Skip to main content

Advertisement

Log in

Preclinical Research of Stem Cells: Challenges and Progress

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In recent years, great breakthroughs have been made in basic research and clinical applications of stem cells in regenerative medicine and other fields, which continue to inspire people to explore the field of stem cells. With nearly unlimited self-renewal ability, stem cells can generate at least one type of highly differentiated daughter cell, which provides broad development prospects for the treatment of human organ damage and other diseases. In the field of stem cell research, related technologies for inducing or isolating stem cells are relatively mature, and a variety of stable stem cell lines have been successfully constructed. To realize the full clinical application of stem cells as soon as possible, it is more and more important to further optimize each stage of stem cell research while conforming to Current Good Manufacture Practices (cGMP) standards. Here, we synthesized recent developments in stem cell research and focus on the introduction of xenogenicity in the preclinical research process and the remaining problems of various cell bioreactors. Our goal is to promote the development of technologies for xeno-free culture and clinical expansion of stem cells through in-depth discussion of current research. This review will provide new insight into stem cell research protocols and will contribute to the creation of efficient and stable stem cell expansion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable, no data were generated in the study.

Abbreviations

cGMP:

Current Good Manufacture Practices

ESC:

Embryonic stem cell

iPSC:

Induced pluripotent stem cell

CFD:

Computational Fluid Dynamics

hiPSCs:

Human Induced Pluripotent Stem Cells

hESCs:

Human Embryonic Stem Cells

HA-HS:

Hyaluronic acid

UCs:

Urine-derived cells

bFGF:

Basic Fibroblast Growth Factor

miPSCs:

Mouse Induced pluripotent stem cell

HBEPs:

Human breast epithelial progenitors

DE:

Definitive endoderm

HMC:

Hollow microcarrier

MSC:

Mesenchymal Stem Cell

References

  1. Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020 Feb). Advances in pluripotent stem cells: History, Mechanisms, Technologies, and applications. Stem Cell Rev Rep, 16(1), 3–32. https://doi.org/10.1007/s12015-019-09935-x

  2. Mahla, R. S. (2016). Stem cells applications in Regenerative Medicine and Disease therapeutics. Int J Cell Biol. https://doi.org/10.1155/2016/6940283

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wagers, A. J. (2012). The stem cell niche in regenerative medicine. Cell Stem Cell. https://doi.org/10.1016/j.stem.2012.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dutta, D., Heo, I., & Clevers, H. (2017). Disease modeling in stem cell-derived 3D Organoid Systems. Trends In Molecular Medicine. https://doi.org/10.1016/j.molmed.2017.02.007

    Article  PubMed  Google Scholar 

  5. Bai, X. (2020). Stem cell-based Disease modeling and cell therapy. Cells. https://doi.org/10.3390/cells9102193

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ebert, A. D., & Svendsen, C. N. (2010). Human stem cells and drug screening: Opportunities and challenges. Nature Reviews. Drug Discovery. https://doi.org/10.1038/nrd3000

    Article  PubMed  Google Scholar 

  7. McCauley, H. A., & Wells, J. M. (2017). Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish. Development. https://doi.org/10.1242/dev.140731

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu, J., Jones, K. L., Sumer, H., & Verma, P. J. (2009). Stable transgene expression in human embryonic stem cells after simple chemical transfection. Molecular Reproduction And Development. https://doi.org/10.1002/mrd.20983

    Article  PubMed  Google Scholar 

  9. Baek, K., Tu, C., Zoldan, J., et al. (2016). Gene transfection for stem cell therapy. Current Stem Cell Reports. https://doi.org/10.1007/s40778-016-0029-5

    Article  Google Scholar 

  10. Branski, L. K., Gauglitz, G. G., Herndon, D. N., & Jeschke, M. G. (2009). A review of gene and stem cell therapy in cutaneous wound healing. Burns : Journal Of The International Society For Burn Injuries. https://doi.org/10.1016/j.burns.2008.03.009

    Article  PubMed  Google Scholar 

  11. Sui, B., Wu, D., Xiang, L., Fu, Y., Kou, X., & Shi, S. (2020). Dental Pulp Stem cells: From Discovery to Clinical Application. Journal Of Endodontics. https://doi.org/10.1016/j.joen.2020.06.027

    Article  PubMed  Google Scholar 

  12. Lyra, A. C., Soares, M. B., dos Santos, R. R., & Lyra, L. G. (2007). Bone marrow stem cells and liver disease.Gut.

  13. Miura, Y. (2016). Human bone marrow mesenchymal stromal/stem cells: Current clinical applications and potential for hematology. International Journal Of Hematology. https://doi.org/10.1007/s12185-015-1920-z

