Skip to main content

Advertisement

Log in

Cardiomyocyte Maturation–the Road is not Obstructed

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent one of the most promising ways to treat cardiovascular diseases. High-purity cardiomyocytes (CM) from different cell sources could be obtained at present. However, the immature nature of these cardiomyocytes hinders its further clinical application. From immature to mature state, it involves structural, functional, and metabolic changes in cardiomyocytes. Generally, two types of culturing (2D and 3D) systems have been reported to induce cardiomyocyte maturation. 2D culture mainly achieves the maturation of cardiomyocytes through long-term culture, co-culture, supplementation of small molecule compounds, and the application of biophysical cues. The combined use of biomaterial's surface topography and biophysical cues also facilitates the maturation of cardiomyocytes. Cardiomyocyte maturation is a complex process involving many signaling pathways, and current methods fail to fully reproduce this process. Therefore, analyzing the signaling pathway network related to the maturation and producing hPSC-CMs with adult-like phenotype is a challenge. In this review, we summarized the structural and functional differences between hPSC-CMs and mature cardiomyocytes, and introduced various methods to induce cardiomyocyte maturation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Xiang, Y., Tanaka, Y., Patterson, B., Kang, Y.-J., Govindaiah, G., Roselaar, N., et al. (2017). Fusion of regionally specified hPSC-derived Organoids models human brain development and interneuron migration. Cell Stem Cell, 21(3). https://doi.org/10.1016/j.stem.2017.07.007

  2. Zhu, Z., Li, Q. V., Lee, K., Rosen, B. P., González, F., Soh, C.-L., & Huangfu, D. (2016). Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell, 18(6), 755–768. https://doi.org/10.1016/j.stem.2016.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang, X., Chen, Y., Liu, X., Ye, L., Yu, M., Shen, Z., Lei, W., & Hu, S. (2021). Uncovering inherited cardiomyopathy with human induced pluripotent stem cells. Frontiers in Cell and Development Biology, 9, 672039. https://doi.org/10.3389/fcell.2021.672039

    Article  Google Scholar 

  4. Ye, L., Ni, X., Zhao, Z. A., Lei, W., & Hu, S. (2018). The application of induced pluripotent stem cells in cardiac disease modeling and drug testing. Journal of Cardiovascular Translational Research, 11(5), 366–374. https://doi.org/10.1007/s12265-018-9811-3

    Article  PubMed  Google Scholar 

  5. Garg, P., Garg, V., Shrestha, R., Sanguinetti, M. C., Kamp, T. J., & Wu, J. C. (2018). Human induced pluripotent stem cell-derived Cardiomyocytes as models for cardiac Channelopathies: A primer for non-Electrophysiologists. Circulation Research, 123(2), 224–243. https://doi.org/10.1161/CIRCRESAHA.118.311209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsa, E., Ahrens, J. H., & Wu, J. C. (2016). Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiological Reviews, 96(3), 1093–1126. https://doi.org/10.1152/physrev.00036.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye, L., Yu, Y., Zhao, Z. A., Zhao, D., Ni, X., Wang, Y., Fang, X., Yu, M., Wang, Y., Tang, J. M., Chen, Y., Shen, Z., Lei, W., & Hu, S. (2021). Patient-specific iPSC-derived cardiomyocytes reveal abnormal regulation of FGF16 in a familial atrial septal defect. Cardiovascular Research. https://doi.org/10.1093/cvr/cvab154

  8. Lam, C. K., & Wu, J. C. (2021). Clinical trial in a dish: Using patient-derived induced pluripotent stem cells to identify risks of drug-induced Cardiotoxicity. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(3), 1019–1031. https://doi.org/10.1161/ATVBAHA.120.314695

    Article  CAS  PubMed  Google Scholar 

  9. Paik, D. T., Chandy, M., & Wu, J. C. (2020). Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacological Reviews, 72(1), 320–342. https://doi.org/10.1124/pr.116.013003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ni, X., Yang, Z. Z., Ye, L. Q., Han, X. L., Zhao, D. D., Ding, F. Y., Ding, N., Wu, H. C., Yu, M., Xu, G. Y., Zhao, Z. A., Lei, W., & Hu, S. J. (2021). Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacologica Sinica. https://doi.org/10.1038/s41401-021-00621-8

  11. Yanamandala, M., Zhu, W., Garry, D. J., Kamp, T. J., Hare, J. M., Jun, H. W., Yoon, Y. S., Bursac, N., Prabhu, S. D., Dorn 2nd, G. W., Bolli, R., Kitsis, R. N., & Zhang, J. (2017). Overcoming the roadblocks to cardiac cell therapy using tissue engineering. Journal of the American College of Cardiology, 70(6), 766–775. https://doi.org/10.1016/j.jacc.2017.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meyer, T., Tiburcy, M., & Zimmermann, W. H. (2019). Cardiac macrotissues-on-a-plate models for phenotypic drug screens. Advanced Drug Delivery Reviews, 140, 93–100. https://doi.org/10.1016/j.addr.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. W., Chen, B., Yang, X., Fugate, J. A., Kalucki, F. A., Futakuchi-Tsuchida, A., Couture, L., Vogel, K. W., Astley, C. A., Baldessari, A., Ogle, J., Don, C. W., Steinberg, Z. L., Seslar, S. P., Tuck, S. A., Tsuchida, H., Naumova, A. V., Dupras, S. K., Lyu, M. S., et al. (2018). Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology, 36(7), 597–605. https://doi.org/10.1038/nbt.4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerdes, A. M., & Capasso, J. M. (1995). Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. Journal of Molecular and Cellular Cardiology, 27(3), 849–856. https://doi.org/10.1016/0022-2828(95)90000-4

