Skip to main content

Advertisement

Log in

Hair Follicle Melanocytes Initiate Autoimmunity in Alopecia Areata: a Trigger Point

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Alopecia areata (AA) is characterized by common non-scarring alopecia due to autoimmune disorders. To date, the specific pathogenesis underlying AA remains unknown. Thus, AA treatment in the dermatological clinic is still a challenge. Numerous clinical observations and experimental studies have established that melanocytes may be the trigger point that causes hair follicles to be attacked by the immune system. A possible mechanism is that the impaired melanocytes, under oxidative stress, cannot be repaired in time and causes apoptosis. Melanocyte-associated autoantigens are released and presented, inducing CD8+ T cell attacks. Thereafter, amplification of the immune responses further spreads to the entire hair follicle (HF). The immune privilege of HF subsequently collapses, leading to AA. Herein, we present a narrative review on the roles of melanocytes in AA pathogenesis, aiming to provide a better understanding of this disease from the melanocyte’s perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilhar A, Etzioni A, Paus R (2012) Alopecia areata. N Engl J Med 366:1515–1525. https://doi.org/10.1056/NEJMra1103442

    Article  CAS  PubMed  Google Scholar 

  2. Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP (2017) Alopecia areata Nat Rev Dis Primers 3:17011. https://doi.org/10.1038/nrdp.2017.11

    Article  PubMed  Google Scholar 

  3. Lee HH, Gwillim E, Patel KR, Hua T, Rastogi S, Ibler E, Silverberg JI (2020) Epidemiology of alopecia areata, ophiasis, totalis, and universalis: a systematic review and meta-analysis. J Am Acad Dermatol 82(3):675–682. https://doi.org/10.1016/j.jaad.2019.08.032

    Article  CAS  PubMed  Google Scholar 

  4. Simakou T, Butcher JP, Reid S, Henriquez FL (2019) Alopecia areata: a multifactorial autoimmune condition. J Autoimmun 98:74–85. https://doi.org/10.1016/j.jaut.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  5. Macbeth AE, Holmes S, Harries M, Chiu WS, Tziotzios C, de Lusignan S, Messenger AG, Thompson AR (2022) The associated burden of mental health conditions in alopecia areata: a population-based study in UK primary care. Br J Dermatol 187(1):73–81. https://doi.org/10.1111/bjd.21055

    Article  PubMed  PubMed Central  Google Scholar 

  6. Strazzulla LC, Wang EHC, Avila L, Lo Sicco K, Brinster N, Christiano AM, Shapiro J (2018) Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J Am Acad Dermatol 78(1):15–24. https://doi.org/10.1016/j.jaad.2017.04.1142

    Article  PubMed  Google Scholar 

  7. Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, Paus R (2004) Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am J Pathol 164(2):623–634. https://doi.org/10.1016/S0002-9440(10)63151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bertolini M, Zilio F, Rossi A, Kleditzsch P, Emelianov VE, Gilhar A, Keren A, Meyer KC, Wang E, Funk W, McElwee K, Paus R (2014) Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS ONE 9(5):e94260. https://doi.org/10.1371/journal.pone.0094260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luger TA, Scholzen T, Grabbe S (1997) The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J Investig Dermatol Symp Proc 2(1):87–93. https://doi.org/10.1038/jidsymp.1997.17

    Article  CAS  PubMed  Google Scholar 

  10. Meyer KC, Klatte JE, Dinh HV, Harries MJ, Reithmayer K, Meyer W, Sinclair R, Paus R (2008) Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br J Dermatol 159(5):1077–1085. https://doi.org/10.1111/j.1365-2133.2008.08818.x

    Article  CAS  PubMed  Google Scholar 

  11. Ito T, Ito N, Saatoff M, Hashizume H, Fukamizu H, Nickoloff BJ, Takigawa M, Paus R (2008) Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol 128(5):1196–1206. https://doi.org/10.1038/sj.jid.5701183

    Article  CAS  PubMed  Google Scholar 

  12. Paus R, Nickoloff BJ, Ito T (2005) A ‘hairy’ privilege. Trends Immunol 26(1):32–40. https://doi.org/10.1016/j.it.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  13. Christoph T, Müller-Röver S, Audring H, Tobin DJ, Hermes B, Cotsarelis G, Rückert R, Paus R (2000) The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol 142(5):862–873. https://doi.org/10.1046/j.1365-2133.2000.03464.x

    Article  CAS  PubMed  Google Scholar 

  14. Bodemer C, Peuchmaur M, Fraitaig S, Chatenoud L, Brousse N, De Prost Y (2000) Role of cytotoxic T cells in chronic alopecia areata. J Invest Dermatol 114(1):112–116. https://doi.org/10.1046/j.1523-1747.2000.00828.x

    Article  CAS  PubMed  Google Scholar 

  15. Whiting DA (2003) Histopathologic features of alopecia areata: a new look. Arch Dermatol 139(12):1555–1559. https://doi.org/10.1001/archderm.139.12.1555

