Skip to main content

Heterogeneity of Human Mesenchymal Stromal/Stem Cells

  • Chapter
  • First Online:
Stem Cells Heterogeneity - Novel Concepts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1123))

Abstract

Increasing evidence has shown that mesenchymal stem cells (MSCs) isolated from body tissues are heterogeneous while being examined in vitro and in vivo. Besides some common characteristics, MSCs derived from different tissues exhibit unique biological properties. In addition, the therapeutic effects of MSCs may vary widely due to their heterogeneity and the technical differences in large-scale ex vivo expansion. In this chapter, the heterogeneity of MSCs will be discussed in three levels: the individual donors, the tissue sources, and the cell surface markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  PubMed  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  3. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25(11):2896–2902

    Article  PubMed  Google Scholar 

  4. English K, Mahon BP (2011) Allogeneic mesenchymal stem cells: agents of immune modulation. J Cell Biochem 112(8):1963–1968

    Article  CAS  PubMed  Google Scholar 

  5. Dominici M, Le BK, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  6. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75(3):424–436

    Article  CAS  PubMed  Google Scholar 

  7. Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72(4):570–585

    Article  CAS  PubMed  Google Scholar 

  8. Peltzer J, Montespan F, Thepenier C et al (2015) Heterogeneous functions of perinatal mesenchymal stromal cells require a preselection before their banking for clinical use. Stem Cells Dev 24(3):329–344

    Article  CAS  PubMed  Google Scholar 

  9. Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343

    Article  CAS  PubMed  Google Scholar 

  10. Wagner W, Ho AD (2007) Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev 3(4):239–248

    Article  PubMed  Google Scholar 

  11. Kang I, Lee BC, Choi SW et al (2018) Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med 50(4):35

    Article  PubMed Central  CAS  Google Scholar 

  12. Lu LL, Liu YJ, Yang SG et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91(8):1017–1026

    CAS  PubMed  Google Scholar 

  13. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392

    Article  CAS  PubMed  Google Scholar 

  14. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R (2014) Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res Ther 5(2):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu M, Yang SG, Shi L et al (2010) Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues. Platelets 21(3):199–210

    Article  CAS  PubMed  Google Scholar 

  16. Hsiao ST, Asgari A, Lokmic Z et al (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21(12):2189–2203

    Article  CAS  PubMed  Google Scholar 

  17. Heo JS, Choi Y, Kim HS, Kim HO (2016) Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 37(1):115–125

    Article  PubMed  Google Scholar 

  18. Stubbendorff M, Deuse T, Hua X et al (2013) Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells Dev 22(19):2619–2629

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Y, Yang Y, Zhang Y et al (2014) Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials. Stem Cell Res Ther 5(2):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Han ZC, Du WJ, Han ZB, Liang L (2017) New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed Mater Eng 28(s1):S29–S45

    CAS  PubMed  Google Scholar 

  21. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ et al (2011) Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. J Rheumatol 38(2):339–349

    Article  PubMed  Google Scholar 

  23. Castrechini NM, Murthi P, Qin S et al (2012) Decidua parietalis-derived mesenchymal stromal cells reside in a vascular niche within the choriodecidua. Reprod Sci 19(12):1302–1314

    Article  CAS  PubMed  Google Scholar 

  24. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63

    Article  CAS  PubMed  Google Scholar 

  25. Rosada C, Justesen J, Melsvik D, Ebbesen P, Kassem M (2003) The human umbilical cord blood: a potential source for osteoblast progenitor cells. Calcif Tissue Int 72(2):135–142

    Article  CAS  PubMed  Google Scholar 

  26. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229

    Article  PubMed  Google Scholar 

  27. Ning H, Lin G, Lue TF, Lin CS (2011) Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen. Biochem Biophys Res Commun 413(2):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martens TP, See F, Schuster MD et al (2006) Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S18–S22

    Article  CAS  PubMed  Google Scholar 

  29. Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103(9):3313–3319

    Article  CAS  PubMed  Google Scholar 

  30. Psaltis PJ, Paton S, See F et al (2010) Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223(2):530–540

    CAS  PubMed  Google Scholar 

  31. Kuçi S, Kuçi Z, Kreyenberg H et al (2010) CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95(4):651–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ et al (2011) Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng Part A 17(7-8):1169–1179

    Article  PubMed  CAS  Google Scholar 

  33. Jones EA, Kinsey SE, English A et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46(12):3349–3360

    Article  PubMed  Google Scholar 

  34. Quirici N, Scavullo C, de Girolamo L et al (2010) Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev 19(6):915–925

