Skip to main content
Log in

Human Umbilical Cord Mesenchymal Stem Cells Promote Anti-Inflammation and Angiogenesis by Targeting Macrophages in a Rat Uterine Scar Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have demonstrated efficacy in repairing uterine scars, although the underlying mechanisms remain unclear.

Methods

Uterine injury was surgically induced in a rat model, followed by immediate transplantation of 5 × 10 ^ 5 hUC-MSCs to each side of the uterus. Uterine morphology was evaluated at days 14 and 30 using HE and Masson staining. Immunohistochemistry assessed macrophage polarization, angiogenesis and endometrial receptivity in the endometrium. Additionally, the regulatory effects of hUC-MSCs on macrophage polarization were explored through coculture. qRT-PCR quantified the expression of anti-inflammatory (IL10 and Arg1) and pro-inflammatory (iNOS and TNF-α) factors. Western blotting evaluated CD163 expression.

Results

Transplantation of hUC-MSCs promoted the healing of uterine injuries and tissue regeneration while inhibiting tissue fibrosis. Immunohistochemistry at days 14 and 30 post-transplantation demonstrated the polarization of macrophages toward the M2 phenotype in the uterine injury area in the presence of hUC-MSCs. Furthermore, hUC-MSC transplantation improved angiogenesis and endometrial receptivity in the uterine injury rat model, associated with increased IL10 expression. hUC-MSC-induced angiogenesis can be resisted by depleted macrophages. In vitro coculture experiments further demonstrated that hUC-MSCs promoted IL10 expression in macrophages while suppressing TNF-α and iNOS expression. Western blotting showed enhanced CD163 expression in macrophages following hUC-MSC treatment.

Conclusions

hUC-MSCs contribute to the healing of uterine injuries by targeting macrophages to promote angiogenesis and the expression of anti-inflammatory factors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

MSCs:

Mesenchymal stem cells

hUC-MSCs:

Human umbilical cord mesenchymal stem cells

iNOS:

Inducible nitric oxide synthase

IL10:

Interleukin 10

VEGF:

Vascular endothelial growth factor

HOXA10:

Homeobox A10

LIF:

Leukemia inhibitory factor

Arg1:

Arginase 1

TNF-α:

Tumor necrosis factor alpha

PBS:

Phosphate buffer

CS:

Cesarean scar

CSD:

Cesarean scar defect

IUA:

Intrauterine adhesion

PMA:

Phorbol 12-myristate 13-acetate

LPS:

Lipopolysaccharide

IFN-γ:

Interferon gamma

IL4:

Interleukin 4

IL13:

Interleukin 13

HE:

Hematoxylin–eosin

IHC:

Immunohistochemical

References

  1. Docheva, N., Slutsky, E. D., Borella, N., Mason, R., Van Hook, J. W., & Seo-Patel, S. (2018). The rising triad of cesarean scar pregnancy, placenta percreta, and uterine rupture: A case report and comprehensive review of the literature. Case Reports in Obstetrics and Gynecology, 2018, 8797643. https://doi.org/10.1155/2018/8797643.

  2. Shi, H., He, J., Gao, Y., Qin, S., Fan, J., Xiao, Q., Li, K., & Liang, H. (2020). Treatment of C-section diverticula with hysteroscopic resection in women without childbearing intention: A retrospective cohort study. BMC women’s health, 20(1), 75.https://doi.org/10.1186/s12905-020-00928-4.

  3. Henke, R. M., Wier, L. M., Marder, W. D., Friedman, B. S., & Wong, H. S. (2014). Geographic variation in cesarean delivery in the United States by payer. BMC Pregnancy and Childbirth, 14, 387. https://doi.org/10.1186/s12884-014-0387-x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bhartiya, D., Singh, P., Sharma, D., & Kaushik, A. (2022). Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Reviews and Reports, 18(5), 1718–1727. https://doi.org/10.1007/s12015-021-10243-6.

    Article  CAS  PubMed  Google Scholar 

  5. Du, J., Li, H., Lian, J., Zhu, X., Qiao, L., & Lin, J. (2020). Stem cell therapy: A potential approach for treatment of influenza virus and coronavirus-induced acute lung injury. Stem Cell Research & Therapy, 11(1), 192. https://doi.org/10.1186/s13287-020-01699-3.