    Article  PubMed  Google Scholar 

  16. Strazzulla LC, Wang EHC, Avila L, Lo Sicco K, Brinster N, Christiano AM, Shapiro J (2018) Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol 78(1):1–12. https://doi.org/10.1016/j.jaad.2017.04.1141

    Article  PubMed  Google Scholar 

  17. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen WV, Meyer KC, Paus R, Jahoda CA, Amos CI, Gregersen PK, Christiano AM (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466(7302):113–117. https://doi.org/10.1038/nature09114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borcherding N, Crotts SB, Ortolan LS, Henderson N, Bormann NL, Jabbari A (2020) A transcriptomic map of murine and human alopecia areata. JCI Insight 5(13):e137424. https://doi.org/10.1172/jci.insight.137424

    Article  PubMed Central  Google Scholar 

  19. Gilhar A, Laufer-Britva R, Keren A, Paus R (2019) Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol 144(6):1478–1489. https://doi.org/10.1016/j.jaci.2019.08.035

    Article  CAS  PubMed  Google Scholar 

  20. Wang EHC, Yu M, Breitkopf T, Akhoundsadegh N, Wang X, Shi FT, Leung G, Dutz JP, Shapiro J, McElwee KJ (2016) Identification of autoantigen epitopes in alopecia areata. J Invest Dermatol 136(8):1617–1626. https://doi.org/10.1016/j.jid.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  21. Finner AM (2011) Alopecia areata: clinical presentation, diagnosis, and unusual cases. Dermatol Ther 24(3):348–354. https://doi.org/10.1111/j.1529-8019.2011.01413.x

    Article  PubMed  Google Scholar 

  22. Lee H, Jeong S, Shin EC (2022) Significance of bystander T cell activation in microbial infection. Nat Immunol 23(1):13–22. https://doi.org/10.1038/s41590-021-00985-3

    Article  CAS  PubMed  Google Scholar 

  23. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, de Jong A, Harel S, DeStefano GM, Rothman L, Singh P, Petukhova L, Mackay-Wiggan J, Christiano AM, Clynes R (2014) Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 20(9):1043–1049. https://doi.org/10.1038/nm.3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Freyschmidt-Paul P, McElwee KJ, Hoffmann R, Sundberg JP, Vitacolonna M, Kissling S, Zöller M (2006) Interferon-gamma-deficient mice are resistant to the development of alopecia areata. Br J Dermatol 155(3):515–521. https://doi.org/10.1111/j.1365-2133.2006.07377.x

    Article  CAS  PubMed  Google Scholar 

  25. Rajabi F, Drake LA, Senna MM, Rezaei N (2018) Alopecia areata: a review of disease pathogenesis. Br J Dermatol 179(5):1033–1048. https://doi.org/10.1111/bjd.16808

    Article  CAS  PubMed  Google Scholar 

  26. Jia WX, Mao QX, Xiao XM, Li ZL, Yu RX, Li CR (2014) Patchy alopecia areata sparing gray hairs: a case series. Postepy Dermatol Alergol 31(2):113–116. https://doi.org/10.5114/pdia.2014.40956

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tan C, Zhu WY, Min ZS (2008) A case of patchy alopecia areata sparing lesional greying hairs. Int J Dermatol 47(8):864–865. https://doi.org/10.1111/j.1365-4632.2008.03584.x

    Article  PubMed  Google Scholar 

  28. Paus R (2020) The evolving pathogenesis of alopecia areata: major open questions. J Investig Dermatol Symp Proc 20(1):S6–S10. https://doi.org/10.1016/j.jisp.2020.04.002

    Article  PubMed  Google Scholar 

  29. Tobin DJ (2008) Biology of hair follicle pigmentation. Hair growth and disorders. Springer, Berlin Heidelberg, Berlin, pp 51–74

    Chapter  Google Scholar 

  30. Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA (2001) SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15(3):645–658. https://doi.org/10.1096/fj.00-0368com

    Article  CAS  PubMed  Google Scholar 

  31. Mackintosh JA (2001) The antimicrobial properties of melanocytes, melanosomes and melanin and the evolution of black skin. J Theor Biol 211(2):101–113. https://doi.org/10.1006/jtbi.2001.2331

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860. https://doi.org/10.1038/416854a

    Article  CAS  PubMed  Google Scholar 

  33. Ito N, Ito T, Betterman A, Paus R (2004) The human hair bulb is a source and target of CRH. J Invest Dermatol 122(1):235–237. https://doi.org/10.1046/j.1523-1747.2003.22145.x

    Article  CAS  PubMed  Google Scholar 

  34. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, Gonçalves WA, Shwartz Y, Fast EM, Su Y, Zon LI, Regev A, Buenrostro JD, Cunha TM, Chiu IM, Fisher DE, Hsu YC (2020) Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 577(7792):676–681. https://doi.org/10.1038/s41586-020-1935-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Panteleyev AA (2018) Functional anatomy of the hair follicle: the secondary hair germ. Exp Dermatol 27(7):701–720. https://doi.org/10.1111/exd.13666

    Article  CAS  PubMed  Google Scholar 

  36. Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R (2015) Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 90(4):1179–1196. https://doi.org/10.1111/brv.12151

