Skip to main content

Advertisement

Log in

Cellular Heterogeneity Facilitates the Functional Differences Between Hair Follicle Dermal Sheath Cells and Dermal Papilla Cells: A New Classification System for Mesenchymal Cells within the Hair Follicle Niche

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition. Given this we designed this study to evaluate the differentiation processes in these cells and used this data to create a new set of classifications for DP and DS cells, dividing them into "hair follicle mesenchymal stem cells (HF-MSCs)", "hair follicle mesenchymal progenitor cells (HF-MPCs)", and "hair follicle mesenchymal functional cells (HF-MFCs)". In addition, those cells that possess self-renewal and differentiation were re-named hair follicle derived mesenchymal multipotent cells (HF-MMCs). This new classification may help to further our understanding of the heterogeneity of hair follicle dermal cells and provide new insights into their evaluation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation., 6, 230–47.

    Article  CAS  PubMed  Google Scholar 

  2. Gonzales, K., & Fuchs, E. (2017). Skin and Its regenerative powers: An alliance between stem cells and their niche. Developmental Cell, 43, 387–401.

    Article  CAS  PubMed  Google Scholar 

  3. Kolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration, 85, 3–10.

    Article  PubMed  Google Scholar 

  4. Ma, D., Kua, J. E., Lim, W. K., Lee, S. T., & Chua, A. W. (2015). In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing. Cytotherapy, 17, 1036–1051.

    Article  CAS  PubMed  Google Scholar 

  5. McElwee, K. J., Kissling, S., Wenzel, E., Huth, A., & Hoffmann, R. (2003). Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. The Journal of Investigative Dermatology, 121, 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  6. Tsai, S. Y., Clavel, C., Kim, S., Ang, Y. S., Grisanti, L., Lee, D. F., et al. (2010). Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells., 28, 221–228.

    Article  CAS  PubMed  Google Scholar 

  7. Jahoda, C. A., Whitehouse, J., Reynolds, A. J., & Hole, N. (2003). Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Experimental Dermatology, 12, 849–859.

    Article  PubMed  Google Scholar 

  8. Matsuzaki, T., Inamatsu, M., & Yoshizato, K. (1996). The upper dermal sheath has a potential to regenerate the hair in the rat follicular epidermis. Differentiation, 60, 287–297.

    Article  CAS  PubMed  Google Scholar 

  9. Vapniarsky, N., Arzi, B., Hu, J. C., Nolta, J. A., & Athanasiou, K. A. (2015). Concise review: human dermis as an autologous source of stem cells for tissue engineering and regenerative medicine. Stem Cells Translational Medicine, 4, 1187–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy., 8, 315–7.

    Article  CAS  PubMed  Google Scholar 

  11. Oliver, R. F. (1966). Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. Journal of Embryology and Experimental Morphology, 15, 331–347.

    CAS  PubMed  Google Scholar 

  12. Ma, D., Lee, S. T., & Chua, A. (2019). Isolation and culture of hair follicle dermal sheath mesenchymal stromal cells. Methods in Molecular Biology, 1993, 61–70.

    Article  CAS  PubMed  Google Scholar 

  13. He, W., Ye, J., Xu, H., Lin, Y., & Zheng, Y. (2020). Differential expression of α6 and β1 integrins reveals epidermal heterogeneity at single-cell resolution. Journal of Cellular Biochemistry, 121, 2664–2676.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, R., Grzenda, A., Allison, T. F., Rawnsley, J., Balin, S. J., Sabri, S., et al. (2020). Defining transcriptional signatures of human hair follicle cell states. The Journal of Investigative Dermatology, 140, 764–773.

    Article  CAS  PubMed  Google Scholar 

  15. Sennett, R., Wang, Z., Rezza, A., Grisanti, L., Roitershtein, N., Sicchio, C., et al. (2015). An integrated transcriptome atlas of embryonic hair follicle progenitors, their niche, and the developing skin. Developmental Cell, 34, 577–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ge, W., Tan, S. J., Wang, S. H., Li, L., Sun, X. F., Shen, W., et al. (2020). Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics., 10, 7581–7598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rahmani, W., Abbasi, S., Hagner, A., Raharjo, E., Kumar, R., Hotta, A., et al. (2014). Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Developmental Cell, 31, 543–558.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, H., Adam, R. C., Ge, Y., Hua, Z. L., & Fuchs, E. (2017). Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell, 169, 483–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin, W., Rosin, N. L., Sparks, H., Sinha, S., Rahmani, W., Sharma, N., et al. (2020). Dysfunction of hair follicle mesenchymal progenitors contributes to age-associated hair loss. Developmental Cell, 53, 185–198.