    Article  PubMed  Google Scholar 

  14. Sessarego, N., Parodi, A., Podestà, M., Benvenuto, F., Mogni, M., Raviolo, V., Lituania, M., Kunkl, A., Ferlazzo, G., Bricarelli, F. D., Uccelli, A., & Frassoni, F. (2008). Multipotent mesenchymal stromal cells from amniotic fluid: Solid perspectives for clinical application. Haematologica. https://doi.org/10.3324/haematol.11869

    Article  PubMed  Google Scholar 

  15. Hauser, P. V., De Fazio, R., Bruno, S., Sdei, S., Grange, C., Bussolati, B., Benedetto, C., & Camussi, G. (2010). Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. American Journal Of Pathology. https://doi.org/10.2353/ajpath.2010.091245

    Article  PubMed  PubMed Central  Google Scholar 

  16. Takagi, Y. (2016). History of neural stem cell research and its clinical application. Neurol Med Chir (Tokyo). https://doi.org/10.2176/nmc.ra.2015-0340

    Article  PubMed  Google Scholar 

  17. Aggarwal, R., Lu, J., Pompili, V. J., & Das, H. (2012). Hematopoietic stem cells: Transcriptional regulation, ex vivo expansion and clinical application. Current Molecular Medicine. https://doi.org/10.2174/156652412798376125

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das, A. V., Bhattacharya, S., Zhao, X., Hegde, G., Mallya, K., Eudy, J. D., & Ahmad, I. (2008). The canonical wnt pathway regulates retinal stem cells/progenitors in concert with notch signaling. Developmental Neuroscience. https://doi.org/10.1159/000178017

    Article  PubMed  Google Scholar 

  19. Yang, R., Wang, J., Chen, X., Shi, Y., & Xie, J. (2020). Epidermal stem cells in Wound Healing and Regeneration. Stem Cells Int. https://doi.org/10.1155/2020/9148310

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang, F. X., & Morahan, G. (2014). Pancreatic stem cells remain unresolved. Stem Cells And Development. https://doi.org/10.1089/scd.2014.0214

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coskun, E., Ercin, M., & Gezginci-Oktayoglu, S. (2018). The role of epigenetic regulation and pluripotency-related MicroRNAs in differentiation of pancreatic stem cells to Beta cells. Journal Of Cellular Biochemistry. https://doi.org/10.1002/jcb.26203

    Article  PubMed  Google Scholar 

  22. Bruno, S., Herrera Sanchez, M. B., Chiabotto, G., Fonsato, V., Navarro-Tableros, V., Pasquino, C., Tapparo, M., & Camussi, G. (2021). Human liver stem cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population with Pro-regenerative Properties. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.644088

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., Toyokuni, S., Ogura, A., & Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biology Of Reproduction, 72(4), https://doi.org/10.1095/biolreprod.104.036400

  24. Hynds, R. E., Bonfanti, P., & Janes, S. M. (2018). Regenerating human epithelia with cultured stem cells: Feeder cells, organoids and beyond. Embo Molecular Medicine. https://doi.org/10.15252/emmm.201708213

    Article  PubMed  Google Scholar 

  25. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science. https://doi.org/10.1126/science.282.5391.1145

    Article  PubMed  Google Scholar 

  26. Bergström, R., Ström, S., Holm, F., et al. (2011). Xeno-free culture of human pluripotent stem cells.Human pluripotent stem cells. Humana Press. https://doi.org/10.1007/978-1-61779-201-4_9

    Article  Google Scholar 

  27. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Schöler, H. R., Duan, L., & Ding, S. (2009 May). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. https://doi.org/10.1016/j.stem.2009.04.005

  28. Ieyasu, A., Ishida, R., Kimura, T., Morita, M., Wilkinson, A. C., Sudo, K., Nishimura, T., Ohehara, J., Tajima, Y., Lai, C. Y., Otsu, M., Nakamura, Y., Ema, H., Nakauchi, H., & Yamazaki, S. (2017). An all-recombinant protein-based culture system specifically identifies hematopoietic stem cell maintenance factors. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2017.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  29. Villa-Diaz, L. G., Nandivada, H., Ding, J., Nogueira-de-Souza, N. C., Krebsbach, P. H., O’Shea, K. S., Lahann, J., & Smith, G. D. (2010). Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology. https://doi.org/10.1038/nbt.1631

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bhang, S. H., Lim, J. S., Choi, C. Y., Kwon, Y. K., & Kim, B. S. (2007). The behavior of neural stem cells on biodegradable synthetic polymers. Journal Of Biomaterials Science, Polymer Edition. https://doi.org/10.1163/156856207779116711