    Article  PubMed  Google Scholar 

  37. Tobin DJ (2011) The cell biology of human hair follicle pigmentation. Pigment Cell Melanoma Res 24(1):75–88. https://doi.org/10.1111/j.1755-148X.2010.00803.x

    Article  PubMed  Google Scholar 

  38. Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81(1):449–494. https://doi.org/10.1152/physrev.2001.81.1.449

    Article  CAS  PubMed  Google Scholar 

  39. Oh JW, Kloepper J, Langan EA, Kim Y, Yeo J, Kim MJ, Hsi TC, Rose C, Yoon GS, Lee SJ, Seykora J, Kim JC, Sung YK, Kim M, Paus R, Plikus MV (2016) A guide to studying human hair follicle cycling in vivo. J Invest Dermatol 136(1):34–44. https://doi.org/10.1038/JID.2015.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Commo S, Bernard BA (2000) Melanocyte subpopulation turnover during the human hair cycle: an immunohistochemical study. Pigment Cell Res 13(4):253–259. https://doi.org/10.1034/j.1600-0749.2000.130407.x

    Article  CAS  PubMed  Google Scholar 

  41. Trautman S, Thompson M, Roberts J, Thompson CT (2009) Melanocytes: a possible autoimmune target in alopecia areata. J Am Acad Dermatol 61(3):529–530. https://doi.org/10.1016/j.jaad.2009.01.017

    Article  PubMed  Google Scholar 

  42. Bertolini M, Rossi A, Paus R (2017) Cover image: are melanocyte-associated peptides the elusive autoantigens in alopecia areata? Br J Dermatol 176(4):1106. https://doi.org/10.1111/bjd.15288 PMID: 28418135

    Article  CAS  PubMed  Google Scholar 

  43. Nagai H, Oniki S, Oka M, Horikawa T, Nishigori C (2006) Induction of cellular immunity against hair follicle melanocyte causes alopecia. Arch Dermatol Res 298(3):131–134. https://doi.org/10.1007/s00403-006-0668-y

    Article  CAS  PubMed  Google Scholar 

  44. Przybyla A, Zhang T, Li R, Roen DR, Mackiewicz A, Lehmann PV (2019) Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8 + memory T cells can be detected in healthy humans. Cancer Immunol Immunother 68(5):709–720. https://doi.org/10.1007/s00262-018-02292-7

    Article  CAS  PubMed  Google Scholar 

  45. Gilhar A, Shalaginov R, Assy B, Serafimovich S, Kalish RS (1999) Alopecia areata is a T-lymphocyte mediated autoimmune disease: lesional human T-lymphocytes transfer alopecia areata to human skin grafts on SCID mice. J Investig Dermatol Symp Proc 4(3):207–210. https://doi.org/10.1038/sj.jidsp.5640212

    Article  CAS  PubMed  Google Scholar 

  46. Gilhar A, Landau M, Assy B, Shalaginov R, Serafimovich S, Kalish RS (2001) Melanocyte-associated T cell epitopes can function as autoantigens for transfer of alopecia areata to human scalp explants on Prkdc(scid) mice. J Invest Dermatol 117(6):1357–1362. https://doi.org/10.1046/j.0022-202x.2001.01583.x

    Article  CAS  PubMed  Google Scholar 

  47. Gilhar A, Ullmann Y, Berkutzki T, Assy B, Kalish RS (1998) Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice. J Clin Invest 101(1):62–67. https://doi.org/10.1172/JCI551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McElwee KJ, Freyschmidt-Paul P, Zöller M, Hoffmann R (2003) Alopecia areata susceptibility in rodent models. J Investig Dermatol Symp Proc 8(2):182–187. https://doi.org/10.1046/j.1087-0024.2003.00806.x

    Article  PubMed  Google Scholar 

  49. Campuzano-Maya G (2011) Cure of alopecia areata after eradication of Helicobacter pylori: a new association? World J Gastroenterol 17(26):3165–3170. https://doi.org/10.3748/wjg.v17.i26.3165

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jadeja SD, Tobin DJ (2022) Autoantigen discovery in the hair loss disorder, alopecia areata: implication of post-translational modifications. Front Immunol 13:890027. https://doi.org/10.3389/fimmu.2022.890027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Betz RC, Petukhova L, Ripke S, Huang H, Menelaou A, Redler S, Becker T, Heilmann S, Yamany T, Duvic M, Hordinsky M, Norris D, Price VH, Mackay-Wiggan J, de Jong A, DeStefano GM, Moebus S, Böhm M, Blume-Peytavi U, Wolff H, Lutz G, Kruse R, Bian L, Amos CI, Lee A, Gregersen PK, Blaumeiser B, Altshuler D, Clynes R, de Bakker PIW, Nöthen MM, Daly MJ, Christiano AM (2015) Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun 6:5966. https://doi.org/10.1038/ncomms6966

