Immune regulation and B-cell depletion therapy in patients with primary Sjögren’s syndrome. J Autoimmun 39(1–2):103–111. https://doi.org/10.1016/j.jaut.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  109. Pijpe J et al (2005) Changes in salivary gland immunohistology and function after rituximab monotherapy in a patient with Sjogren’s syndrome and associated MALT lymphoma. Ann Rheum Dis 64(6):958–960. https://doi.org/10.1136/ard.2004.030684

    Article  CAS  PubMed  Google Scholar 

  110. Visser A et al (2018) Acquisition of N-glycosylation sites in immunoglobulin heavy chain genes during local expansion in parotid salivary glands of primary Sjögren patients. Front Immunol 9:491. https://doi.org/10.3389/fimmu.2018.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Visser A et al (2020) Repertoire analysis of B-cells located in striated ducts of salivary glands of patients with Sjögren’s syndrome. Front Immunol 11:1486. https://doi.org/10.3389/fimmu.2020.01486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bende RJ, Aarts WM, Riedl RG, de Jong D, Pals ST, van Noesel CJM (2005) Among B cell non-Hodgkin’s lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J Exp Med 201(8):1229–1241. https://doi.org/10.1084/jem.20050068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bende RJ, Janssen J, Wormhoudt TAM, Wagner K, Guikema JEJ, van Noesel CJM (2016) Identification of a novel stereotypic IGHV4-59/IGHJ5-encoded B-cell receptor subset expressed by various B-cell lymphomas with high affinity rheumatoid factor activity. Haematologica 101(5):e200-203. https://doi.org/10.3324/haematol.2015.139626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bende RJ et al (2020) Salivary gland mucosa-associated lymphoid tissue-type lymphoma from Sjögren’s syndrome patients in the majority express rheumatoid factors affinity-selected for IgG. Arthritis Rheumatol 72(8):1330–1340. https://doi.org/10.1002/art.41263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carlotti E et al (2022) High-throughput sequencing of IgH gene in minor salivary glands from Sjögren’s syndrome patients reveals dynamic B cell recirculation between ectopic lymphoid structures. Clin Exp Rheumatol 40(12):2363–2372. https://doi.org/10.55563/clinexprheumatol/82u3cs

    Article  PubMed  Google Scholar 

  116. Hamza N et al (2012) Persistence of immunoglobulin-producing cells in parotid salivary glands of patients with primary Sjögren’s syndrome after B cell depletion therapy. Ann Rheum Dis 71(11):1881–1887. https://doi.org/10.1136/annrheumdis-2011-201189

    Article  CAS  PubMed  Google Scholar 

  117. Gellrich S et al (1999) Analysis of V(H)-D-J(H) gene transcripts in B cells infiltrating the salivary glands and lymph node tissues of patients with Sjögren’s syndrome. Arthritis Rheum 42(2):240–247. https://doi.org/10.1002/1529-0131(199902)42:2%3c240::AID-ANR5%3e3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  118. Stott DI, Hiepe F, Hummel M, Steinhauser G, Berek C (1998) Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren’s syndrome. J Clin Invest 102(5):938–946. https://doi.org/10.1172/JCI3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bende RJ et al (2015) Stereotypic rheumatoid factors that are frequently expressed in mucosa-associated lymphoid tissue-type lymphomas are rare in the labial salivary glands of patients with Sjögren’s syndrome. Arthritis Rheumatol 67(4):1074–1083. https://doi.org/10.1002/art.39002

    Article  CAS  PubMed  Google Scholar 

  120. Nocturne G et al (2016) Rheumatoid factor and disease activity are independent predictors of lymphoma in primary Sjögren’s syndrome. Arthritis Rheumatol 68(4):977–985. https://doi.org/10.1002/art.39518

    Article  CAS  PubMed  Google Scholar 

  121. Hansen A et al (2005) Dysregulation of chemokine receptor expression and function by B cells of patients with primary Sjögren’s syndrome. Arthritis Rheum 52(7):2109–2119. https://doi.org/10.1002/art.21129

    Article  CAS  PubMed  Google Scholar 

  122. Hansen A et al (2002) Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum 46(8):2160–2171. https://doi.org/10.1002/art.10445

    Article  CAS  PubMed  Google Scholar 

  123. Hamza N et al (2015) Ig gene analysis reveals altered selective pressures on Ig-producing cells in parotid glands of primary Sjögren’s syndrome patients. J Immunol 194(2):514–521. https://doi.org/10.4049/jimmunol.1302644

    Article  CAS  PubMed  Google Scholar 

  124. Correale J, Marrodan M, Ysrraelit MC (2019) Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis. Biomedicines 7(1):14. https://doi.org/10.3390/biomedicines7010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arneth B, Kraus J (2022) Laboratory biomarkers of multiple sclerosis (MS). Clin Biochem 99:1–8. https://doi.org/10.1016/j.clinbiochem.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  126. Brändle SM et al (2016) Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci USA 113(28):7864–7869. https://doi.org/10.1073/pnas.1522730113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beltrán E et al (2014) Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain 137(Pt 10):2703–2714. https://doi.org/10.1093/brain/awu205