    Article  PubMed  Google Scholar 

  31. Aisenbrey, E. A., & Murphy, W. L. (2020). Synthetic alternatives to Matrigel. Nat Rev Mater. https://doi.org/10.1038/s41578-020-0199-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cimino, M., Gonçalves, R. M., Barrias, C. C., & Martins, M. C. L. (2017). Xeno-Free Strategies for Safe Human mesenchymal Stem/Stromal cell expansion: Supplements and Coatings. Stem Cells Int. https://doi.org/10.1155/2017/6597815

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wan, H., Fu, R., Tong, M., Wang, Y., Wang, L., Wang, S., Zhang, Y., Li, W., Wang, X. J., & Feng, G. (2022). Influence of feeder cells on transcriptomic analysis of pluripotent stem cells. Cell Proliferation. https://doi.org/10.1111/cpr.13189

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee, K. I., Kim, H. T., & Hwang, D. Y. Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions.Biomaterials. 2014Sep;35(29):8330–8. https://doi.org/10.1016/j.biomaterials.2014.05.059

  35. Bui, H. T. H., Nguyen, L. T., & Than, U. T. T. (2021 Feb). Influences of Xeno-Free Media on mesenchymal stem cell expansion for clinical application. Tissue Eng Regen Med, 18(1), 15–23. https://doi.org/10.1007/s13770-020-00306-z

  36. Higuchi, A., Lin, F., Cheng, Y. K., et al. (2014). Preparation of induced pluripotent stem cells on dishes grafted on oligopeptide under feeder-free conditions. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2013.06.022

    Article  Google Scholar 

  37. Totonchi, M., Taei, A., Seifinejad, A., Tabebordbar, M., Rassouli, H., Farrokhi, A., Gourabi, H., Aghdami, N., Hosseini-Salekdeh, G., & Baharvand, H. (2010). Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells. International Journal Of Developmental Biology. https://doi.org/10.1387/ijdb.092903mt

    Article  PubMed  Google Scholar 

  38. Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., & Yamanaka, S. (2014). A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports. https://doi.org/10.1038/srep03594

    Article  PubMed  PubMed Central  Google Scholar 

  39. Olivier, E. N., Marenah, L., McCahill, A., Condie, A., Cowan, S., & Mountford, J. C. (2016). High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med. https://doi.org/10.5966/sctm.2015-0371

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nakamura, N., Saeki, K., Mitsumoto, M., Matsuyama, S., Nishio, M., Saeki, K., Hasegawa, M., Miyagawa, Y., Ohkita, H., Kiyokawa, N., Toyoda, M., Akutsu, H., Umezawa, A., & Yuo, A. (2012). Feeder-free and serum-free production of hepatocytes, cholangiocytes, and their proliferating progenitors from human pluripotent stem cells: Application to liver-specific functional and cytotoxic assays. Cell Reprogram. https://doi.org/10.1089/cell.2011.0064

    Article  PubMed  Google Scholar 

  41. Kanke, K., Masaki, H., Saito, T., Komiyama, Y., Hojo, H., Nakauchi, H., Lichtler, A. C., Takato, T., Chung, U. I., & Ohba, S. (2014). Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2014.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu, D., Xue, Y., Song, B., Liu, N., Xie, Y., Cheng, Y., Chen, B., He, L., Chen, D., Zeng, J., Yang, Y., Guo, X., Li, Y., & Sun, X. (2020). Generation of induced pluripotent stem cell GZLSL-i001-A derived from urine-derived cells of Hemophilia A patient with Inv22 mutation. Stem Cell Res. https://doi.org/10.1016/j.scr.2020.102053

    Article  PubMed  Google Scholar 

  43. Yamasaki, S., Hamada, A., Akagi, E., Nakatao, H., Ohtaka, M., Nishimura, K., Nakanishi, M., Toratani, S., & Okamoto, T. (2016). Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In vitro cellular & developmental biology Animal, 52(2), 252–264. https://doi.org/10.1007/s11626-015-9968-x

    Article  CAS  Google Scholar 

  44. Park, S., & Mostoslavsky, G. (2018). Generation of Human Induced Pluripotent stem cells using a defined, Feeder-Free Reprogramming System. Current Protocols In Stem Cell Biology. https://doi.org/10.1002/cpsc.48

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sung, T. C., Li, H. F., Higuchi, A., Kumar, S. S., Ling, Q. D., Wu, Y. W., Burnouf, T., Nasu, M., Umezawa, A., Lee, K. F., Wang, H. C., Chang, Y., & Hsu, S. T. (2020). Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.119638

    Article  PubMed  Google Scholar 

  46. Lambshead, J. W., Meagher, L., Goodwin, J., Labonne, T., Ng, E., Elefanty, A., Stanley, E., O’Brien, C. M., & Laslett, A. L. (2018). Long-term maintenance of human pluripotent stem cells on cRGDfK-Presenting Synthetic Surfaces. Scientific Reports. https://doi.org/10.1038/s41598-018-19209-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fan, D., Staufer, U., & Accardo, A. (2019). Engineered 3D polymer and hydrogel microenvironments for Cell Culture Applications. Bioengineering (Basel). https://doi.org/10.3390/bioengineering6040113