    Article  CAS  PubMed  Google Scholar 

  20. Aamar E, Avigad LE, Asaad W, Harshuk-Shabso S, Enshell-Seijffers D (2021) Hair-Follicle Mesenchymal Stem Cell Activity during Homeostasis and Wound Healing. Journal of Investigative Dermatology.

  21. Wang, J., He, J., Zhu, M., Han, Y., Yang, R., Liu, H., et al. (2022) Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. Stem Cell Reviews and Reports.

  22. Halley-Stott, R. P., Adeola, H. A., & Khumalo, N. P. (2020). Destruction of the stem cell niche, pathogenesis and promising treatment targets for primary scarring alopecias. Stem Cell Rev Rep., 16, 1105–1120.

    Article  PubMed  Google Scholar 

  23. Mascré, G., Dekoninck, S., Drogat, B., Youssef, K. K., Broheé, S., Sotiropoulou, P. A., et al. (2012). Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature, 489, 257–262.

    Article  PubMed  CAS  Google Scholar 

  24. An, Z., Akily, B., Sabalic, M., Zong, G., Chai, Y., & Sharpe, P. T. (2018). Regulation of mesenchymal stem to transit-amplifying cell transition in the continuously growing mouse incisor. Cell Reports, 23, 3102–3111.

    Article  CAS  PubMed  Google Scholar 

  25. Clayton, E., Doupé, D. P., Klein, A. M., Winton, D. J., Simons, B. D., & Jones, P. H. (2007). A single type of progenitor cell maintains normal epidermis. Nature, 446, 185–189.

    Article  CAS  PubMed  Google Scholar 

  26. Ju, X. A., Chen, J., Ding, L., Li, Y. Z., Xiao, F. J., Li, Z. Q., et al. (2013). A slowly proliferating subpopulation in human umbilical cord mesenchymal stem cells in culture. In vitro Cellular and Developmental Biology. Animal, 49, 653–656.

    Article  CAS  PubMed  Google Scholar 

  27. Chi, W., Wu, E., & Morgan, B. A. (2013). Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development, 140, 1676–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy., 8, 315–7.

    Article  CAS  PubMed  Google Scholar 

  29. Rezza, A., Sennett, R., & Rendl, M. (2014). Adult stem cell niches: Cellular and molecular components. Current Topics in Developmental Biology, 107, 333–372.

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita, Y. M., Yuan, H., Cheng, J., & Hunt, A. J. (2010). Polarity in stem cell division: Asymmetric stem cell division in tissue homeostasis. Cold Spring Harbor Perspectives in Biology, 2, a1313.

    Article  Google Scholar 

  31. Rompolas, P., Deschene, E. R., Zito, G., Gonzalez, D. G., Saotome, I., Haberman, A. M., et al. (2012). Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature, 487, 496–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobin, D. J., Gunin, A., Magerl, M., Handijski, B., & Paus, R. (2003). Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: Implications for hair growth control. The Journal of Investigative Dermatology, 120, 895–904.

    Article  CAS  PubMed  Google Scholar 

  33. Niiyama, S., Ishimatsu-Tsuji, Y., Nakazawa, Y., Yoshida, Y., Soma, T., Ideta, R., et al. (2018). Gene expression profiling of the intact dermal sheath cup of human hair follicles. Acta Dermato Venereologica, 98, 694–698.

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida, Y., Soma, T., & Kishimoto, J. (2019). Characterization of human dermal sheath cells reveals CD36-expressing perivascular cells associated with capillary blood vessel formation in hair follicles. Biochemical and Biophysical Research Communications, 516, 945–950.

    Article  CAS  PubMed  Google Scholar 

  35. Heitman, N., Sennett, R., Mok, K. W., Saxena, N., Srivastava, D., Martino, P., et al. (2020). Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science, 367, 161–166.

    Article  CAS  PubMed  Google Scholar 

  36. Chi, W. Y., Enshell-Seijffers, D., & Morgan, B. A. (2010). De novo production of dermal papilla cells during the anagen phase of the hair cycle. The Journal of Investigative Dermatology, 130, 2664–2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reynolds, A. J., Chaponnier, C., Jahoda, C. A., & Gabbiani, G. (1993). A quantitative study of the differential expression of alpha-smooth muscle actin in cell populations of follicular and non-follicular origin. The Journal of Investigative Dermatology, 101, 577–583.

    Article  CAS  PubMed  Google Scholar 

  38. Ito, T., Meyer, K. C., Ito, N., & Paus, R. (2008). Immune privilege and the skin. Current Directions in Autoimmunity, 10, 27–52.