    Article  CAS  Google Scholar 

  6. Singh, P., & Bhartiya, D. (2021). Pluripotent stem (VSELs) and progenitor (EnSCs) cells exist in adult mouse uterus and show cyclic changes across estrus cycle. Reproductive Sciences, 28(1), 278–290. https://doi.org/10.1007/s43032-020-00250-2.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, S., Chen, G., Feng, L., Jiang, Z., Yu, M., Bao, J., & Tian, W. (2016). Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the wnt signaling pathway. Molecular Medicine Reports, 14(3), 1891–1900. https://doi.org/10.3892/mmr.2016.5508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh, P., Metkari, S., & Bhartiya, D. (2022). Additional evidence to support OCT-4 positive VSELs and EnSCs as the elusive tissue-resident stem/progenitor cells in adult mice uterus. Stem Cell Research & Therapy, 13(1), 60. https://doi.org/10.1186/s13287-022-02703-8.

    Article  CAS  Google Scholar 

  9. Fan, Y., Sun, J., Zhang, Q., & Lai, D. (2021). Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model. Stem Cell Research & Therapy, 12(1), 207. https://doi.org/10.1186/s13287-021-02260-6.

    Article  CAS  Google Scholar 

  10. Yu, J., et al. (2021). Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through notch signalling. Journal of Cellular and Molecular Medicine, 25(23), 11002–11015. https://doi.org/10.1111/jcmm.17023.

  11. Huang, J., Li, Q., Yuan, X., Liu, Q., Zhang, W., & Li, P. (2022). Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: A phase I clinical trial. Stem Cell Research & Therapy, 13(1), 85. https://doi.org/10.1186/s13287-022-02756-9.

    Article  CAS  Google Scholar 

  12. Zhang, B., Tian, X., Hao, J., Xu, G., & Zhang, W. (2020). Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplantation, 29, 963689720908500. https://doi.org/10.1177/0963689720908500.

    Article  PubMed  Google Scholar 

  13. He, X., et al. (2021). Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine. Signal Transduction and Targeted Therapy, 6(1), 270. https://doi.org/10.1038/s41392-021-00688-z.

  14. Németh, K., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/10.1038/nm.1905.

  15. Munteanu, M. C., Huang, C., Liang, Y., Sathiaseelan, R., Zeng, X., & Liu, L. (2020). Long non-coding RNA FENDRR regulates IFNγ-induced M1 phenotype in macrophages. Scientific Reports, 10(1), 13672. https://doi.org/10.1038/s41598-020-70633-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, J., Liu, X., Hou, Y., Liu, Y., Liao, K., Xie, N., & Deng, K. (2022). Macrophage polarisation in caesarean scar diverticulum. Journal of Clinical Pathology. https://doi.org/10.1136/jclinpath-2021-207926. jclinpath-2021-207926.

    Article  PubMed  Google Scholar 

  17. Johan, M. Z., Ingman, W. V., Robertson, S. A., & Hull, M. L. (2019). Macrophages infiltrating endometriosis-like lesions exhibit progressive phenotype changes in a heterologous mouse model. Journal of Reproductive Immunology, 132, 1–8. https://doi.org/10.1016/j.jri.2019.01.002.

    Article  CAS  PubMed  Google Scholar 

  18. Champlin, C. A., & O’Neal, J. (1993). Absolute sensitivity measured psychophysically and using auditory steady-state potentials. Scandinavian Audiology, 22(4), 237–241. https://doi.org/10.3109/01050399309047475.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, P., et al. (2023). Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction. Regenerative Biomaterials, 10, rbad025. https://doi.org/10.1093/rb/rbad025.

  20. Huang, Z., et al. (2023). Macrophage contribution to the survival of transferred expanded skin flap through angiogenesis. Annals of Translational Medicine, 11(6), 248.https://doi.org/10.21037/atm-22-1558.

  21. Lin, N., et al. (2012). The effect of collagen-binding vascular endothelial growth factor on the remodeling of scarred rat uterus following full-thickness injury. Biomaterials, 33(6), 1801–1807. https://doi.org/10.1016/j.biomaterials.2011.11.038.