    Article  CAS  PubMed  Google Scholar 

  52. Ting YT, Petersen J, Ramarathinam SH, Scally SW, Loh KL, Thomas R, Suri A, Baker DG, Purcell AW, Reid HH, Rossjohn J (2018) The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J Biol Chem 293(9):3236–3251. https://doi.org/10.1074/jbc.RA117.001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SB, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J (2013) A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 210(12):2569–2582. https://doi.org/10.1084/jem.20131241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kárpáti S, Sárdy M, Németh K, Mayer B, Smyth N, Paulsson M, Traupe H (2018) Transglutaminases in autoimmune and inherited skin diseases: the phenomena of epitope spreading and functional compensation. Exp Dermatol 27(8):807–814. https://doi.org/10.1111/exd.13449

    Article  CAS  PubMed  Google Scholar 

  55. Sollid LM, Jabri B (2011) Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr Opin Immunol 23(6):732–738. https://doi.org/10.1016/j.coi.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Corazza GR, Andreani ML, Venturo N, Bernardi M, Tosti A, Gasbarrini G (1995) Celiac disease and alopecia areata: report of a new association. Gastroenterology 109(4):1333–1337. https://doi.org/10.1016/0016-5085(95)90597-9

    Article  CAS  PubMed  Google Scholar 

  57. Ertekin V, Tosun MS, Erdem T (2014) Screening of celiac disease in children with alopecia areata. Indian J Dermatol 59(3):317. https://doi.org/10.4103/0019-5154.131468

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pinto D, Giuliani G, Sorbellini E, Rinaldi F (2019) Diet and microbiome influence on alopecia areata: experience from case reports. J Nutr Med Diet Care 5:37. https://doi.org/10.23937/2572-3278.1510037

    Article  CAS  Google Scholar 

  59. Kurien BT, Hensley K, Bachmann M, Scofield RH (2006) Oxidatively modified autoantigens in autoimmune diseases. Free Radic Biol Med 41(4):549–556. https://doi.org/10.1016/j.freeradbiomed.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  60. van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, Gomez-Touriño I, Arif S, Peakman M, Drijfhout JW, Roep BO (2014) Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes 63(1):237–247. https://doi.org/10.2337/db12-1214

    Article  CAS  PubMed  Google Scholar 

  61. Tobin DJ (2009) Aging of the hair follicle pigmentation system. Int J Trichology 1(2):83–93. https://doi.org/10.4103/0974-7753.58550

    Article  PubMed  PubMed Central  Google Scholar 

  62. O’Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R (2021) The biology of human hair greying. Biol Rev Camb Philos Soc 96(1):107–128. https://doi.org/10.1111/brv.12648

    Article  CAS  PubMed  Google Scholar 

  63. Wade MS, Sinclair RD (2002) Persistent depigmented regrowth after alopecia areata. J Am Acad Dermatol 46(4):619–620. https://doi.org/10.1067/mjd.2002.120604

    Article  PubMed  Google Scholar 

  64. Jalalat SZ, Kelsoe JR, Cohen PR (2014) Alopecia areata with white hair regrowth: case report and review of poliosis. Dermatol Online J 20(9):13030/qt1xk5b26v

  65. McBride AK, Bergfeld WF (1990) Mosaic hair color changes in alopecia areata. Cleve Clin J Med 57(4):354–356. https://doi.org/10.3949/ccjm.57.4.354

    Article  CAS  PubMed  Google Scholar 

  66. Dinh QQ, Chong AH (2007) A case of widespread non-pigmented hair regrowth in diffuse alopecia areata. Australas J Dermatol 48(4):221–223. https://doi.org/10.1111/j.1440-0960.2007.00390.x

    Article  PubMed  Google Scholar 

  67. Sleiman R, Kurban M, Succaria F, Abbas O (2013) Poliosis circumscripta: overview and underlying causes. J Am Acad Dermatol 69(4):625–633. https://doi.org/10.1016/j.jaad.2013.05.022

    Article  PubMed  Google Scholar 

  68. Yousaf A, Lee J, Fang W, Kolodney MS (2021) Association between alopecia areata and natural hair color among white individuals. JAMA Dermatol 10:e210144. https://doi.org/10.1001/jamadermatol.2021.0144

    Article  Google Scholar 

  69. Simon JD, Hong L, Peles DN (2008) Insights into melanosomes and melanin from some interesting spatial and temporal properties. J Phys Chem B 112(42):13201–13217. https://doi.org/10.1021/jp804248h

    Article  CAS  PubMed  Google Scholar 

  70. Asz-Sigall D, Ortega-Springall MF, Smith-Pliego M, Rodríguez-Lobato E, Martinez-Velasco MA, Arenas R, Vincenzi C, Tosti A (2019) White hair in alopecia areata: clinical forms and proposed physiopathological mechanisms. J Am Acad Dermatol S0190–9622(19):30010–30016. https://doi.org/10.1016/j.jaad.2018.12.047

    Article  Google Scholar 

  71. Harris JE (2013) Vitiligo and alopecia areata: apples and oranges? Exp Dermatol 22(12):785–789. https://doi.org/10.1111/exd.12264

    Article  PubMed  Google Scholar 

  72. Tobin DJ (2014) Alopecia areata and vitiligo - partners in crime or a case of false alibis. Exp Dermatol 23(3):153–154. https://doi.org/10.1111/exd.12309