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu, Y., Cui, M., Patsis, P. A., Günther, M., Yang, X., Eckert, K., & Zhang, Y. (2019). Reversibly assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D cell culture. Acs Applied Materials & Interfaces. https://doi.org/10.1021/acsami.8b19482

    Article  Google Scholar 

  49. Rodin, S., Antonsson, L., Hovatta, O., & Tryggvason, K. (2014). Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nature Protocols. https://doi.org/10.1038/nprot.2014.159

    Article  PubMed  Google Scholar 

  50. Miura, T., Yuasa, N., Ota, H., Habu, M., Kawano, M., Nakayama, F., & Nishihara, S. (2019). Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochemical And Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2019.08.082

    Article  PubMed  Google Scholar 

  51. Demirci, S., Haro-Mora, J. J., Leonard, A., Drysdale, C., Malide, D., Keyvanfar, K., Essawi, K., Vizcardo, R., Tamaoki, N., Restifo, N. P., Tisdale, J. F., & Uchida, N. (2020). Definitive hematopoietic stem/progenitor cells from human embryonic stem cells through serum/feeder-free organoid-induced differentiation. Stem Cell Research & Therapy. https://doi.org/10.1186/s13287-020-02019-5

    Article  Google Scholar 

  52. Yamasaki, S., Nabeshima, K., Sotomaru, Y., Taguchi, Y., Mukasa, H., Furue, M. K., Sato, J. D., & Okamoto, T. (2013). Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium. International Journal Of Developmental Biology. https://doi.org/10.1387/ijdb.130173to

    Article  PubMed  Google Scholar 

  53. Kanke, K., Masaki, H., Saito, T., Komiyama, Y., Hojo, H., Nakauchi, H., Lichtler, A. C., Takato, T., Chung, U. I., & Ohba, S. (2014). Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2014.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chatterjee, S., Basak, P., Buchel, E., Murphy, L. C., & Raouf, A. (2018). A robust cell culture system for large scale feeder cell-free expansion of human breast epithelial progenitors. Stem Cell Research & Therapy. https://doi.org/10.1186/s13287-018-0994-y

    Article  Google Scholar 

  55. Tozetti, P. A., Caruso, S. R., Mizukami, A., Fernandes, T. R., da Silva, F. B., Traina, F., Covas, D. T., Orellana, M. D., & Swiech, K. (2017). Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnology Progress. https://doi.org/10.1002/btpr.2494

    Article  PubMed  Google Scholar 

  56. Ashok, P., Parikh, A., Du, C., & Tzanakakis, E. S. (2020). Xenogeneic-free system for biomanufacturing of cardiomyocyte progeny from human pluripotent stem cells. Frontiers In Bioengineering And Biotechnology. https://doi.org/10.3389/fbioe.2020.571425

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rivera, T., Zhao, Y., Ni, Y., & Wang, J. (2020). Human-Induced Pluripotent Stem Cell Culture Methods under cGMP conditions. Current Protocols In Stem Cell Biology. https://doi.org/10.1002/cpsc.117

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sahabian, A., Sgodda, M., Naujok, O., Dettmer, R., Dahlmann, J., Manstein, F., Cantz, T., Zweigerdt, R., Martin, U., Olmer, R., & Chemically-Defined (2019). Xeno-Free, Scalable production of hPSC-Derived definitive endoderm aggregates with Multi-Lineage differentiation potential. Cells. https://doi.org/10.3390/cells8121571

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rodrigues, A. L., Rodrigues, C. A. V., Gomes, A. R., Vieira, S. F., Badenes, S. M., Diogo, M. M., & Cabral, J. M. S. (2019). Dissolvable microcarriers allow scalable expansion and harvesting of Human Induced Pluripotent stem cells under Xeno-Free Conditions. Biotechnology Journal. https://doi.org/10.1002/biot.201800461

    Article  PubMed  Google Scholar 

  60. Yuan, X., Tsai, A. C., Farrance, I., Rowley, J., & Ma, T. (2018). Aggregation of culture expanded human mesenchymal stem cells in Microcarrier-based Bioreactor. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2017.12.011

    Article  PubMed  Google Scholar 

  61. Yi, T., Huang, S., Liu, G., Li, T., Kang, Y., Luo, Y., & Wu, J. (2018). Bioreactor synergy with 3D scaffolds: New era for stem cells culture. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.8b00057

    Article  PubMed  Google Scholar 

  62. Borys, B. S., Roberts, E. L., Le, A., et al. (2018). Scale-up of embryonic stem cell aggregate stirred suspension bioreactor culture enabled by computational fluid dynamics modeling. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2018.02.005

