Skip to main content

Advertisement

Log in

Fine Tuning Mesenchymal Stromal Cells – Code For Mitigating Kidney Diseases

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Kidney Disease (KD), has a high global prevalence and accounts for one of the most prominent causes of morbidity and mortality in the twenty-first century. Despite the advances in our understanding of its pathophysiology, the only available therapy options are dialysis and kidney transplantation. Mesenchymal stem cells (MSCs) have proven to be a viable choice for KD therapy due to their antiapoptotic, immunomodulatory, antioxidative, and pro-angiogenic activities. However, the low engraftment, low survival rate, diminished paracrine ability, and delayed delivery of MSCs are the major causes of the low clinical efficacy. A number of preconditioning regimens are being tested to increase the therapeutic capabilities of MSCs. In this review, we highlight the various strategies to prime MSCs and their protective effects in kidney diseases.

Graphical Abstract

Preconditioning Strategies of Mesenchymal Stem cell in Kidney Disease

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No new data were generated or analyzed in support of this research.

Abbreviations

KD:

Kidney disease

AKI:

Acute Kidney Disease

CKD:

Chronic Kidney Disease

CsA:

Cyclosporine A

CA:

Calycosin

DPO:

Darbepoetin-α

DKD:

Diabetic kidney disease

DM:

Diabetes mellitus

DN:

Diabetic nephropathy

ESRD:

End Stage Renal Disease

EPO:

Erythropoietin

EpoR:

EPO receptor

EPCs:

Endothelial progenitor cells

FGF:

Fibroblast Growth Factor

FOXO3:

Forkhead box O3

GFR:

Glomerular Filtration Rate

HGF:

Hepatocyte Growth Factor

HSC:

Hematopoietic stem cells

HE:

Haematoxylin and eosin

HIF:

Hypoxia-inducible factor

IGF-1:

Insulin like growth factor-1

IRI:

Ischemia/reperfusion induced

EVs:

Extracellular vesicles

BM-MSCs:

Bone Marrow derived MSCs

MSC:

Mesenchymal Stem Cell

MV:

Microvesicles

SOD-1:

Superoxide dismutase 1

HO-1:

Heme oxygenase 1

KHS:

Kidney homogenate supernatant

MSCs:

Mesenchymal stem cells;

A-ADMSCs:

Apoptotic adipose-derived MSCs

bFGF:

Basic fibroblast growth factor

UUO:

Unilateral ureteral obstruction

hBM-MSCs:

Human bone marrow mesenchymal stem cells

SOD-1:

Superoxide dismutase 1

CPT1A:

Carnitine palmitoyl-transferase 1A

ECM:

Extracellular matrix

MMP12:

Matrix metalloproteinase 12

UUO:

Unilateral ureteric obstruction

SIRT1:

Silent information regulator 1

TNF- α:

Tumour Necrosis Factor- alpha

VEGF:

Vascular Endothelial Growth Factor

IGF-1C:

C domain of insulin-like growth factor-1

AKC:

Artificial kidney capsule

ECM:

Extracellular matrix (ECM)

hP-MSCs:

Human placenta-derived mesenchymal stem cells

TGF‐β:

Transforming growth factor‐β

RTECs':

Renal Tubular Epithelial Cells

ROS:

Reactive Oxygen Species

PDGF:

Platelet Derived Growth Factor

Fmoc-FFSNAP:

Fmoc-diphenylalanine S-nitroso-N-acetyl penicillamine hydrogel

ADSCs:

Adipose Derived Stem Cell

UC MSCs:

Umbilical derived Mesenchymal Stem Cells

CPT1A:

Carnitine palmitoyl-transferase 1A

α‐SMA:

α-Smooth muscle actin

eGFR:

Estimated glomerular filtration rate

EMCH:

Extracellular matrix hydrogel

CLP:

Caecal ligation and puncture

WJ-MSCs :

Wharton Jelly Derived Mesenchymal Stem Cells

hAD-MSCs:

Human Adipose Derived Mesenchymal Stem Cell

hMSCs:

Human Mesenchymal Stem Cells

References

  1. Ahmadi, A., Rad, N. K., & Vahid Ezzatizadeh, R. M. (2020). Kidney regeneration: Stem cells as a new trend. Current Stem Cell Research & Therapy, 15(3), 263–283. https://doi.org/10.2174/1574888X15666191218094513

    Article  CAS  Google Scholar 

  2. Abbar, J. C., & Nandibewoor, S. T. (2012). Development of electrochemical method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids. 51(1), 111–118. https://doi.org/10.1021/ie2021812

  3. Aghajani Nargesi, A., Lerman, L. O., & Eirin, A. (2017). Mesenchymal stem cell-derived extracellular vesicles for kidney repair: Current status and looming challenges. Stem Cell Research and Therapy, 8(1), 1–12. https://doi.org/10.1186/s13287-017-0727-7

    Article  CAS  Google Scholar 

  4. Ajith, T. A., Abhishek, G., Roshny, D., & Sudheesh, N. P. (2009). Co-supplementation of single and multi doses of vitamins C and E ameliorates cisplatin-induced acute renal failure in mice. Experimental and Toxicologic Pathology, 61(6), 565–571. https://doi.org/10.1016/j.etp.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Alicic, R. Z., Rooney, M. T., & Tuttle, K. R. (2017). Diabetic kidney disease: Challenges, progress, and possibilities. Clinical Journal of the American Society of Nephrology, 12(12), 2032–2045. https://doi.org/10.2215/CJN.11491116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Altun, B., Yilmaz, R., Aki, T., Akoglu, H., Zeybek, D., Piskinpasa, S., Uckan, D., Purali, N., Korkusuz, P., & Turgan, C. (2012). Use of mesenchymal stem cells and darbepoetin improve ischemia-induced acute kidney injury outcomes. American Journal of Nephrology, 35(6), 531–539. https://doi.org/10.1159/000339167