    Article  PubMed  Google Scholar 

  73. Glickman JW, Dubin C, Dahabreh D, Han J, Del Duca E, Estrada YD, Zhang N, Kimmel GW, Singer G, Krueger JG, Pavel AB, Guttman-Yassky E (2021) An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata. Allergy 76(10):3053–3065. https://doi.org/10.1111/all.14814

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Li S, Li C (2021) Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clin Rev Allergy Immunol 61(3):299–323. https://doi.org/10.1007/s12016-021-08868-z

    Article  CAS  PubMed  Google Scholar 

  75. Yenin JZ, Serarslan G, Yönden Z, Ulutaş KT (2015) Investigation of oxidative stress in patients with alopecia areata and its relationship with disease severity, duration, recurrence and pattern. Clin Exp Dermatol 40(6):617–621. https://doi.org/10.1111/ced.12556

    Article  CAS  PubMed  Google Scholar 

  76. Dizen-Namdar N, Emel Kocak F, Kidir M, Sarici G, Tak H, Altuntas I (2019) Evaluation of serum paraoxonase, arylesterase, prolidase activities and oxidative stress in patients with alopecia areata. Skin Pharmacol Physiol 32(2):59–64. https://doi.org/10.1159/000494690

    Article  CAS  PubMed  Google Scholar 

  77. Sachdeva S, Khurana A, Goyal P, Sardana K (2022) Does oxidative stress correlate with disease activity and severity in alopecia areata? An analytical study J Cosmet Dermatol 21(4):1629–1634. https://doi.org/10.1111/jocd.14253

    Article  PubMed  Google Scholar 

  78. Abdel Fattah NS, Ebrahim AA, El Okda ES (2011) Lipid peroxidation/antioxidant activity in patients with alopecia areata. J Eur Acad Dermatol Venereol 25(4):403–408. https://doi.org/10.1111/j.1468-3083.2010.03799.x

    Article  CAS  PubMed  Google Scholar 

  79. Mustafa AI, Khashaba RA, Fawzy E, Baghdady SMA, Rezk SM (2021) Cross talk between oxidative stress and inflammation in alopecia areata. J Cosmet Dermatol 20(7):2305–2310. https://doi.org/10.1111/jocd.13814

    Article  PubMed  Google Scholar 

  80. Messenger AG, Bleehen SS (1984) Alopecia areata: light and electron microscopic pathology of the regrowing white hair. Br J Dermatol 110(2):155–162. https://doi.org/10.1111/j.1365-2133.1984.tb07461.x

    Article  CAS  PubMed  Google Scholar 

  81. Xie B, Song X (2022) The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res 35(1):6–17. https://doi.org/10.1111/pcmr.13006

    Article  CAS  PubMed  Google Scholar 

  82. Mort RL, Jackson IJ, Patton EE (2015) The melanocyte lineage in development and disease. Development 142(4):620–632. https://doi.org/10.1242/dev.106567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Takeda K, Takahashi NH, Shibahara S (2007) Neuroendocrine functions of melanocytes: beyond the skin-deep melanin maker. Tohoku J Exp Med 211(3):201–221. https://doi.org/10.1620/tjem.211.201

    Article  CAS  PubMed  Google Scholar 

  84. Ertugrul G, Ertugrul S, Soylemez E (2020) Investigation of hearing and outer hair cell function of the cochlea in patients with vitiligo. Dermatol Ther 33(4):e13724. https://doi.org/10.1111/dth.13724

    Article  PubMed  Google Scholar 

  85. Dawoud EAE, Ismail EI, Eltoukhy SA, El-Sharabasy AE (2017) Assessment of auditory and vestibular functions in vitiligo patients. J Otol 12(3):143–149. https://doi.org/10.1016/j.joto.2017.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mahdi P, Amali A, Ruzbahani M, Pourbakht A, Mahdavi A (2016) The effect of otic melanocyte destruction on auditory and vestibular function: a study on vitiligo patients. Acta Med Iran 54(2):96–101

    PubMed  Google Scholar 

  87. Ondrey FG, Moldestad E, Mastroianni MA, Pikus A, Sklare D, Vernon E, Nusenblatt R, Smith J (2006) Sensorineural hearing loss in Vogt-Koyanagi-Harada syndrome. Laryngoscope 116(10):1873–1876. https://doi.org/10.1097/01.mlg.0000234946.31603.fe

    Article  PubMed  Google Scholar 

  88. Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ (2016) Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet 89(4):416–425. https://doi.org/10.1111/cge.12631

    Article  CAS  PubMed  Google Scholar 

  89. Koçak HE, Filiz Acıpayam AŞ, Acıpayam H, Çakıl Erdoğan B, Yıldız NY, Küfeciler L, Elbistanlı MS, Kaya KH (2017) Is there a relationship between melanocytes and sensorineural hearing loss? Clinical evaluation of 51 patients with alopecia areata. Clin Otolaryngol 43(2):705–710. https://doi.org/10.1111/coa.13011

    Article  PubMed  Google Scholar 

  90. Ucak H, Soylu E, Ozturk S, Demir B, Cicek D, Erden I, Akyigit A (2014) Audiological abnormalities in patients with alopecia areata. J Eur Acad Dermatol Venereol 28(8):1045–1048. https://doi.org/10.1111/jdv.12259