    Article  Google Scholar 

  63. Avhad, D. N., & Rathod, V. K. (2015). Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrasonics Sonochemistry. https://doi.org/10.1016/j.ultsonch.2014.04.020

    Article  PubMed  Google Scholar 

  64. Gallo-Ramírez, L. E., Nikolay, A., Genzel, Y., & Reichl, U. (2015). Bioreactor concepts for cell culture-based viral vaccine production. Expert Review Of Vaccines. https://doi.org/10.1586/14760584.2015.1067144

    Article  PubMed  Google Scholar 

  65. Cunha, B., Aguiar, T., Carvalho, S. B., Silva, M. M., Gomes, R. A., Carrondo, M. J. T., Gomes-Alves, P., Peixoto, C., Serra, M., & Alves, P. M. (2017). Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization. Journal Of Biotechnology. https://doi.org/10.1016/j.jbiotec.2017.01.014

    Article  PubMed  Google Scholar 

  66. Chen, S., Sato, Y., Tada, Y., Suzuki, Y., Takahashi, R., Okanojo, M., & Nakashima, K. (2021). Facile bead-to-bead cell-transfer method for serial subculture and large-scale expansion of human mesenchymal stem cells in bioreactors. Stem Cells Transl Med. https://doi.org/10.1002/sctm.20-0501

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yan, X., Zhang, K., Yang, Y., Deng, D., Lyu, C., Xu, H., Liu, W., & Du, Y. (2020). Dispersible and Dissolvable Porous Microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion. Tissue Eng Part C Methods. https://doi.org/10.1089/ten.TEC.2020.0039

    Article  PubMed  Google Scholar 

  68. Borys, B. S., So, T., Roberts, E. L., Ferrie, L., Larijani, L., Abraham, B., Krawetz, R., Rancourt, D. E., & Kallos, M. S. (2020). Large-scale expansion of feeder-free mouse embryonic stem cells serially passaged in stirred suspension bioreactors at low inoculation densities directly from cryopreservation. Biotechnology And Bioengineering. https://doi.org/10.1002/bit.27279

    Article  PubMed  Google Scholar 

  69. Shafa, M., Sjonnesen, K., Yamashita, A., Liu, S., Michalak, M., Kallos, M. S., & Rancourt, D. E. (2012). Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. Journal Of Tissue Engineering And Regenerative Medicine. https://doi.org/10.1002/term.450

    Article  PubMed  Google Scholar 

  70. Burrell, K., Dardari, R., Goldsmith, T., Toms, D., Villagomez, D. A. F., King, W. A., Ungrin, M., West, F. D., & Dobrinski, I. (2019). Stirred suspension Bioreactor Culture of Porcine Induced Pluripotent Stem cells. Stem Cells And Development. https://doi.org/10.1089/scd.2019.0111

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tsai, A. C., Liu, Y., & Ma, T. (2016). Expansion of human mesenchymal stem cells in fibrous bed bioreactor. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2015.09.002

    Article  Google Scholar 

  72. Mizukami, A., de Abreu Neto, M. S., Moreira, F., Fernandes-Platzgummer, A., Huang, Y. F., Milligan, W., Cabral, J. M. S., da Silva, C. L., Covas, D. T., & Swiech, K. (2018). A fully-closed and automated Hollow Fiber Bioreactor for Clinical-Grade Manufacturing of Human mesenchymal Stem/Stromal cells. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-017-9787-4

    Article  PubMed  Google Scholar 

  73. Timmins, N. E., Palfreyman, E., Marturana, F., Dietmair, S., Luikenga, S., Lopez, G., Fung, Y. L., Minchinton, R., & Nielsen, L. K. (2009). Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells. Biotechnology And Bioengineering. https://doi.org/10.1002/bit.22433

    Article  PubMed  Google Scholar 

  74. Meng, G., Liu, S., Poon, A., & Rancourt, D. E. (2017). Optimizing Human Induced Pluripotent Stem Cell expansion in stirred-suspension culture. Stem Cells And Development. https://doi.org/10.1089/scd.2017.0090

    Article  PubMed  Google Scholar 

  75. Agabalyan, N. A., Borys, B. S., Sparks, H. D., Boon, K., Raharjo, E. W., Abbasi, S., Kallos, M. S., & Biernaskie, J. (2017). Enhanced expansion and sustained inductive function of skin-derived Precursor cells in computer-controlled stirred suspension bioreactors. Stem Cells Transl Med. https://doi.org/10.5966/sctm.2016-0133Epub 2016 Sep 9.