    Article  CAS  PubMed  Google Scholar 

  39. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., et al. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells., 6, 552–570.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hagner, A., Shin, W., Sinha, S., Alpaugh, W., Workentine, M., Abbasi, S., et al. (2020). Transcriptional profiling of the adult hair follicle mesenchyme reveals R-spondin as a novel regulator of dermal progenitor function. iScience., 23, 101019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rezza, A., Wang, Z., Sennett, R., Qiao, W., Wang, D., Heitman, N., et al. (2016). Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles. Cell Reports, 14, 3001–3018.

    Article  CAS  PubMed  Google Scholar 

  42. Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H. A., Stokes, N., et al. (2009). A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell, 4, 155–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clavel, C., Grisanti, L., Zemla, R., Rezza, A., Barros, R., Sennett, R., et al. (2012). Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Developmental Cell, 23, 981–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuboi, R., Niiyama, S., Irisawa, R., Harada, K., Nakazawa, Y., & Kishimoto, J. (2020). Autologous cell-based therapy for male and female pattern hair loss double-blinded dose-finding clinical study. Journal of the American Academy of Dermatology., 83, 109–16.

    Article  CAS  PubMed  Google Scholar 

  45. Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabé-Heider, F., Sadikot, A., Kaplan, D. R., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778–784.

    Article  CAS  PubMed  Google Scholar 

  46. Biernaskie, J., Paris, M., Morozova, O., Fagan, B. M., Marra, M., Pevny, L., et al. (2009). SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell, 5, 610–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamao, M., Inamatsu, M., Okada, T., Ogawa, Y., Tateno, C., & Yoshizato, K. (2017). Enhanced restoration of in situ-damaged hairs by intradermal transplantation of trichogenous dermal cells. Journal of Tissue Engineering and Regenerative Medicine, 11, 977–988.

    Article  CAS  PubMed  Google Scholar 

  48. Elliott, K., Stephenson, T. J., & Messenger, A. G. (1999). Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: Implications for the control of hair follicle size and androgen responses. The Journal of Investigative Dermatology, 113, 873–877.

    Article  CAS  PubMed  Google Scholar 

  49. Niwa, H. (2007). How is pluripotency determined and maintained? Development, 134, 635–646.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Z., Pradhan, S., Liu, C., & Le, L. Q. (2012). Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration. Stem Cells., 30, 2261–2270.

    Article  PubMed  Google Scholar 

  51. Li, Y., Li, X., Xiong, L., Tang, J., & Li, L. (2018). Comparison of phenotypes and transcriptomes of mouse skin-derived precursors and dermal mesenchymal stem cells. Differentiation, 102, 30–39.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandes, K. J., McKenzie, I. A., Mill, P., Smith, K. M., Akhavan, M., Barnabé-Heider, F., et al. (2004). A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 6, 1082–1093.

    Article  CAS  PubMed  Google Scholar 

  53. Toma, J. G., McKenzie, I. A., Bagli, D., & Miller, F. D. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells., 23, 727–737.

    Article  CAS  PubMed  Google Scholar 

  54. Ruetze, M., Knauer, T., Gallinat, S., Wenck, H., Achterberg, V., Maerz, A., et al. (2013). A novel niche for skin derived precursors in non-follicular skin. Journal of Dermatological Science, 69, 132–139.

    Article  PubMed  Google Scholar 

  55. Hunt, D. P., Morris, P. N., Sterling, J., Anderson, J. A., Joannides, A., Jahoda, C., et al. (2008). A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells., 26, 163–172.

    Article  CAS  PubMed  Google Scholar 

  56. Kwok, C. K., Tam, P. K., & Ngan, E. S. (2013). Potential use of skin-derived precursors (SKPs) in establishing a cell-based treatment model for Hirschsprung’s disease. Journal of Pediatric Surgery, 48, 619–628.

    Article  PubMed  Google Scholar 

  57. Qiu, Z., Miao, C., Li, J., Lei, X., Liu, S., Guo, W., et al. (2010). Skeletal myogenic potential of mouse skin-derived precursors. Stem Cells Dev., 19, 259–268.

    Article  CAS  PubMed  Google Scholar 

  58. Sato, H., Ebisawa, K., Takanari, K., Yagi, S., Toriyama, K., Yamawaki-Ogata, A., et al. (2015). Skin-derived precursor cells promote wound healing in diabetic mice. Annals of Plastic Surgery, 74, 114–120.