    Article  CAS  PubMed  Google Scholar 

  7. Aussel, C., Baudry, N., Grosbot, M., Caron, C., Vicaut, E., Banzet, S., & Peltzer, J. (2021). IL-1β primed mesenchymal stromal cells moderate hemorrhagic shock-induced organ injuries. Stem Cell Research and Therapy, 12(1), 1–16. https://doi.org/10.1186/s13287-021-02505-4

    Article  CAS  Google Scholar 

  8. Badawi, A., Jefferson, O. C., Huuskes, B. M., Ricardo, S. D., Kerr, P. G., Samuel, C. S., & Murthi, P. (2022). A novel approach to enhance the regenerative potential of circulating endothelial progenitor cells in patients with end-stage kidney disease. Biomedicines, 10(4), 883. https://doi.org/10.3390/biomedicines10040883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai, M., Zhang, L., Fu, B., Bai, J., Zhang, Y., Cai, G., Bai, X., Feng, Z., Sun, S., & Chen, X. (2018). IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney International, 93(4), 814–825. https://doi.org/10.1016/j.kint.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  10. Bai, R., Yang, J., & Suo, Z. (2019). Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 74, 337–370. https://doi.org/10.1016/j.euromechsol.2018.12.001

    Article  Google Scholar 

  11. Bai, X., Xi, J., Bi, Y., Zhao, X., Bing, W., Meng, X., Liu, Y., Zhu, Z., & Song, G. (2017). TNF-α promotes survival and migration of MSCs under oxidative stress via NF-κB pathway to attenuate intimal hyperplasia in vein grafts. Journal of Cellular and Molecular Medicine, 21(9), 2077–2091. https://doi.org/10.1111/jcmm.13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bastani, B. (2020). The present and future of transplant organ shortage: Some potential remedies. Journal of Nephrology, 33(2), 277–288. https://doi.org/10.1007/s40620-019-00634-x

    Article  PubMed  Google Scholar 

  13. Bathgate, R. A. D., Hsueh, A. J. W., & Sherwood, O. D. (2006). Physiology and molecular biology of the relaxin peptide family. In Knobil and Neill’s Physiology of Reproduction (Third Edit). Elsevier Inc. https://doi.org/10.1016/B978-0-12-515400-0.50021-X

  14. Bathgate, R. A., Ivell, R., Sanborn, B. M., Sherwood, O. D., & Summers, R. J. (2006). International union of pharmacology LVII : Recommendations for the nomenclature of receptors for relaxin family peptides. 58(1), 7–31. https://doi.org/10.1124/pr.58.1.9.7

  15. Brun-buisson, C., & Mondor, C. H. U. H. (2004). The EPISEPSIS Study Group EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Medicine, 30(4), 580–588. https://doi.org/10.1007/s00134-003-2121-4

    Article  CAS  PubMed  Google Scholar 

  16. Bruno, S., Chiabotto, G., & Camussi, G. (2014). Concise review: Different mesenchymal stromal/stem cell populations reside in the adult kidney. Stem Cells Translational Medicine, 3(12), 1451–1455. https://doi.org/10.5966/sctm.2014-0142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai, J., Yu, X., Zhang, B., Zhang, H., Fang, Y., Liu, S., Liu, T., & Ding, X. (2014). Atorvastatin improves survival of implanted stem cells in a rat model of renal ischemia-reperfusion injury. American Journal of Nephrology, 39(6), 466–475. https://doi.org/10.1159/000362623

    Article  CAS  PubMed  Google Scholar 

  18. Câmara, N. O. S., Iseki, K., Kramer, H., Liu, Z. H., & Sharma, K. (2017). Kidney disease and obesity: Epidemiology, mechanisms and treatment. Nature Reviews Nephrology, 13(3), 181–190. https://doi.org/10.1038/nrneph.2016.191

    Article  PubMed  Google Scholar 

  19. Cavaglieri, R. C., Day, R. T., Feliers, D., & Abboud, H. E. (2015). Molecular and cellular endocrinology metformin prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. Molecular and Cellular Endocrinology, 412, 116–122. https://doi.org/10.1016/j.mce.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  20. Chen, H. H., Lin, K. C., Wallace, C. G., Chen, Y. T., Yang, C. C., Leu, S., Chen, Y. C., Sun, C. K., Tsai, T. H., Chen, Y. L., Chung, S. Y., Chang, C. L., & Yip, H. K. (2014). Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research, 57(1), 16–32. https://doi.org/10.1111/jpi.12140

    Article  CAS  PubMed  Google Scholar 

  21. Chen, H., Lin, K., Wallace, C. G., Yang, C., Chen, Y., Sun, K., & Tsai, T. (2014). Additional bene fi t of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. 1–17. https://doi.org/10.1111/jpi.12140

  22. Cipolleschi, M. G., Dello Sbarba, P., & Olivotto, M. (1993). The role of hypoxia in the maintenance of hematopoietic stem cells. Blood, 82(7), 2031–2037. https://doi.org/10.1182/blood.V82.7.2031.2031

    Article  CAS  PubMed  Google Scholar 

  23. Collino, F., Lopes, J. A., Corrêa, S., Abdelhay, E., Takiya, C. M., Wendt, C. H. C., De Miranda, K. R., Vieyra, A., & Lindoso, R. S. (2019). Adipose-derived mesenchymal stromal cells under hypoxia: Changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cellular Physiology and Biochemistry, 52(6), 1463–1483. https://doi.org/10.33594/000000102