    Article  PubMed  Google Scholar 

  128. Thompson AJ et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  129. Sola P et al (2011) Primary progressive versus relapsing-onset multiple sclerosis: presence and prognostic value of cerebrospinal fluid oligoclonal IgM. Mult Scler 17(3):303–311. https://doi.org/10.1177/1352458510386996

    Article  CAS  PubMed  Google Scholar 

  130. Gelfand JM, Cree BAC, Hauser SL (2017) Ocrelizumab and other CD20+ B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics 14(4):835–841. https://doi.org/10.1007/s13311-017-0557-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Svenningsson A et al (2022) Safety and efficacy of rituximab versus dimethyl fumarate in patients with relapsing-remitting multiple sclerosis or clinically isolated syndrome in Sweden: a rater-blinded, phase 3, randomised controlled trial. Lancet Neurol 21(8):693–703. https://doi.org/10.1016/S1474-4422(22)00209-5

    Article  CAS  PubMed  Google Scholar 

  132. Stern JNH et al (2014) B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 6(248):248ra107. https://doi.org/10.1126/scitranslmed.3008879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Palanichamy A et al (2014) Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci Transl Med 6(248):248ra106. https://doi.org/10.1126/scitranslmed.3008930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Johansen JN et al (2015) Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: equally diverse and compartmentalized, but more mutated, biased and overlapping with the proteome. Clin Immunol 160(2):211–225. https://doi.org/10.1016/j.clim.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  135. Lindeman I et al (2022) Stereotyped B-cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. Eur J Immunol 52(4):550–565. https://doi.org/10.1002/eji.202149576

    Article  CAS  PubMed  Google Scholar 

  136. Eggers EL et al (2017) Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients,. JCI Insight 2(22):e92724. https://doi.org/10.1172/jci.insight.92724

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tomescu-Baciu A et al (2019) Persistence of intrathecal oligoclonal B cells and IgG in multiple sclerosis. J Neuroimmunol 333:576966. https://doi.org/10.1016/j.jneuroim.2019.576966

    Article  CAS  PubMed  Google Scholar 

  138. Bankoti J et al (2014) In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol 75(2):266–276. https://doi.org/10.1002/ana.24088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Greenfield AL et al (2019) Longitudinally persistent cerebrospinal fluid B cells can resist treatment in multiple sclerosis. JCI Insight 4(6):e126599. https://doi.org/10.1172/jci.insight.126599

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lovato L et al (2011) Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 134(Pt 2):534–541. https://doi.org/10.1093/brain/awq350

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lehmann-Horn K, Wang S-Z, Sagan SA, Zamvil SS, von Büdingen H-C (2016) B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1(20):e87234. https://doi.org/10.1172/jci.insight.87234

    Article  PubMed  PubMed Central  Google Scholar 

  142. Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J (1998) Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102(5):1045–1050. https://doi.org/10.1172/JCI3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. von Büdingen HC, Kuo TC, Sirota M, van Belle CJ, Apeltsin L, Glanville J, Cree BA, Gourraud PA, Schwartzburg A, Huerta G, Telman D, Sundar PD, Casey T, Cox DR, Hauser SL (2012) B cell exchange across the blood-brain barrier in multiple sclerosis. J Clin Invest 122(12):4533–43. https://doi.org/10.1172/JCI63842

  144. Zheng Y et al (2020) IgG index revisited: diagnostic utility and prognostic value in multiple sclerosis. Front Immunol 11:1799. https://doi.org/10.3389/fimmu.2020.01799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gasperi C et al (2019) Association of intrathecal immunoglobulin G synthesis with disability worsening in multiple sclerosis. JAMA Neurol 76(7):841–849. https://doi.org/10.1001/jamaneurol.2019.0905

    Article  PubMed  PubMed Central  Google Scholar 

  146. Obermeier B et al (2008) Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med 14(6):688–693. https://doi.org/10.1038/nm1714

    Article  CAS  PubMed  Google Scholar 

  147. Laurent SA et al (2023) Effect of ocrelizumab on B- and T-cell receptor repertoire diversity in patients with relapsing multiple sclerosis from the randomized phase III OPERA trial. Neurol Neuroimmunol Neuroinflamm 10(4):e200118. https://doi.org/10.1212/NXI.0000000000200118

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kowarik MC et al (2021) Differential effects of fingolimod and natalizumab on B cell repertoires in multiple sclerosis patients. Neurotherapeutics 18(1):364–377. https://doi.org/10.1007/s13311-020-00975-7