    Article  CAS  PubMed  Google Scholar 

  35. Park JC, Kim JM, Jung IH et al (2011) Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 38(8):721–731

    Article  PubMed  Google Scholar 

  36. Battula VL, Treml S, Abele H, Bühring HJ (2008) Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differentiation 76(4):326–336

    Article  CAS  PubMed  Google Scholar 

  37. Pilz GA, Ulrich C, Ruh M et al (2011) Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev 20(4):635–646

    Article  CAS  PubMed  Google Scholar 

  38. Van Landuyt KB, Jones EA, McGonagle D, Luyten FP, Lories RJ (2010) Flow cytometric characterization of freshly isolated and culture expanded human synovial cell populations in patients with chronic arthritis. Arthritis Res Ther 12(1):R15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zeddou M, Briquet A, Relic B et al (2010) The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 34(7):693–701

    Article  PubMed  Google Scholar 

  40. Zhang X, Hirai M, Cantero S et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112(4):1206–1218

    Article  CAS  PubMed  Google Scholar 

  41. Bühring HJ, Treml S, Cerabona F, de Zwart P, Kanz L, Sobiesiak M (2009) Phenotypic characterization of distinct human bone marrow-derived MSC subsets. Ann N Y Acad Sci 1176:124–134

    Article  PubMed  CAS  Google Scholar 

  42. Schäffler A, Büchler C (2007) Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827

    Article  PubMed  CAS  Google Scholar 

  43. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95(2):137–148

    Article  CAS  PubMed  Google Scholar 

  44. Vaculik C, Schuster C, Bauer W et al (2012) Human dermis harbors distinct mesenchymal stromal cell subsets. J Invest Dermatol 132(3 Pt 1):563–574

    Article  CAS  PubMed  Google Scholar 

  45. Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 22(11):2903–2911

    Article  CAS  PubMed  Google Scholar 

  46. Sorrentino A, Ferracin M, Castelli G et al (2008) Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol 36(8):1035–1046

    Article  CAS  PubMed  Google Scholar 

  47. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  CAS  PubMed  Google Scholar 

  48. Ren G, Zhao X, Zhang L et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328

    Article  CAS  PubMed  Google Scholar 

  49. Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM (1992) Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80(2):388–395

    CAS  PubMed  Google Scholar 

  50. Mabuchi Y, Morikawa S, Harada S et al (2013) LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Rep 1(2):152–165

    Article  CAS  Google Scholar 

  51. Fukiage K, Aoyama T, Shibata KR et al (2008) Expression of vascular cell adhesion molecule-1 indicates the differentiation potential of human bone marrow stromal cells. Biochem Biophys Res Commun 365(3):406–412

    Article  CAS  PubMed  Google Scholar 

  52. Yang ZX, Han ZB, Ji YR et al (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8(3):e59354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Du W, Li X, Chi Y et al (2016) VCAM-1+ placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Res Ther 7:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Guérette D, Khan PA, Savard PE, Vincent M (2007) Molecular evolution of type VI intermediate filament proteins. BMC Evol Biol 7:164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xie L, Zeng X, Hu J, Chen Q (2015) Characterization of nestin, a selective marker for bone marrow derived mesenchymal stem cells. Stem Cells Int 2015:762098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Pinho S, Lacombe J, Hanoun M et al (2013) PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210(7):1351–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tran TC, Kimura K, Nagano M et al (2011) Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J Cell Physiol 226(1):224–235

    Article  CAS  PubMed  Google Scholar 

  59. Lee RH, Seo MJ, Pulin AA, Gregory CA, Ylostalo J, Prockop DJ (2009) The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113(4):816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109(10):4245–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khan WS, Adesida AB, Tew SR, Lowe ET, Hardingham TE (2010) Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions. J Orthop Res 28(6):834–840

    CAS  PubMed  Google Scholar 

  62. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109(4):1743–1751

    Article  CAS  PubMed  Google Scholar 

  63. Fotia C, Massa A, Boriani F, Baldini N, Granchi D (2015) Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology 67(6):1073–1084

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Wu H, Yang Z et al (2014) Human mesenchymal stem cells possess different biological characteristics but do not change their therapeutic potential when cultured in serum free medium. Stem Cell Res Ther 5(6):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu S, Ge M, Zheng Y et al (2017) CD106 is a novel mediator of bone marrow mesenchymal stem cells via NF-κB in the bone marrow failure of acquired aplastic anemia. Stem Cell Res Ther 8(1):178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Han, Z.C. (2019). Heterogeneity of Human Mesenchymal Stromal/Stem Cells. In: Birbrair, A. (eds) Stem Cells Heterogeneity - Novel Concepts. Advances in Experimental Medicine and Biology, vol 1123. Springer, Cham. https://doi.org/10.1007/978-3-030-11096-3_10

Download citation

Publish with us

Policies and ethics