    Article  PubMed  Google Scholar 

  76. Jossen, V., Eibl, R., Pörtner, R. (2017). Stirred bioreactors: current state and developments, with special emphasis on biopharmaceutical production processes.Current developments in biotechnology and bioengineering,

  77. Hsu, C. Y. M., Walsh, T., Borys, B. S., Kallos, M. S., & Rancourt, D. E. (2018). An Integrated Approach toward the Biomanufacturing of Engineered Cell Therapy Products in a stirred-suspension bioreactor. Mol Ther Methods Clin Dev. https://doi.org/10.1016/j.omtm.2018.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  78. Corona, B. T., Ward, C. L., Harrison, B. S., & Christ, G. J. (2010). Regenerative medicine: Basic concepts, current status, and future applications. Journal Of Investigative Medicine. 10.231/JIM.0b013e3181efbc61.

  79. Bunpetch, V., Wu, H., Zhang, S., & Ouyang, H. (2017). From “Bench to Bedside”: Current Advancement on large-scale production of mesenchymal stem cells. Stem Cells And Development. https://doi.org/10.1089/scd.2017.0104

    Article  PubMed  Google Scholar 

  80. Ma, T., Tsai, A. C., & Liu, Y. (2016). Biomanufacturing of human mesenchymal stem cells in cell therapy: Influence of microenvironment on scalable expansion in bioreactors. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2015.07.014

    Article  Google Scholar 

  81. de Jesus, S. S., Moreira Neto, J., Santana, A., et al. (2015). Influence of impeller type on hydrodynamics and gas-liquid mass‐transfer in stirred airlift bioreactor. AIChE Journal. https://doi.org/10.1002/aic.14871

    Article  Google Scholar 

  82. Rafiq, Q. A., Coopman, K., Nienow, A. W., & Hewitt, C. J. (2016). Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnology Journal. https://doi.org/10.1002/biot.201400862

    Article  PubMed  PubMed Central  Google Scholar 

  83. Agboluaje, M., & Sauvageau, D. (2018). Bacteriophage production in Bioreactors. Methods In Molecular Biology. https://doi.org/10.1007/978-1-4939-7395-8_15

    Article  PubMed  Google Scholar 

  84. Borys, B. S., Roberts, E. L., Le, A., et al. (2018). Scale-up of embryonic stem cell aggregate stirred suspension bioreactor culture enabled by computational fluid dynamics modeling. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2018.02.005

    Article  Google Scholar 

  85. Ebrahimi, M., Tamer, M., Villegas, R. M., et al. (2019). Application of CFD to analyze the hydrodynamic behaviour of a bioreactor with a double impeller. Processes. https://doi.org/10.3390/pr7100694

    Article  Google Scholar 

  86. Li, C., Teng, X., Peng, H., et al. (2020). Novel scale-up strategy based on three-dimensional shear space for animal cell culture. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2019.115329

    Article  Google Scholar 

  87. Zhu, L. K., Song, B. Y., Wang, Z. L., et al. (2013). Optimze the structure of impeller for stirred bioreactor.Advanced materials Research. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.694-697.148

    Article  Google Scholar 

  88. Buffo, M. M., Corrêa, L. J., Esperança, M. N., et al. (2016). Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2016.07.003

    Article  Google Scholar 

  89. Noronha, N. C., Mizukami, A., Orellana, M. D., et al. (2021). Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2021.107949

    Article  Google Scholar 

  90. Elseberg, C. L., Leber, J., Salzig, D., et al. (2012). Microcarrier-based expansion process for hMSCs with high vitality and undifferentiated characteristics[J]. The International journal of artificial organs. https://doi.org/10.5301/ijao.5000077

    Article  PubMed  Google Scholar 

  91. Kropp, C., Kempf, H., Halloin, C., Robles-Diaz, D., Franke, A., Scheper, T., Kinast, K., Knorpp, T., Joos, T. O., Haverich, A., Martin, U., Zweigerdt, R., & Olmer, R. (2016). Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred Tank Bioreactors. Stem Cells Transl Med. https://doi.org/10.5966/sctm.2015-0253

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schwedhelm, I., Zdzieblo, D., Appelt-Menzel, A., Berger, C., Schmitz, T., Schuldt, B., Franke, A., Müller, F. J., Pless, O., Schwarz, T., Wiedemann, P., Walles, H., & Hansmann, J. (2019). Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors. Scientific Reports. https://doi.org/10.1038/s41598-019-48814-w

    Article  PubMed  PubMed Central  Google Scholar 

  93. Egger, D., Schwedhelm, I., Hansmann, J., & Kasper, C. (2017). Hypoxic Three-Dimensional Scaffold-Free Aggregate cultivation of mesenchymal stem cells in a stirred Tank Reactor. Bioengineering (Basel). https://doi.org/10.3390/bioengineering4020047