    Article  CAS  PubMed  Google Scholar 

  91. Ertugrul G, Ertugrul S, Soylemez E (2021) There is no evidence of cochlear and vestibular melanocyte damage in patients with alopecia areata. Int J Clin Pract 75(5):e14040. https://doi.org/10.1111/ijcp.14040

    Article  PubMed  Google Scholar 

  92. Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282(2): C403–407. https://doi.org/10.1152/ajpcell.00312.2001

  93. Erdoan HK, Acer E, Hakk A, Bulur I, Bilgin M (2019) Evaluation of hearing with pure-tone audiometry in alopecia areata patients. Deri Hastaliklari ve Frengi Arsivi 53(1):19–23. https://doi.org/10.4274/turkderm.galenos.2018.98148

    Article  Google Scholar 

  94. Alkhalifah A, Alsantali A, Wang E, McElwee KJ, Shapiro J (2010) Alopecia areata update: part II. Treatment. J Am Acad Dermatol 62(2): 191–202, quiz 203–204. https://doi.org/10.1016/j.jaad.2009.10.031

  95. Strazzulla LC, Wang EHC, Avila L, Lo Sicco K, Brinster N, Christiano AM, Shapiro J (2017) Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J Am Acad Dermatol 78(1):15–24. https://doi.org/10.1016/j.jaad.2017.04.1142

    Article  Google Scholar 

  96. Chu TW, AlJasser M, Alharbi A, Abahussein O, McElwee K, Shapiro J (2015) Benefit of different concentrations of intralesional triamcinolone acetonide in alopecia areata: an intrasubject pilot study. J Am Acad Dermatol 73(2):338–340. https://doi.org/10.1016/j.jaad.2015.04.049

    Article  PubMed  Google Scholar 

  97. Tosti A, Piraccini BM, Pazzaglia M, Vincenzi C (2003) Clobetasol propionate 0.05% under occlusion in the treatment of alopecia totalis/universalis. J Am Acad Dermatol 49(1): 96–98. https://doi.org/10.1067/mjd.2003.423

  98. Cranwell WC, Lai VW, Photiou L, Meah N, Wall D, Rathnayake D, Joseph S, Chitreddy V, Gunatheesan S, Sindhu K, Sharma P, Green J, Eisman S, Yip L, Jones L, Sinclair R (2019) Treatment of alopecia areata: an Australian expert consensus statement. Australas J Dermatol 60(2):163–170. https://doi.org/10.1111/ajd.12941

    Article  PubMed  Google Scholar 

  99. Freire PCB, Riera R, Martimbianco ALC, Petri V, Atallah AN (2019) Minoxidil for patchy alopecia areata: systematic review and meta-analysis. J Eur Acad Dermatol Venereol 33(9):1792–1799. https://doi.org/10.1111/jdv.15545

    Article  CAS  PubMed  Google Scholar 

  100. Gupta AK, Talukder M, Venkataraman M, Bamimore MA (2022) Minoxidil: a comprehensive review. J Dermatolog Treat 33(4):1896–1906. https://doi.org/10.1080/09546634.2021.1945527

    Article  CAS  PubMed  Google Scholar 

  101. Lee S, Kim BJ, Lee YB, Lee WS (2018) Hair regrowth outcomes of contact immunotherapy for patients with alopecia areata: a systematic review and meta-analysis. JAMA Dermatol 154(10):1145–1151. https://doi.org/10.1001/jamadermatol.2018.2312

    Article  PubMed  PubMed Central  Google Scholar 

  102. Phan K, Ramachandran V, Sebaratnam DF (2019) Methotrexate for alopecia areata: a systematic review and meta-analysis. J Am Acad Dermatol 80(1):120-127.e2. https://doi.org/10.1016/j.jaad.2018.06.064

    Article  CAS  PubMed  Google Scholar 

  103. Lai VWY, Chen G, Gin D, Sinclair R (2019) Cyclosporine for moderate-to-severe alopecia areata: a double-blind, randomized, placebo-controlled clinical trial of efficacy and safety. J Am Acad Dermatol 81(3):694–701. https://doi.org/10.1016/j.jaad.2019.04.053

    Article  CAS  PubMed  Google Scholar 

  104. Olamiju B, Friedmann A, King B (2019) Treatment of severe alopecia areata with baricitinib. JAAD Case Rep 5(10):892–894. https://doi.org/10.1016/j.jdcr.2019.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G, Furniss M, Vaughan R, Christiano AM, Clynes R (2016) Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight 1(15):e89790. https://doi.org/10.1172/jci.insight.89790

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liu LY, Craiglow BG, Dai F, King BA (2017) Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol 76(1):22–28. https://doi.org/10.1016/j.jaad.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  107. Eisman S, Sinclair R (2021) Ritlecitinib: an investigational drug for the treatment of moderate to severe alopecia areata. Expert Opin Investig Drugs 30(12):1169–1174. https://doi.org/10.1080/13543784.2021.2012149