  22. Esteves, C. L., et al. (2017). Isolation and characterization of equine native MSC populations. Stem Cell Research & Therapy, 8, 80.https://doi.org/10.1186/s13287-017-0525-2.

  23. Yu, J., et al. (2017). β inhibits connexin 43 and disrupts decidualization of human endometrial stromal cells through ERK1/2 and p38 MAP kinase. Endocrinology, 158(12), 4270–4285. https://doi.org/10.1210/en.2017-00495.

  24. Fischer, H. J., Finck, T. L. K., Pellkofer, H. L., Reichardt, H. M., & Lühder, F. (2019). Glucocorticoid therapy of multiple sclerosis patients induces anti-inflammatory polarization and increased chemotaxis of monocytes. Frontiers in Immunology, 10, 1200. https://doi.org/10.3389/fimmu.2019.01200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhuang, W. Z., et al. (2021). Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. Journal of Biomedical Science, 28(1), 28.https://doi.org/10.1186/s12929-021-00725-7.

  26. Ma, S., Xie, N., Li, W., Yuan, B., Shi, Y., & Wang, Y. (2014). Immunobiology of mesenchymal stem cells. Cell Death and Differentiation, 21(2), 216–225. https://doi.org/10.1038/cdd.2013.158.

    Article  CAS  PubMed  Google Scholar 

  27. Cañedo-Dorantes, L., & Cañedo-Ayala, M. (2019). Skin acute wound healing: A comprehensive review. International Journal of Inflammation, 2019, 3706315. https://doi.org/10.1155/2019/3706315.

  28. Yu, S., et al. (2019). Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Research & Therapy, 10(1), 333. https://doi.org/10.1186/s13287-019-1474-8.

  29. Hu, Q., et al. (2022). An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair. International Journal of Biological Macromolecules, 219, 96–108. https://doi.org/10.1016/j.ijbiomac.2022.07.161.

  30. Liu, J., Chen, B., Bao, J., Zhang, Y., Lei, L., & Yan, F. (2019). Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration. Stem Cell Research & Therapy, 10(1), 320. https://doi.org/10.1186/s13287-019-1409-4.

    Article  CAS  Google Scholar 

  31. Xu, H., Nie, G., Yin, T., Shao, C., Ding, D., & Zou, M. (2022). Umbilical cord-derived mesenchymal stem cells with surfactant protein B alleviates inflammatory response in acute respiratory distress syndrome by regulating macrophage polarization. Balkan Medical Journal, 39(1), 130–139. https://doi.org/10.4274/balkanmedj.galenos.2021.2021-9-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madsen, D. H., et al. (2013). M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. The Journal of Cell Biology, 202(6), 951–966. https://doi.org/10.1083/jcb.201301081.

  33. Wang, J., et al. (2020). Suberoylanilide hydroxamic acid alleviates orthotopic liver transplantation‑induced hepatic ischemia‑reperfusion injury by regulating the AKT/GSK3β/NF‑κB and AKT/mTOR pathways in rat Kupffer cells. International Journal of Molecular Medicine, 45(6), 1875–1887. https://doi.org/10.3892/ijmm.2020.4551.

  34. Zhong, C., Song, Z., & Li, M. (2019). Gastric cancer patients display a distinctive population of IFNg + IL10 + double positive CD8 T cells, which persists longer during prolonged activation. Experimental Cell Research, 382(2), 111487. https://doi.org/10.1016/j.yexcr.2019.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qiu, X., et al. (2018). Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Research & Therapy, 9(1), 88.https://doi.org/10.1016/j.yexcr.2019.06.032.

  36. Hao, D., Swindell, H. S., Ramasubramanian, L., Liu, R., Lam, K. S., Farmer, D. L., & Wang, A. (2020). Extracellular matrix mimicking nanofibrous scaffolds modified with mesenchymal stem cell-derived extracellular vesicles for improved vascularization. Frontiers in Bioengineering and Biotechnology, 8, 633. https://doi.org/10.3389/fbioe.2020.00633.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiang, Y., Yao, X., Wang, X., Zhao, H., Zou, H., Wang, L., & Zhang, Q. X. (2019). Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: In vivo and in vitro. Bioscience Reports, 39(10), BSR20191006. https://doi.org/10.1042/BSR20191006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ge, Y.-W., et al. (2021). Graphene-modified CePO4 nanorods effectively treat breast cancer-induced bone metastases and regulate macrophage polarization to improve osteo-inductive ability. .Journal of Nanobiotechnology, 19(1), 11.https://doi.org/10.1186/s12951-020-00753-9.