    Article  CAS  PubMed  Google Scholar 

  24. Conard, K. P., von Versen- Hoynck, F., & Baker, V. L. (2022). Potential role of the corpus luteum in maternal cardiovascular adaptation to pregnancy and preeclampsia risk. The American Journal of Obstetrics & Gynecology, 226(5), 683–699. https://doi.org/10.1016/j.ajog.2021.08.018

    Article  Google Scholar 

  25. Das, R., Jahr, H., Van Osch, G. J. V. M., & Farrell, E. (2010). The role of hypoxia in bone marrow – derived mesenchymal stem cells: Considerations. Tissue Engineering. Part B, Reviews, 16(2), 159–168. https://doi.org/10.1089/ten.TEB.2009.0296

    Article  CAS  PubMed  Google Scholar 

  26. Davies, M. J., Alessio, D. A. D., Fradkin, J., Kernan, W. N., Mathieu, C., & Mingrone, G. (2018). Management of Hyperglycemia in Type 2 Diabetes , 2018 . A Consensus Report by the American Diabetes Association ( ADA ) and the European Association for the Study of Diabetes ( EASD ). Diabetes Care, 41(December), 2669–2701. https://doi.org/10.2337/dci18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Almeida, D. C., Donizetti-Oliveira, C., Barbosa-Costa, P., Origassa, C. S., & Câmara, N. O. (2013). In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. The Clinical Biochemist. Reviews, 34(3), 131–144.

    PubMed  PubMed Central  Google Scholar 

  28. Deng, L., Li, H., Su, X., Zhang, Y., Xu, H., Fan, L., Fan, J., Han, Q., Bai, X., & Zhao, R. C. (2020). Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death and Disease, 11(3). https://doi.org/10.1038/s41419-020-2357-8

  29. Donate-Correa, J., Luis-Rodríguez, D., Martín-Núñez, E., Tagua, V. G., Hernández-Carballo, C., Ferri, C., Rodríguez-Rodríguez, A. E., Mora-Fernández, C., & Navarro-González, J. F. (2020). Inflammatory targets in diabetic nephropathy. Journal of Clinical Medicine, 9(2), 458. https://doi.org/10.3390/jcm9020458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubocovich, M. L., & Markowska, M. (2005). Functional MT 1 and MT 2 melatonin receptors in mammals. Endocrine, 27(2), 101–110.

    Article  CAS  PubMed  Google Scholar 

  31. English, P. B. (1974). Acute renal failure in the dog and cat. Australian Veterinary Journal, 50(9), 384–392. https://doi.org/10.1111/j.1751-0813.1974.tb05343.x

    Article  CAS  PubMed  Google Scholar 

  32. Fabrizi, F., Cerutti, R., & Ridruejo, E. (2019). Hepatitis B virus infection as a risk factor for chronic kidney disease. Expert Review of Clinical Pharmacology, 12(9), 867–874. https://doi.org/10.1080/17512433.2019.1657828

    Article  CAS  PubMed  Google Scholar 

  33. Fadini, G. P., Ciciliot, S., & Albiero, M. (2017). Concise review: Perspectives and clinical implications of bone marrow and circulating stem cell defects in diabetes. Stem Cells, 35(1), 106–116. https://doi.org/10.1002/stem.2445

    Article  PubMed  Google Scholar 

  34. Fan, M., Zhang, J., Xin, H., He, X., & Zhang, X. (2018). Current perspectives on role of MSC in renal pathophysiology. Frontiers in Physiology, 9(SEP), 1–8. https://doi.org/10.3389/fphys.2018.01323

    Article  Google Scholar 

  35. Feng, G., Zhang, J., Li, Y., Nie, Y., Zhu, D., Wang, R., Liu, J., Gao, J., Liu, N., He, N., Du, W., Tao, H., Che, Y., Xu, Y., Kong, D., Zhao, Q., & Li, Z. (2016). IGF-1 C domain-modified hydrogel enhances cell therapy for AKI. Journal of the American Society of Nephrology, 27(8), 2357–2369. https://doi.org/10.1681/ASN.2015050578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C., & De Boer, J. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends in Biotechnology, 31(2), 108–115. https://doi.org/10.1016/j.tibtech.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  37. Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Review metformin: From mechanisms of action to therapies. Cell Metabolism, 20(6), 953–966. https://doi.org/10.1016/j.cmet.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  38. Freyman, T., Polin, G., Osman, H., Crary, J., Lu, M. M., Cheng, L., Palasis, M., & Wilensky, R. L. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27(9), 1114–1122. https://doi.org/10.1093/eurheartj/ehi818

    Article  PubMed  Google Scholar 

  39. Fu, Z., Chu, Y., Geng, X., Ma, Y., Chi, K., Song, C., Liao, S., Hong, Q., Wu, D., & Wang, Y. (2022). Artificial kidney capsule packed with mesenchymal stem cell-laden hydrogel for the treatment of rhabdomyolysis-induced acute kidney injury. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.1c01595

    Article  Google Scholar 

  40. Fu, H., Liu, S., Bastacky, S. I., Wang, X., Tian, X. J., & Zhou, D. (2019). Diabetic kidney diseases revisited: A new perspective for a new era. Molecular Metabolism, 30(October), 250–263. https://doi.org/10.1016/j.molmet.2019.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galano, A., Tan, D. X., & Reiter, R. J. (2011). Melatonin as a natural ally against oxidative stress: A physicochemical examination. Journal of Pineal Research, 51(1), 1–16. https://doi.org/10.1111/j.1600-079X.2011.00916.x