    Article  CAS  PubMed  Google Scholar 

  108. Guttman-Yassky E, Pavel AB, Diaz A, Zhang N, Del Duca E, Estrada Y, King B, Banerjee A, Banfield C, Cox LA, Dowty ME, Page K, Vincent MS, Zhang W, Zhu L, Peeva E (2022) Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers. J Allergy Clin Immunol 149(4):1318–1328. https://doi.org/10.1016/j.jaci.2021.10.036

    Article  CAS  PubMed  Google Scholar 

  109. Strober BE, Siu K, Alexis AF, Kim G, Washenik K, Sinha A (2005) Shupack JL (2005) Etanercept does not effectively treat moderate to severe alopecia areata: an open-label study. J Am Acad Dermatol 52(6):1082–1084. https://doi.org/10.1016/j.jaad.2005.03.039

    Article  PubMed  Google Scholar 

  110. Bolduc C, Bissonnette R (2012) Safety and efficacy of adalimumab for the treatment of severe alopecia areata: case series of three patients. J Cutan Med Surg 16(4):257–260. https://doi.org/10.1177/120347541201600407

    Article  CAS  PubMed  Google Scholar 

  111. Guttman-Yassky E, Nia JK, Hashim PW, Mansouri Y, Alia E, Taliercio M, Desai PN, Lebwohl MG (2018) Efficacy and safety of secukinumab treatment in adults with extensive alopecia areata. Arch Dermatol Res 310(8):607–614. https://doi.org/10.1007/s00403-018-1853-5

    Article  CAS  PubMed  Google Scholar 

  112. Harada K, Irisawa R, Ito T, Uchiyama M, Tsuboi R (2020) The effectiveness of dupilumab in patients with alopecia areata who have atopic dermatitis: a case series of seven patients. Br J Dermatol 183(2):396–397. https://doi.org/10.1111/bjd.18976

    Article  CAS  PubMed  Google Scholar 

  113. Xie B, Chen Y, Hu Y, Zhao Y, Luo H, Xu J, Song X (2022) Targets exploration of hydroxychloroquine for pigmentation and cell protection effect in melanocytes: the clue for vitiligo treatment. Drug Des Devel Ther 16:1011–1024. https://doi.org/10.2147/DDDT.S350387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Al Khateeb WM, Sher AA, Marcus JM, Schroeder DF (2019) UVSSA, UBP12, and RDO2/TFIIS contribute to Arabidopsis UV tolerance. Front Plant Sci 10:516. https://doi.org/10.3389/fpls.2019.00516

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moskovitz J, Smith A (2021) Methionine sulfoxide and the methionine sulfoxide reductase system as modulators of signal transduction pathways: a review. Amino Acids 53(7):1011–1020. https://doi.org/10.1007/s00726-021-03020-9

    Article  CAS  PubMed  Google Scholar 

  116. Li DG, Hu WZ, Ma HJ, Liu W, Yang QQ, Zhao G (2016) Hydroxychloroquine protects melanocytes from autoantibody-induced injury by reducing the binding of antigen-antibody complexes. Mol Med Rep 14(2):1275–1282. https://doi.org/10.3892/mmr.2016.5354

    Article  CAS  PubMed  Google Scholar 

  117. Zailaie MZ (2005) Aspirin reduces serum anti-melanocyte antibodies and soluble interleukin-2 receptors in vitiligo patients. Saudi Med J 26(7):1085–1091

    PubMed  Google Scholar 

  118. Rahman H, Kumar D, Liu T, Okwundu N, Lum D, Florell SR, Burd CE, Boucher KM, VanBrocklin MW, Grossman D (2021) Aspirin protects melanocytes and keratinocytes against UVB-induced DNA damage in vivo. J Invest Dermatol 141(1):132-141.e3. https://doi.org/10.1016/j.jid.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  119. Kumar D, Rahman H, Tyagi E, Liu T, Li C, Lu R, Lum D, Holmen SL, Maschek JA, Cox JE, VanBrocklin MW, Grossman D (2018) Aspirin suppresses PGE2 and activates AMP kinase to inhibit melanoma cell motility, pigmentation, and selective tumor growth in vivo. Cancer Prev Res (Phila) 11(10):629–642. https://doi.org/10.1158/1940-6207.CAPR-18-0087

    Article  CAS  Google Scholar 

  120. Jian Z, Tang L, Yi X, Liu B, Zhang Q, Zhu G, Wang G, Gao T, Li C (2016) Aspirin induces Nrf2-mediated transcriptional activation of haem oxygenase-1 in protection of human melanocytes from H2 O2 -induced oxidative stress. J Cell Mol Med 20(7):1307–1318. https://doi.org/10.1111/jcmm.12812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou J, Ling J, Song J, Wang Y, Feng B, Ping F (2016) Interleukin 10 protects primary melanocyte by activation of Stat-3 and PI3K/Akt/NF-κB signaling pathways. Cytokine 83:275–281. https://doi.org/10.1016/j.cyto.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  122. Tolleson WH (2005) Human melanocyte biology, toxicology, and pathology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23(2):105–161. https://doi.org/10.1080/10590500500234970