    Article  CAS  PubMed  Google Scholar 

  149. Ruschil C et al (2023) Cladribine treatment specifically affects peripheral blood memory B cell clones and clonal expansion in multiple sclerosis patients. Front Immunol 14:1133967. https://doi.org/10.3389/fimmu.2023.1133967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Teschner VE et al (2023) Single-cell profiling reveals preferential reduction of memory B cell subsets in cladribine patients that correlates with treatment response. Ther Adv Neurol Disord 16:17562864231211076. https://doi.org/10.1177/17562864231211077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hinman RM, Cambier JC (2014) Role of B lymphocytes in the pathogenesis of type 1 diabetes. Curr Diab Rep 14(11):543. https://doi.org/10.1007/s11892-014-0543-8

    Article  CAS  PubMed  Google Scholar 

  152. Vandamme C, Kinnunen T (2020) B cell helper T cells and type 1 diabetes. Scand J Immunol 92(4):e12943. https://doi.org/10.1111/sji.12943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Smith MJ et al (2015) Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 64(5):1703–1712. https://doi.org/10.2337/db13-1798

    Article  CAS  PubMed  Google Scholar 

  154. Kozhakhmetova A et al (2018) A quarter of patients with type 1 diabetes have co-existing non-islet autoimmunity: the findings of a UK population-based family study. Clin Exp Immunol 192(3):251–258. https://doi.org/10.1111/cei.13115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Triolo TM et al (2011) Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care 34(5):1211–1213. https://doi.org/10.2337/dc10-1756

    Article  PubMed  PubMed Central  Google Scholar 

  156. Catani M, Walther D, Christie MR, McLaughlin KA, Bonifacio E, Eugster A (2016) Isolation of human monoclonal autoantibodies derived from pancreatic lymph node and peripheral blood B cells of islet autoantibody-positive patients. Diabetologia 59(2):294–298. https://doi.org/10.1007/s00125-015-3792-4

    Article  CAS  PubMed  Google Scholar 

  157. Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis JS, Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM (2016) Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1(20):e88242. https://doi.org/10.1172/jci.insight.88242

  158. Ahmed R et al (2019) A public BCR present in a unique dual-receptor-expressing lymphocyte from type 1 diabetes patients encodes a potent T cell autoantigen. Cell 177(6):1583-1599.e16. https://doi.org/10.1016/j.cell.2019.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Japp AS et al (2021) TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell 184(3):827-839.e14. https://doi.org/10.1016/j.cell.2020.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ahmed R, Omidian Z, Giwa A, Donner T, Jie C, Hamad ARA (2021) A reply to ‘TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes.’ Cell 184(3):840–843. https://doi.org/10.1016/j.cell.2020.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ganusov VV, De Boer RJ (2007) Do most lymphocytes in humans really reside in the gut? Trends Immunol 28(12):514–518. https://doi.org/10.1016/j.it.2007.08.009

    Article  CAS  PubMed  Google Scholar 

  162. Fraser NLW, Rowley G, Field M, Stott DI (2003) The VH gene repertoire of splenic B cells and somatic hypermutation in systemic lupus erythematosus. Arthritis Res Ther 5(2):R114-121. https://doi.org/10.1186/ar627

    Article  PubMed  PubMed Central  Google Scholar 

  163. Trück J et al (2021) Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. Elife 10:e66274. https://doi.org/10.7554/eLife.66274

    Article  PubMed  PubMed Central  Google Scholar 

  164. Vistain LF, Tay S (2021) Single-cell proteomics. Trends Biochem Sci 46(8):661–672. https://doi.org/10.1016/j.tibs.2021.01.013

    Article  CAS  PubMed  Google Scholar 

  165. Chambers DC, Carew AM, Lukowski SW, Powell JE (2019) Transcriptomics and single-cell RNA-sequencing. Respirology 24(1):29–36. https://doi.org/10.1111/resp.13412

    Article  PubMed  Google Scholar 

  166. Baek S, Lee I (2020) Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation. Comput Struct Biotechnol J 18:1429–1439. https://doi.org/10.1016/j.csbj.2020.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vickovic S et al (2022) Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun Biol 5(1):129. https://doi.org/10.1038/s42003-022-03050-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hardt U et al (2022) Integrated single cell and spatial transcriptomics reveal autoreactive differentiated B cells in joints of early rheumatoid arthritis. Sci Rep 12(1):11876. https://doi.org/10.1038/s41598-022-15293-5

  169. Gao A et al (2022) Tissue-resident memory T cells: the key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 133:102950. https://doi.org/10.1016/j.jaut.2022.102950

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFC3601803), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2022-RC310-04), and the National Natural Science Foundation of China (No. 82030097).

Author information

Authors and Affiliations

Authors

Contributions

Qian Wang: writing—original draft. Delong Feng: writing—reviewing and editing. Sujie Jia: reviewing and editing. Qianjin Lu: supervision and review. Zhao Ming: supervision and review.

Corresponding authors

Correspondence to Qianjin Lu or Ming Zhao.

Ethics declarations

Consent for Publication

The authors consent to publish the content of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Feng, D., Jia, S. et al. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clinic Rev Allerg Immunol 66, 76–98 (2024). https://doi.org/10.1007/s12016-024-08984-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-024-08984-6

Keywords

Navigation