    Article  CAS  PubMed  Google Scholar 

  42. Gao, Z., Zhang, C., Peng, F., Chen, Q., Zhao, Y., Chen, L., Wang, X., & Chen, X. (2022). Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia–reperfusion injure by restoring CPT1A mediated fatty acid oxidation. Stem Cell Research and Therapy, 13(1), 1–15. https://doi.org/10.1186/s13287-022-02861-9

    Article  CAS  Google Scholar 

  43. Geng, X., Hong, Q., Wang, W., Zheng, W., Li, O., Cai, G., Chen, X., & Wu, D. (2017). Biological membrane-packed mesenchymal stem cells treat acute kidney disease by ameliorating mitochondrial-related apoptosis. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/srep41136

    Article  CAS  Google Scholar 

  44. Guo, Q., & Wang, J. (2018). Effect of combination of vitamin E and umbilical cord-derived mesenchymal stem cells on inflammation in mice with acute kidney injury. Immunopharmacology and Immunotoxicology, 40(2), 168–172. https://doi.org/10.1080/08923973.2018.1424898

    Article  CAS  PubMed  Google Scholar 

  45. Han, D., Huang, W., Li, X., Gao, L., Su, T., Li, X., Ma, S., Liu, T., Li, C., Chen, J., Gao, E., & Cao, F. (2016). Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. Journal of Pineal Research, 60(2), 178–192. https://doi.org/10.1111/jpi.12299

    Article  CAS  PubMed  Google Scholar 

  46. Han, D. S., Erickson, C., Hansen, K. C., Kirkbride-Romeo, L., He, Z., Rodell, C. B., & Soranno, D. E. (2023). Mesenchymal stem cells delivered locally to ischemia-reperfused kidneys via injectable hyaluronic acid hydrogels decrease extracellular matrix remodeling 1 month after injury in male mice. Cells, 12(13), 1771. https://doi.org/10.3390/cells12131771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, X., Yang, Q., Lin, L., Xu, C., Zheng, C., Chen, X., Han, Y., Li, M., Cao, W., Cao, K., Chen, Q., Xu, G., Zhang, Y., Zhang, J., Schneider, R. J., Qian, Y., Wang, Y., Brewer, G., & Shi, Y. (2014). Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death and Differentiation, 21(11), 1758–1768. https://doi.org/10.1038/cdd.2014.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han, Y. S., Kim, S. M., Lee, J. H., & Lee, S. H. (2018). Co-administration of melatonin effectively enhances the therapeutic effects of pioglitazone on mesenchymal stem cells undergoing indoxyl sulfate-induced senescence through modulation of cellular prion protein expression. International Journal of Molecular Sciences, 19(5), 1–15. https://doi.org/10.3390/ijms19051367

    Article  CAS  Google Scholar 

  49. Heo, S. C., Jeon, E. S., Lee, I. H., Kim, H. S., Kim, M. B., & Kim, J. H. (2011). Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. Journal of Investigative Dermatology, 131(7), 1559–1567. https://doi.org/10.1038/jid.2011.64

    Article  CAS  PubMed  Google Scholar 

  50. Hu, Q., Zhu, B., Yang, G., Jia, J., Wang, H., Tan, R., Zhang, Q., Wang, L., & Kantawong, F. (2023). Calycosin pretreatment enhanced the therapeutic efficacy of mesenchymal stem cells to alleviate unilateral ureteral obstruction-induced renal fibrosis by inhibiting necroptosis. Journal of Pharmacological Sciences, 151(2), 72–83. https://doi.org/10.1016/j.jphs.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  51. Huang, S., Li, Y., Wang, X., Ma, X., & Zhang, X. (2017). Injectable co-gels of collagen and decellularized vascular matrix improve MSC-based therapy for acute kidney injury. Journal of Biomaterials Science, Polymer Edition, 28(18), 2186–2195. https://doi.org/10.1080/09205063.2017.1388556

    Article  CAS  PubMed  Google Scholar 

  52. Hung, S. C., Pochampally, R. R., Hsu, S. C., Sanchez, C. C., Chen, S. C., Spees, J., & Prockop, D. J. (2007). Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE, 2(5), e416. https://doi.org/10.1371/journal.pone.0000416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huuskes, B. M., Wise, A. F., Cox, A. J., Lim, E. X., Payne, N. L., Kelly, D. J., Samuel, C. S., & Ricardo, S. D. (2014). Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fi brosis in obstructive nephropathy. 1–14. https://doi.org/10.1096/fj.14-254789

  54. Ishiuchi, N., Nakashima, A., Doi, S., Yoshida, K., Maeda, S., Kanai, R., Yamada, Y., Ike, T., Doi, T., Kato, Y., & Masaki, T. (2020). Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Research and Therapy, 11(1), 1–15. https://doi.org/10.1186/s13287-020-01642-6

    Article  CAS  Google Scholar 

  55. Jang, M. J., You, D., Park, J. Y., Kim, K., Aum, J., Lee, C., Song, G., Shin, H. C., Suh, N., Kim, Y. M., & Kim, C. S. (2018). Hypoxic preconditioned mesenchymal stromal cell therapy in a rat model of renal ischemia-reperfusion injury: Development of optimal protocol to potentiate therapeutic efficacy. International Journal of Stem Cells, 11(2), 157–167. https://doi.org/10.15283/ijsc18073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jun, J. H., Jun, N. H., Shim, J. K., Shin, E. J., & Kwak, Y. L. (2014). Erythropoietin protects myocardium against ischemia – reperfusion injury under moderate hyperglycemia. European Journal of Pharmacology, 745, 1–9. https://doi.org/10.1016/j.ejphar.2014.09.038