    Article  PubMed  Google Scholar 

  94. Kropp, C., Massai, D., & Zweigerdt, R. (2017). Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry. https://doi.org/10.1016/j.procbio.2016.09.032

    Article  Google Scholar 

  95. Grein, T. A., Leber, J., Blumenstock, M., et al. (2016). Multiphase mixing characteristics in a microcarrier-based stirred tank bioreactor suitable for human mesenchymal stem cell expansion. Process Biochemistry. https://doi.org/10.1016/j.procbio.2016.05.010

    Article  Google Scholar 

  96. Wyma, A., Martin-Alarcon, L., Walsh, T., et al. (2018). Non‐newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.26723

    Article  PubMed  Google Scholar 

  97. YekrangSafakar, A., Acun, A., Choi, J. W., et al. (2018). Hollow microcarriers for large-scale expansion of anchorage‐dependent cells in a stirred bioreactor. Biotechnology and bioengineering. https://doi.org/10.1002/bit.26601

    Article  PubMed  Google Scholar 

  98. Egger, D., Schwedhelm, I., Hansmann, J., et al. (2017). Hypoxic three-dimensional scaffold-free aggregate cultivation of mesenchymal stem cells in a stirred tank reactor. Bioengineering. https://doi.org/10.3390/bioengineering4020047

    Article  PubMed  PubMed Central  Google Scholar 

  99. Eghbali, H., Nava, M. M., Mohebbi-Kalhori, D., & Raimondi, M. T. (2016). Hollow fiber bioreactor technology for tissue engineering applications. International Journal Of Artificial Organs. https://doi.org/10.5301/ijao.5000466

    Article  PubMed  Google Scholar 

  100. Nankervis, B., Jones, M., Vang, B., Brent Rice, R. Jr., Coeshott, C., & Beltzer, J. (2018). Optimizing T cell expansion in a Hollow-Fiber Bioreactor. Current Stem Cell Reports. https://doi.org/10.1007/s40778-018-0116-x

    Article  PubMed  PubMed Central  Google Scholar 

  101. Frank, N. D., Jones, M. E., Vang, B., & Coeshott, C. (2019). Evaluation of reagents used to coat the hollow-fiber bioreactor membrane of the Quantum® Cell Expansion System for the culture of human mesenchymal stem cells. Materials Science & Engineering. C, Materials For Biological Applications. https://doi.org/10.1016/j.msec.2018.10.081

    Article  Google Scholar 

  102. Cheatham, L. A., Noldner, P., Ressler, B., et al. (2019). Optimization of human umbilical cord-derived mesenchymal stem cell growth and expansion using a closed-system Hollow Fiber Bioreactor. Stem Cells Translational Medicine.

  103. Greuel, S., Freyer, N., Hanci, G., Böhme, M., Miki, T., Werner, J., Schubert, F., Sittinger, M., Zeilinger, K., & Mandenius, C. F. (2019). Online measurement of oxygen enables continuous noninvasive evaluation of human-induced pluripotent stem cell (hiPSC) culture in a perfused 3D hollow-fiber bioreactor. Journal Of Tissue Engineering And Regenerative Medicine. https://doi.org/10.1002/term.2871

    Article  PubMed  Google Scholar 

  104. Barckhausen, C., Rice, B., Baila, S., Sensebé, L., Schrezenmeier, H., Nold, P., Hackstein, H., & Rojewski, M. T. (2016). GMP-Compliant expansion of Clinical-Grade Human mesenchymal Stromal/Stem cells using a closed Hollow Fiber Bioreactor. Methods In Molecular Biology. https://doi.org/10.1007/978-1-4939-3584-0_23

    Article  PubMed  Google Scholar 

  105. McCarron, A., Donnelley, M., McIntyre, C., & Parsons, D. (2019). Transient Lentiviral Vector Production using a Packed-Bed Bioreactor System. Hum Gene Ther Methods. https://doi.org/10.1089/hgtb.2019.038

    Article  PubMed  Google Scholar 

  106. Khan, F. A. (2022). Stem cell bioreactors: Design, structure, and operation of Stem Cell Bioreactors. Singapore: Stem Cell Production. Springer.

    Google Scholar 

  107. Lesch, H. P., Valonen, P., & Karhinen, M. (2021). Evaluation of the single-use Fixed-Bed Bioreactors in Scalable Virus production. Biotechnology Journal. https://doi.org/10.1002/biot.202000020

    Article  PubMed  Google Scholar 

  108. Bunpetch, V., Wu, H., Zhang, S., & Ouyang, H. (2017). From “Bench to Bedside”: Current Advancement on large-scale production of mesenchymal stem cells. Stem Cells And Development. https://doi.org/10.1089/scd.2017.0104

    Article  PubMed  Google Scholar 

  109. Thibeaux, R., Duval, H., Smaniotto, B., Vennat, E., Néron, D., & David, B. (2019). Assessment of the interplay between scaffold geometry, induced shear stresses, and cell proliferation within a packed bed perfusion bioreactor. Biotechnology Progress. https://doi.org/10.1002/btpr.2880

    Article  PubMed  Google Scholar 

  110. Almezel, N. A. (2021). Stem cell production: Scale up. In G. M. P. Production (Ed.), Bioreactor.Advances in application of stem cells: From bench to clinics. Cham: Humana.