    Article  CAS  PubMed  Google Scholar 

  59. Kang, H. K., Min, S. K., Jung, S. Y., Jung, K., Jang, D. H., Kim, O. B., et al. (2011). The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo. International Journal of Molecular Medicine, 28, 1001–1011.

    CAS  PubMed  Google Scholar 

  60. Agabalyan, N. A., Rosin, N. L., Rahmani, W., & Biernaskie, J. (2017). Hair follicle dermal stem cells and skin-derived precursor cells: Exciting tools for endogenous and exogenous therapies. Experimental Dermatology, 26, 505–509.

    Article  PubMed  Google Scholar 

  61. Hoogduijn, M. J., Gorjup, E., & Genever, P. G. (2006). Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells and Development, 15, 49–60.

    Article  CAS  PubMed  Google Scholar 

  62. Ito, Y., Hamazaki, T. S., Ohnuma, K., Tamaki, K., Asashima, M., & Okochi, H. (2007). Isolation of murine hair-inducing cells using the cell surface marker prominin-1/CD133. The Journal of Investigative Dermatology, 127, 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, S., Zhao, L., Purandare, B., & Hantash, B. M. (2010). Differential expression of stem cell markers in human follicular bulge and interfollicular epidermal compartments. Histochemistry and Cell Biology, 133, 455–465.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, K. J., Choi, Y. L., Kim, W. S., Lee, J. H., Yang, J. M., Lee, E. S., et al. (2006). CD10 is expressed in dermal sheath cells of the hair follicles in human scalp. British Journal of Dermatology, 155, 858–860.

    Article  PubMed  Google Scholar 

  65. Joulai, V. S., Yari, A., Heidari, F., Sajedi, N., Ghoroghi, M. F., & Nobakht, M. (2017). Bulge region as a putative hair follicle stem cells niche: A brief review. Iranian Journal of Public Health, 46, 1167–1175.

    Google Scholar 

  66. Krampera, M., & Le Blanc, K. (2021). Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 28, 1708–1725.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, W., & Han, Z. C. (2019). Heterogeneity of human mesenchymal stromal/stem cells. Advances in Experimental Medicine and Biology, 1123, 165–177.

    Article  CAS  PubMed  Google Scholar 

  68. Li, P., Tian, H., Li, Z., Wang, L., Gao, F., Ou, Q., et al. (2016). Subpopulations of bone marrow mesenchymal stem cells exhibit differential effects in delaying retinal degeneration. Current Molecular Medicine, 16, 567–581.

    Article  CAS  PubMed  Google Scholar 

  69. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, A. I. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplantation, 16, 557–564.

    CAS  PubMed  Google Scholar 

  70. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., & Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. The Journal of Immunology, 180, 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  71. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  PubMed  Google Scholar 

  72. Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A. T., Popovic, Z. B., et al. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. The FASEB Journal, 21, 3197–3207.

    Article  CAS  PubMed  Google Scholar 

  73. Martens, T. P., See, F., Schuster, M. D., Sondermeijer, H. P., Hefti, M. M., Zannettino, A., et al. (2006). Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S18-22.

    Article  CAS  PubMed  Google Scholar 

  74. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.

    Article  CAS  PubMed  Google Scholar 

  75. Hu, S., Li, Z., Lutz, H., Huang, K., Su, T., Cores, J., et al. (2020). Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling. Science Advances, 6, a1685.

    Article  CAS  Google Scholar 

  76. Gentile, P., Scioli, M. G., Bielli, A., De Angelis, B., De Sio, C., De Fazio, D., et al. (2019) Platelet-Rich Plasma and Micrografts Enriched with Autologous Human Follicle Mesenchymal Stem Cells Improve Hair Re-Growth in Androgenetic Alopecia. Biomolecular Pathway Analysis and Clinical Evaluation. Biomedicines, 7.

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 81701929, 81772104, and 81971889), the Natural Science Foundation of Guangdong Province (Grant Nos.2019A1515012170, 2020A1515110037) and the Science and Technology Program of Guangzhou (Grant No. 201904010480).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqi Hu or Yong Miao.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Stem Cell Technology and Skin Disorders (Dermatology): from Stem Cell Biology to Clinical Application

Guest Editor: Ali Golchin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Wang, H., Du, L. et al. Cellular Heterogeneity Facilitates the Functional Differences Between Hair Follicle Dermal Sheath Cells and Dermal Papilla Cells: A New Classification System for Mesenchymal Cells within the Hair Follicle Niche. Stem Cell Rev and Rep 18, 2016–2027 (2022). https://doi.org/10.1007/s12015-022-10411-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10411-2

Keywords

Navigation