    Article  CAS  PubMed  Google Scholar 

  57. Junk, A. K., Mammis, A., Savitz, S. I., Singh, M., Roth, S., Malhotra, S., Rosenbaum, P. S., Cerami, A., Brines, M., & Rosenbaum, D. M. (2002). Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10659–10664. https://doi.org/10.1073/pnas.152321399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaçmaz, A., User, E. Y., Şehirli, A. Ö., Tilki, M., Ozkan, S., & Şener, G. (2005). Protective effect of melatonin against ischemia/reperfusion-induced oxidative remote organ injury in the rat. Surgery Today, 35(9), 744–750. https://doi.org/10.1007/s00595-005-3027-2

    Article  CAS  PubMed  Google Scholar 

  59. Kanai, R., Nakashima, A., Doi, S., Kimura, T., Yoshida, K., Maeda, S., Ishiuchi, N., Yamada, Y., Ike, T., Doi, T., Kato, Y., & Masaki, T. (2021). Interferon-γ enhances the therapeutic effect of mesenchymal stem cells on experimental renal fibrosis. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-020-79664-6

    Article  CAS  Google Scholar 

  60. Khubutiya, M. S., Vagabov, A. V., Temnov, A. A., & Sklifas, A. N. (2014). Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models ofacute organ injury. Cytotherapy, 16(5), 579–585. https://doi.org/10.1016/j.jcyt.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  61. Kim, H., Yu, M. R., Lee, H., Kwon, S. H., Jeon, J. S., Han, D. C., & Noh, H. (2021). Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell, 20(2), 1–12. https://doi.org/10.1111/acel.13317

    Article  CAS  Google Scholar 

  62. Kovesdy, C. P., Furth, S. L., & Zoccali, C. (2017). Obesity and kidney disease: Hidden consequences of the epidemic. Journal of Nephrology, 30(1), 1–10. https://doi.org/10.1007/s40620-017-0377-y

    Article  PubMed  Google Scholar 

  63. Kramann, R., & Humphreys, B. D. (2014). Kidney pericytes: Roles in regeneration and fibrosis. Seminars in Nephrology, 34(4), 374–383. https://doi.org/10.1016/j.semnephrol.2014.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwon, S., Kim, Y. C., Park, J. Y., Lee, J., An, J. N., Kim, C. T., Oh, S., Park, S., & Kim, D. K. (2020). The long-term effects of metformin on patients with type 2 diabetic kidney disease. Diabetes Care, 43(May), 948–955. https://doi.org/10.2337/dc19-0936

    Article  CAS  PubMed  Google Scholar 

  65. Kwon, Y. W., Heo, S. C., Jeong, G. O., Yoon, J. W., Mo, W. M., Lee, M. J., Jang, I. H., Kwon, S. M., Lee, J. S., & Kim, J. H. (2013). Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1832(12), 2136–2144. https://doi.org/10.1016/j.bbadis.2013.08.002

    Article  CAS  Google Scholar 

  66. Lee, J. H., Han, Y., & Lee, S. H. (2017). Potentiation of biological effects of mesenchymal stem cells in ischemic conditions by melatonin via upregulation of cellular prion protein expression. 0–2. https://doi.org/10.1111/ijlh.12426

  67. Levin, A., Tonelli, M., Bonventre, J., Coresh, J., Donner, J. A., Fogo, A. B., Fox, C. S., Gansevoort, R. T., Heerspink, H. J. L., Jardine, M., Kasiske, B., Köttgen, A., Kretzler, M., Levey, A. S., Luyckx, V. A., Mehta, R., Moe, O., Obrador, G., Pannu, N., … Yang, C. W. (2017). Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. The Lancet, 390(10105), 1888–1917. https://doi.org/10.1016/S0140-6736(17)30788-2

  68. Li, H., Lu, W., Wang, A., Jiang, H., & Lyu, J. (2021). Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: Estimates from Global Burden of Disease 2017. Journal of Diabetes Investigation, 12(3), 346–356. https://doi.org/10.1111/jdi.13355

    Article  PubMed  Google Scholar 

  69. Li, Y., Shen, M., Ferens, D., Broughton, B. R. S., Murthi, P., Saini, S., Widdop, R. E., Ricardo, S. D., Pinar, A. A., & Samuel, C. S. (2021). Combining mesenchymal stem cells with serelaxin provides enhanced renoprotection against 1K/DOCA/salt-induced hypertension. British Journal of Pharmacology, 178(5), 1164–1181. https://doi.org/10.1111/bph.15361

    Article  CAS  PubMed  Google Scholar 

  70. Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplantation, 23(9), 1045–1059. https://doi.org/10.3727/096368913X667709

    Article  PubMed  Google Scholar 

  71. Liu, H., Liu, S., Li, Y., Wang, X., Xue, W., Ge, G., & Luo, X. (2012). The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PloS One, 7(4), e34608. https://doi.org/10.1371/journal.pone.0034608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, H., Xue, W., Ge, G., Luo, X., Li, Y., Xiang, H., Ding, X., Tian, P., & Tian, X. (2010). Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochemical and Biophysical Research Communications, 401(4), 509–515. https://doi.org/10.1016/j.bbrc.2010.09.076