    Google Scholar 

  111. Osiecki, M. J., McElwain, S. D. L., & Lott, W. B. (2018). Modelling mesenchymal stromal cell growth in a packed bed bioreactor with a gas permeable wall. PLoS One. https://doi.org/10.1371/journal.pone.0202079

    Article  PubMed  PubMed Central  Google Scholar 

  112. DURUKSU G, THE EFFECT OF DRAG FORCE AND FLOW RATE ON MESENCHYMAL, & STEM CELLS IN PACKED-BED PERFUSION BIOREACTOR. (2019). .Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi-C Yaşam Bilimleri Ve Biyoteknoloji,

  113. Liu, W., Hu, D., Gu, C., Zhou, Y., & Tan, W. S. (2019). Fabrication and in vitro evaluation of a packed-bed bioreactor based on an optimum two-stage culture strategy. Journal Of Bioscience And Bioengineering. https://doi.org/10.1016/j.jbiosc.2018.09.010

    Article  PubMed  Google Scholar 

  114. Znad, H., Báleš, V., & Kawase, Y. (2004). Modeling and scale up of airlift bioreactor. Computers & chemical engineering. https://doi.org/10.1016/j.compchemeng2004.08.024.

    Article  Google Scholar 

  115. Mahmood, K. H. A. L., Wilkinson, S. J., & Zimmerman, W. B. (2015). Airlift bioreactor for biological applications with microbubble mediated transport processes. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2015.06.032

    Article  Google Scholar 

  116. Li, X., Zhang, G., Zhao, X., et al. (2020). A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2019.115269

    Article  Google Scholar 

  117. Capuana, E., Pavia, F. C., Lombardo, M. E., et al. (2022). Mathematical and numerical modeling of an airlift perfusion bioreactor for tissue engineering applications[J]. Biochemical Engineering Journal. https://doi.org/10.1016/j.bej.2021.108298

    Article  Google Scholar 

  118. Pawar, S. B. (2018). Computational fluid dynamics (CFD) analysis of airlift bioreactor: Effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate. Bioprocess And Biosystems Engineering. https://doi.org/10.1007/s00449-017-1841-8

    Article  PubMed  Google Scholar 

  119. Decarli, M. C., Dos Santos, D. P., Astray, R. M., Ventini-Monteiro, D. C., Jorge, S. A. C., Correia, D. M., de Sá da Silva, J., Rocca, M. P., Langoni, H., Menozzi, B. D., Pereira, C. A., & Suazo, C. A. T. (2018). DROSOPHILA S2 cell culture in a WAVE Bioreactor: Potential for scaling up the production of the recombinant rabies virus glycoprotein. Applied Microbiology And Biotechnology. https://doi.org/10.1007/s00253-018-8962-0

    Article  PubMed  Google Scholar 

  120. Thompson, C. A., Colon-Hernandez, P., Pomerantseva, I., MacNeil, B. D., Nasseri, B., Vacanti, J. P., & Oesterle, S. N. (2002). A novel pulsatile, laminar flow bioreactor for the development of tissue-engineered vascular structures. Tissue Engineering. https://doi.org/10.1089/107632702320934173

    Article  PubMed  Google Scholar 

  121. Stefani, I., Asnaghi, M. A., Cooper-White, J. J., & Mantero, S. (2018). A double chamber rotating bioreactor for enhanced tubular tissue generation from human mesenchymal stem cells: A promising tool for vascular tissue regeneration. Journal Of Tissue Engineering And Regenerative Medicine. https://doi.org/10.1002/term.2341

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Chengdu University of Traditional Chinese Medicine for providing relevant conditions.

Funding

This research was supported by the Project of Chengdu Science and Technology Bureau (No. 2022NSFSC1397), Tianfu laboratory transfer payment project (No. 2021ZYCD012).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.W., J.L.; writing—original draft preparation: J.L., Y.W.; writing—review and editing: J.L., X.Y.; visualization: J.L., Y.T., X.S., Z.L. and X.Y. ;All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chunjie Wu.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest directly related to this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, Y., Yao, X. et al. Preclinical Research of Stem Cells: Challenges and Progress. Stem Cell Rev and Rep 19, 1676–1690 (2023). https://doi.org/10.1007/s12015-023-10528-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10528-y

Keywords

Navigation