  39. Cao, C., et al. (2022). GCN5 participates in KLF4-VEGFA feedback to promote endometrial angiogenesis. Iscience, 25(7), 104509.https://doi.org/10.1016/j.isci.2022.104509.

  40. Santos, L. L., Ling, C. K., & Dimitriadis, E. (2020). Tripeptidyl peptidase I promotes human endometrial epithelial cell adhesive capacity implying a role in receptivity. Reproductive Biology and Endocrinology: RB&E, 18(1), 124. https://doi.org/10.1186/s12958-020-00682-0.

    Article  CAS  Google Scholar 

  41. University Notes (1931). Canadian Medical Association Journal, 25(2), 224.

    Google Scholar 

  42. Chen, L., Wang, D., Qiu, J., Zhang, X., Liu, X., Qiao, Y., & Liu, X. (2021). Synergistic effects of immunoregulation and osteoinduction of ds-block elements on titanium surface. Bioactive Materials, 6(1), 191–207. https://doi.org/10.1016/j.bioactmat.2020.08.001.

    Article  CAS  PubMed  Google Scholar 

  43. Ahangar, P., Mills, S. J., Smith, L. E., Strudwick, X. L., Ting, A. E., Vaes, B., & Cowin, A. J. (2020). Human multipotent adult progenitor cell-conditioned medium improves wound healing through modulating inflammation and angiogenesis in mice. Stem Cell Research & Therapy, 11(1), 299. https://doi.org/10.1186/s13287-020-01819-z.

    Article  CAS  Google Scholar 

  44. Monga, J. N. (1983). Immunopathology of urinary stones. Indian Journal of Pathology & Microbiology, 26(4), 329–336.

    CAS  Google Scholar 

  45. Li, C., Levin, M., & Kaplan, D. L. (2016). Bioelectric modulation of macrophage polarization. Scientific Reports, 6, 21044. https://doi.org/10.1038/srep21044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Powell, K. E., Meador, M. P., & Farer, L. S. (1984). Recent trends in tuberculosis in children. Journal of the American Medical Association, 251(10), 1289–1292.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technical help and support from Prof. Jiasong Guo and the medical research center of Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde). Graphical abstract was created in BioRender.com.

Funding

This study was supported by Guangdong Basic and Applied Basic Research Foundation (2019B1515120082), the Science and Technology Bureau of Foshan City (2020001006077, 2020001005230), the Distinguished Young Talents Program of Foshan City (600015), and the scientific research launched project of Shunde Hospital, Southern Medical University (SRSP2021004).

Author Information.

Qian Yang and Jinfa Huang contributed equally to this work.

Author information

Authors and Affiliations

Authors

Contributions

Q Yang participated in all experiments, in the design of the study and wrote the manuscript. JF Huang was involved in study design, data interpretation, and manuscript composition. YX Liu participated in the animal model establishment and sample collection of partial animal experiments. QQ Mai, Y Zhou, L Zhou, and LL Zeng contributed to data analysis and edited the manuscript. KX Deng conceived of the manuscript’s purpose and design and critically revised the manuscript. All authors have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.

Corresponding author

Correspondence to Kaixian Deng.

Ethics declarations

Ethics approval and consent to participate

Ethical treatment of animals used in this study was proposed to and approved by Shunde Hospital, Southern Medical University Ethics Committee (20200731).

Consent for publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Huang, J., Liu, Y. et al. Human Umbilical Cord Mesenchymal Stem Cells Promote Anti-Inflammation and Angiogenesis by Targeting Macrophages in a Rat Uterine Scar Model. Stem Cell Rev and Rep (2024). https://doi.org/10.1007/s12015-024-10730-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12015-024-10730-6

Keywords

Navigation