    Article  CAS  PubMed  Google Scholar 

  73. Liu, P., Feng, Y., Dong, C., Liu, D., Wu, X., Wu, H., Lv, P., & Zhou, Y. (2013). Study on therapeutic action of bone marrow derived mesenchymal stem cell combined with vitamin e against acute kidney injury in rats. Life Sciences, 92(14–16), 829–837. https://doi.org/10.1016/j.lfs.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  74. Mias, C., Trouche, E., Seguelas, M.-H., Calcagno, F., Dignat-George, F., Sabatier, F., Piercecchi-Marti, M.-D., Daniel, L., Bianchi, P., Calise, D., Bourin, P., Parini, A., & Cussac, D. (2008). Ex Vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells, 26(7), 1749–1757. https://doi.org/10.1634/stemcells.2007-1000

    Article  CAS  PubMed  Google Scholar 

  75. Morales, A. I., Detaille, D., Prieto, M., Puente, A., Briones, E., Are, M., Lo, M., & Leverve, X. (2010). Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney International, 77(10), 861–869. https://doi.org/10.1038/ki.2010.11

    Article  CAS  PubMed  Google Scholar 

  76. Najafi, H., Abolmaali, S. S., Heidari, R., Valizadeh, H., Tamaddon, A. M., & Azarpira, N. (2022). Integrin receptor-binding nanofibrous peptide hydrogel for combined mesenchymal stem cell therapy and nitric oxide delivery in renal ischemia/reperfusion injury. Stem Cell Research and Therapy, 13(1), 1–17. https://doi.org/10.1186/s13287-022-03045-1

    Article  CAS  Google Scholar 

  77. Nakao, Y., Fukuda, T., Zhang, Q., Sanui, T., Shinjo, T., Kou, X., Chen, C., Liu, D., Watanabe, Y., Hayashi, C., Yamato, H., Yotsumoto, K., Tanaka, U., Taketomi, T., Uchiumi, T., Le, A. D., Shi, S., & Nishimura, F. (2021). Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomaterialia, 122, 306–324. https://doi.org/10.1016/j.actbio.2020.12.046

    Article  CAS  PubMed  Google Scholar 

  78. Neven, E., Vervaet, B., Brand, K., Gottwald-Hostalek, U., Opdebeeck, B., De Maré, A., ... & D’Haese, P. C. (2018). Metformin prevents the development of severe chronic kidney disease and its associated mineral and bone disorder. Kidney International, 94(1), 102–113. https://doi.org/10.1016/j.kint.2018.01.027

  79. Noh, H., Yu, M. R., Kim, H. J., Jeon, J. S., Kwon, S. H., Jin, S. Y., Lee, J., Jang, J., Park, J. O., Ziyadeh, F., Han, D. C., & Lee, H. B. (2012). Uremia induces functional incompetence of bone marrow-derived stromal cells. Nephrology Dialysis Transplantation, 27(1), 218–225. https://doi.org/10.1093/ndt/gfr267

    Article  CAS  Google Scholar 

  80. Mishin, V. M., Rosman, A. S., Basu, P., Kessova, I., Oneta, C. M., & Lieber, C. S. (1998). Chlorzoxazone pharmacokinetics as a marker of hepatic cytochrome P4502E1 in humans. The American Journal of Gastroenterology93(11), 2154–2161. https://doi.org/10.1111/j.1572-0241.1998.00612.x

  81. Overath, J. M., Gauer, S., Obermüller, N., Schubert, R., Schäfer, R., Geiger, H., & Baer, P. C. (2016). Short-term preconditioning enhances the therapeutic potential of adipose-derived stromal/stem cell-conditioned medium in cisplatin-induced acute kidney injury. Experimental Cell Research, 342(2), 175–183. https://doi.org/10.1016/j.yexcr.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  82. Park, H., Li, Z., Yang, X. O., Chang, S. H., Nurieva, R., Wang, Y. H., Wang, Y., Hood, L., Zhu, Z., Tian, Q., & Dong, C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology, 6(11), 1133–1141. https://doi.org/10.1038/ni1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. Npj Regenerative Medicine, 4(1). https://doi.org/10.1038/s41536-019-0083-6

  84. Putra, A., Pertiwi, D., Milla, M. N., Indrayani, U. D., Jannah, D., Sahariyani, M., Trisnadi, S., & Wibowo, J. W. (2019). Hypoxia-preconditioned MSCs have superior effect in ameliorating renal function on acute renal failure animal model. Open Access Macedonian Journal of Medical Sciences, 7(3), 305–310. https://doi.org/10.3889/oamjms.2019.049

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qu, Z., Xu, H., Tian, Y., & Jiang, X. (2013). Atorvastatin improves microenvironment to enhance the beneficial effects of BMSCS therapy in a rabbit model of acute myocardial infarction. Cellular Physiology and Biochemistry, 32(2), 380–389. https://doi.org/10.1159/000354445

    Article  CAS  PubMed  Google Scholar 

  86. Rahman, M., Shad, F., & Smith, M. C. (2012). Acute kidney injury: A guide to diagnosis and management. American Family Physician, 86(7), 631–639.