    Article  CAS  PubMed  Google Scholar 

  123. Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA (2014) Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 134(6):1512–1518. https://doi.org/10.1038/jid.2014.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Robins DN (2007) Case reports: alopecia universalis: hair growth following initiation of simvastatin and ezetimibe therapy. J Drugs Dermatol 6(9):946–947

    PubMed  Google Scholar 

  125. Lattouf C, Jimenez JJ, Tosti A, Miteva M, Wikramanayake TC, Kittles C, Herskovitz I, Handler MZ, Fabbrocini G, Schachner LA (2015) Treatment of alopecia areata with simvastatin/ezetimibe. J Am Acad Dermatol 72(2):359–361. https://doi.org/10.1016/j.jaad.2014.11.006

    Article  PubMed  Google Scholar 

  126. Freitas Gouveia M, Trüeb RM (2017) Unsuccessful treatment of alopecia areata with simvastatin/ezetimibe: experience in 12 patients. Skin Appendage Disord 3(3):156–160. https://doi.org/10.1159/000468991

    Article  PubMed  PubMed Central  Google Scholar 

  127. Choi JW, Suh DW, Lew BL, Sim WY (2017) Simvastatin/ezetimibe therapy for recalcitrant alopecia areata: an open prospective study of 14 patients. Ann Dermatol 29(6):755–760. https://doi.org/10.5021/ad.2017.29.6.755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Loi C, Starace M, Piraccini BM (2016) Alopecia areata (AA) and treatment with simvastatin/ezetimibe: experience of 20 patients. J Am Acad Dermatol 74(5):e99–e100. https://doi.org/10.1016/j.jaad.2015.09.071

    Article  PubMed  Google Scholar 

  129. Morillo-Hernandez C, Lee JJ, English JC 3rd (2019) Retrospective outcome analysis of 25 alopecia areata patients treated with simvastatin/ezetimibe. J Am Acad Dermatol 81(3):854–857. https://doi.org/10.1016/j.jaad.2019.04.047

    Article  PubMed  Google Scholar 

  130. Cervantes J, Jimenez JJ, DelCanto GM, Tosti A (2018) Treatment of alopecia areata with simvastatin/ezetimibe. J Investig Dermatol Symp Proc 19(1):S25–S31. https://doi.org/10.1016/j.jisp.2017.10.013

    Article  PubMed  Google Scholar 

  131. Chang Y, Li S, Guo W, Yang Y, Zhang W, Zhang Q, He Y, Yi X, Cui T, An Y, Song P, Jian Z, Liu L, Li K, Wang G, Gao T, Wang L, Li C (2017) Simvastatin protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2. J Invest Dermatol 137(6):1286–1296. https://doi.org/10.1016/j.jid.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  132. Jiang L, Guo Z, Kong Y, Liang J, Wang Y, Wang K (2018) Protective effects of glutamine on human melanocyte oxidative stress model. Indian J Dermatol Venereol Leprol 84(3):269–274. https://doi.org/10.4103/ijdvl.IJDVL_106_17

    Article  PubMed  Google Scholar 

  133. Hseu YC, Vudhya Gowrisankar Y, Wang LW, Zhang YZ, Chen XZ, Huang PJ, Yen HR, Yang HL (2021) The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol 44:102007. https://doi.org/10.1016/j.redox.2021.102007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hu S, Huang J, Pei S, Ouyang Y, Ding Y, Jiang L, Lu J, Kang L, Huang L, Xiang H, Xiao R, Zeng Q, Chen J (2019) Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol 234(5):7330–7340. https://doi.org/10.1002/jcp.27492

    Article  CAS  PubMed  Google Scholar 

  135. Zhou C, Li X, Wang C, Zhang J (2021) Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clin Rev Allergy Immunol 61(3):403–423. https://doi.org/10.1007/s12016-021-08883-0

    Article  PubMed  Google Scholar 

  136. Manga P, Choudhury N (2021) The unfolded protein and integrated stress response in melanoma and vitiligo. Pigment Cell Melanoma Res 34(2):204–211. https://doi.org/10.1111/pcmr.12947

    Article  CAS  PubMed  Google Scholar 

  137. Passeron T, Ortonne JP (2012) Activation of the unfolded protein response in vitiligo: the missing link? J Invest Dermatol 132(11):2502–2504. https://doi.org/10.1038/jid.2012.328

    Article  CAS  PubMed  Google Scholar 

  138. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81872517); Hangzhou Medical Key Discipline Construction Project (No. (2021)21–3); and Science and Technology Special Project of Biomedicine and Health Industry in Hangzhou (No. 2021WJCY156).

Author information

Authors and Affiliations

Authors

Contributions

Bo Xie, Jiayi Sun, and Xiuzu Song drafted the manuscript. All the authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Xiuzu Song.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Sun, J. & Song, X. Hair Follicle Melanocytes Initiate Autoimmunity in Alopecia Areata: a Trigger Point. Clinic Rev Allerg Immunol 63, 417–430 (2022). https://doi.org/10.1007/s12016-022-08954-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08954-w

Keywords

Navigation