    PubMed  Google Scholar 

  87. Rashed, L. A., Elattar, S., Eltablawy, N., Ashour, H., Mahmoud, L. M., & El-Esawy, Y. (2018). Mesenchymal stem cells pretreated with melatonin ameliorate kidney functions in a rat model of diabetic nephropathy. Biochemistry and Cell Biology, 96(5), 564–571. https://doi.org/10.1139/bcb-2017-0230

    Article  CAS  PubMed  Google Scholar 

  88. Reiter, R. J. (1991). Melatonin: The chemical expression of darkness. Molecular and Cellular Endocrinology, 79(1–3), C153–C158. https://doi.org/10.1016/0303-7207(91)90087-9

    Article  CAS  PubMed  Google Scholar 

  89. Reiter, R. J., Tan, D.-X., Poeggeler, B., Menendez-Pelaez, A., Chen, L.-D., & Saarela, S. (1994). Melatonin as a free radical scavenger: Implications for aging and age-related diseases. Annals of the New York Academy of Sciences, 719(1), 1–12. https://doi.org/10.1111/j.1749-6632.1994.tb56817.x

    Article  CAS  PubMed  Google Scholar 

  90. Reiter, R. J., Tan, D. X., & Lorena, F. B. (2010). Melatonin: A multitasking molecule. In Progress in Brain Research (First edit, Vol. 181, Issue C). Elsevier. https://doi.org/10.1016/S0079-6123(08)81008-4

  91. Rochefort, G. Y., Delorme, B., Lopez, A., Hérault, O., Bonnet, P., Charbord, P., Eder, V., & Domenech, J. (2006). Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells, 24(10), 2202–2208. https://doi.org/10.1634/stemcells.2006-0164

    Article  CAS  PubMed  Google Scholar 

  92. Rota, C., Morigi, M., & Imberti, B. (2019). Stem cell therapies in kidney diseases: Progress and challenges. International Journal of Molecular Sciences, 20(11). https://doi.org/10.3390/ijms20112790

  93. Ryu, N. E., Lee, S. H., & Park, H. (2019). Spheroid culture system methods and applications for mesenchymal stem cells. Cells, 8(12), 1–13. https://doi.org/10.3390/cells8121620

    Article  CAS  Google Scholar 

  94. Saberi, K., Pasbakhsh, P., Omidi, A., Borhani-Haghighi, M., Nekoonam, S., Omidi, N., Ghasemi, S., & Kashani, I. R. (2019). Melatonin preconditioning of bone marrow-derived mesenchymal stem cells promotes their engraftment and improves renal regeneration in a rat model of chronic kidney disease. Journal of Molecular Histology, 50(2), 129–140. https://doi.org/10.1007/s10735-019-09812-4

    Article  CAS  PubMed  Google Scholar 

  95. Salehipour, M., Monabbati, A., Salahi, H., Nikeghbalian, S., Bahador, A., Marvasti, V. E., Rezaei, H., Kazemi, K., Dehghani, M., Mohammadian, R., & Malek-Hosseini, S. A. (2010). Protective effect of parenteral vitamin E on ischemia-reperfusion injury of rabbit kidney. Urology, 75(4), 858–861. https://doi.org/10.1016/j.urology.2009.04.062

    Article  PubMed  Google Scholar 

  96. Samuel, C. S., & Hewitson, T. D. (2006). Relaxin in cardiovascular and renal disease. Kidney International, 69(9), 1498–1502. https://doi.org/10.1038/sj.ki.5000264

    Article  CAS  PubMed  Google Scholar 

  97. Samuel, C. S., & Hewitson, T. D. (2009). Relaxin and the progression of kidney disease. https://doi.org/10.1097/MNH.0b013e32831b7096

  98. Satriano, J. (2013). Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. 305(5), F727–F733. https://doi.org/10.1152/ajprenal.00293.2013

  99. Silva, L. H. A., Antunes, M. A., Dos Santos, C. C., Weiss, D. J., Cruz, F. F., & Rocco, P. R. M. (2018). Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Research and Therapy, 9(1), 1–9. https://doi.org/10.1186/s13287-018-0802-8

    Article  CAS  Google Scholar 

  100. Sivanathan, K. N., Rojas-Canales, D. M., Hope, C. M., Krishnan, R., Carroll, R. P., Gronthos, S., Grey, S. T., & Coates, P. T. (2015). Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function. Stem Cells, 33(9), 2850–2863. https://doi.org/10.1002/stem.2075

    Article  CAS  PubMed  Google Scholar 

  101. Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S., & Slominski, A. T. (2013). Melatonin membrane receptors in peripheral tissues: Distribution and functions. 351(2), 152–166. https://doi.org/10.1016/j.mce.2012.01.004.Melatonin

  102. Susantitaphong, P., Cruz, D. N., Cerda, J., Abulfaraj, M., Alqahtani, F., Koulouridis, I., & Jaber, B. L. (2013). World incidence of AKI: A meta-analysis. Clinical Journal of the American Society of Nephrology, 8(9), 1482–1493. https://doi.org/10.2215/CJN.00710113

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tollabi, M., Ghasemzadeh, N., & Dehghani Firoozabadi, A. (2022). Potential therapeutic effect of TLR4-primed mesenchymal stem cells in lessening kidney damages in rat model of diabetic nephropathy. International Journal of Medical Laboratory, 9(3), 169–186. https://doi.org/10.18502/ijml.v9i3.10903

    Article  CAS  Google Scholar 

  104. Tseng, W. C., Lee, P. Y., Tsai, M. T., Chang, F. P., Chen, N. J., Chien, C. T., Hung, S. C., & Tarng, D. C. (2021). Hypoxic mesenchymal stem cells ameliorate acute kidney ischemia-reperfusion injury via enhancing renal tubular autophagy. Stem Cell Research and Therapy, 12(1), 1–22. https://doi.org/10.1186/s13287-021-02374-x

    Article  CAS  Google Scholar 

  105. Wang, H., Shang, Y., Chen, X., Wang, Z., Zhu, D., Liu, Y., Zhang, C., Chen, P., Wu, J., Wu, L., Kong, D., Yang, Z., Li, Z., & Chen, X. (2020). Delivery of mscs with a hybrid β-sheet peptide hydrogel consisting igf-1c domain and d-form peptide for acute kidney injury therapy. International Journal of Nanomedicine, 15, 4311–4324. https://doi.org/10.2147/IJN.S254635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wechsler, M. E., Rao, V. V., Borelli, A. N., & Anseth, K. S. (2021). Engineering the MSC secretome: A hydrogel focused approach. Advanced Healthcare Materials, 10(7), 1–17. https://doi.org/10.1002/adhm.202001948

    Article  CAS  Google Scholar 

  107. Xu, Y., Shi, T., Xu, A., & Zhang, L. (2016). 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney. Journal of Cellular and Molecular Medicine, 20(7), 1203–1213. https://doi.org/10.1111/jcmm.12651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, W., Chen, L., Jhuang, Y., Lin, Y., Hsu, L., Ko, P. H. Y., Lee, M. T. Y., Hsu, C. Y. H., & Huang, C. (2021). Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioengineering & Translational Medicine, November 2020, 1–12. https://doi.org/10.1002/btm2.10212

    Article  CAS  Google Scholar 

  109. Yap, J. X., Leo, C. P., Mohd Yasin, N. H., Show, P. L., Chu, D. T., Singh, V., & Derek, C. J. C. (2022). Recent advances of natural biopolymeric culture scaffold: Synthesis and modification. Bioengineered, 13(2), 2226–2247. https://doi.org/10.1080/21655979.2021.2024322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yin, J., Guo, J., Zhang, Q., Cui, L., Zhang, L., & Peng, S. (2018). Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicology in Vitro, 51, 1–10. https://doi.org/10.1016/j.tiv.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  111. Yu, X., Lu, C., Liu, H., Rao, S., Cai, J., Liu, S., Kriegel, A. J., Greene, A. S., Liang, M., & Ding, X. (2013). Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS ONE, 8(5), e62703. https://doi.org/10.1371/journal.pone.0062703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yun, S. P., Han, Y. S., Lee, J. H., Kim, S. M., & Lee, S. H. (2018). Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-cresol via inhibiting mTOR-dependent autophagy. Biomolecules and Therapeutics, 26(4), 389–398. https://doi.org/10.4062/biomolther.2017.071

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, M., Methot, D., Poppa, V., Fujio, Y., Walsh, K., & Murry, C. E. (2001). Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. Journal of Molecular and Cellular Cardiology, 33(5), 907–921. https://doi.org/10.1006/jmcc.2001.1367

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, W., Liu, L., Huo, Y., Yang, Y., & Wang, Y. (2014). Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. BioMed Research International, 2014. https://doi.org/10.1155/2014/462472

  115. Zhao, J., Young, Y. K., Fradette, J., & Eliopoulos, N. (2023). Melatonin pretreatment of human adipose tissue-derived mesenchymal stromal cells enhances their prosurvival and protective effects on human kidney cells. 8, 1474–1483. https://doi.org/10.1152/ajprenal.00512.2014

  116. Zhao, L., Hu, C., Zhang, P., Jiang, H., & Chen, J. (2019). Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. Journal of Cellular and Molecular Medicine, 23(2), 720–730. https://doi.org/10.1111/jcmm.14035

    Article  PubMed  Google Scholar 

  117. Zhao, Y., Song, S., Wang, D., Liu, H., Zhang, J., Li, Z., Wang, J., Ren, X., & Zhao, Y. (2022). Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nature Communications, 13(1), 1–14. https://doi.org/10.1038/s41467-022-34481-5

    Article  CAS  Google Scholar 

  118. Zhou, C., Zhou, L., Liu, J., Xu, L., Xu, Z., Chen, Z., Ge, Y., Zhao, F., Wu, R., Wang, X., Jiang, N., Mao, L., & Jia, R. (2020). Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury. Acta Biomaterialia, 115, 250–263. https://doi.org/10.1016/j.actbio.2020.07.056

    Article  CAS  PubMed  Google Scholar 

  119. Zhou, S., Liu, Y.-G., Zhang, Y., Hu, J.-M., Liu, D., Chen, H., Li, M., Guo, Y., Fan, L.-P., Li, L. Y., & Zhao, M. (2018). Bone mesenchymal stem cells pretreated with erythropoietin enhance the effect to ameliorate cyclosporine A-induced nephrotoxicity in rats. Journal of Cellular Biochemistry, 119(10), 8220–8232. https://doi.org/10.1002/jcb.26833

    Article  CAS  PubMed  Google Scholar 

  120. Zhou, S., Qiao, Y., Liu, Y., Liu, D., Hu, J., Liao, J., Li, M., Guo, Y., Fan, L., Li, L.-Y., & Zhao, M. (2020). Bone marrow derived mesenchymal stem cells pretreated with erythropoietin accelerate the repair of acute kidney injury. Cell & Bioscience, 10(1), 1–12. https://doi.org/10.1186/s13578-020-00492-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Figure 1 and graphical abstract figure created with BioRender.com.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AR contributed to design of the manuscript, critical evaluation of various drafts, DM contributed to design of figures, DM, DG, VM have made substantial contributions to accumulation of the data, the drafting of the manuscript and its critical revision for important intellectual content and the final approval of the version to be submitted and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Aruna Rakha.

Ethics declarations

Ethical Approval

Not Applicable.

Consent To Participate

Not Applicable.

Consent To Publish

All authors consent to publication of the present manuscript.

Competing Interests

The authors declare that they have no competing interests.

Conflict of Interest

The authors listed in the manuscript have no conflict-of-interest w.r.t financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkar, D., Gakhar, D., Mishra, V. et al. Fine Tuning Mesenchymal Stromal Cells – Code For Mitigating Kidney Diseases. Stem Cell Rev and Rep 20, 738–754 (2024). https://doi.org/10.1007/s12015-024-10684-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-024-10684-9

Keywords

Navigation