    Article  CAS  PubMed  Google Scholar 

  15. Lundy, S. D., Zhu, W. Z., Regnier, M., & Laflamme, M. A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells and Development, 22(14), 1991–2002. https://doi.org/10.1089/scd.2012.0490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ribeiro, M. C., Tertoolen, L. G., Guadix, J. A., Bellin, M., Kosmidis, G., D'Aniello, C., Monshouwer-Kloots, J., Goumans, M. J., Wang, Y. L., Feinberg, A. W., Mummery, C. L., & Passier, R. (2015). Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro--correlation between contraction force and electrophysiology. Biomaterials, 51, 138–150. https://doi.org/10.1016/j.biomaterials.2015.01.067

    Article  CAS  PubMed  Google Scholar 

  17. Ronaldson-Bouchard, K., Ma, S. P., Yeager, K., Chen, T., Song, L., Sirabella, D., Morikawa, K., Teles, D., Yazawa, M., & Vunjak-Novakovic, G. (2018). Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature, 556(7700), 239–243. https://doi.org/10.1038/s41586-018-0016-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feric, N. T., & Radisic, M. (2016). Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Advanced Drug Delivery Reviews, 96, 110–134. https://doi.org/10.1016/j.addr.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  19. Feinberg, A. W., Alford, P. W., Jin, H., Ripplinger, C. M., Werdich, A. A., Sheehy, S. P., Grosberg, A., & Parker, K. K. (2012). Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials, 33(23), 5732–5741. https://doi.org/10.1016/j.biomaterials.2012.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamakura, T., Makiyama, T., Sasaki, K., Yoshida, Y., Wuriyanghai, Y., Chen, J., Hattori, T., Ohno, S., Kita, T., Horie, M., Yamanaka, S., & Kimura, T. (2013). Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circulation Journal, 77(5), 1307–1314. https://doi.org/10.1253/circj.cj-12-0987

    Article  CAS  PubMed  Google Scholar 

  21. Dai, D. F., Danoviz, M. E., Wiczer, B., Laflamme, M. A., & Tian, R. (2017). Mitochondrial maturation in human pluripotent stem cell derived Cardiomyocytes. Stem Cells International, 2017, 5153625. https://doi.org/10.1155/2017/5153625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scuderi, G. J., & Butcher, J. (2017). Naturally engineered maturation of Cardiomyocytes. Frontiers in Cell and Development Biology, 5, 50. https://doi.org/10.3389/fcell.2017.00050

    Article  Google Scholar 

  23. Broughton, K. M., & Sussman, M. A. (2019). Adult Cardiomyocyte cell cycle detour: Off-ramp to quiescent destinations. Trends in Endocrinology and Metabolism, 30(8), 557–567. https://doi.org/10.1016/j.tem.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  24. Liu, S. J. (2013). Characterization of functional capacity of adult ventricular myocytes in long-term culture. International Journal of Cardiology, 168(3), 1923–1936. https://doi.org/10.1016/j.ijcard.2012.12.100

    Article  PubMed  Google Scholar 

  25. Gan, P., Patterson, M., & Sucov, H. M. (2020). Cardiomyocyte polyploidy and implications for heart regeneration. Annual Review of Physiology, 82, 45–61. https://doi.org/10.1146/annurev-physiol-021119-034618

    Article  CAS  PubMed  Google Scholar 

  26. Guo, Y., & Pu, W. T. (2020). Cardiomyocyte maturation: New phase in development. Circulation Research, 126(8), 1086–1106. https://doi.org/10.1161/CIRCRESAHA.119.315862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maroli, G., & Braun, T. (2021). The long and winding road of cardiomyocyte maturation. Cardiovascular Research, 117(3), 712–726. https://doi.org/10.1093/cvr/cvaa159

    Article  CAS  PubMed  Google Scholar 

  28. Piquereau, J., & Ventura-Clapier, R. (2018). Maturation of cardiac energy metabolism during perinatal development. Frontiers in Physiology, 9, 959. https://doi.org/10.3389/fphys.2018.00959

    Article  PubMed  PubMed Central  Google Scholar 

  29. Malandraki-Miller, S., Lopez, C. A., Al-Siddiqi, H., & Carr, C. A. (2018). Changing metabolism in differentiating cardiac progenitor cells-can stem cells become metabolically flexible Cardiomyocytes? Frontiers in Cardiovascular Medicine, 5, 119. https://doi.org/10.3389/fcvm.2018.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stincone, A., Prigione, A., Cramer, T., Wamelink, M. M., Campbell, K., Cheung, E., Olin-Sandoval, V., Gruning, N. M., Kruger, A., Tauqeer Alam, M., Keller, M. A., Breitenbach, M., Brindle, K. M., Rabinowitz, J. D., & Ralser, M. (2015). The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biological Reviews of the Cambridge Philosophical Society, 90(3), 927–963. https://doi.org/10.1111/brv.12140

    Article  PubMed  Google Scholar 

  31. Varro, A., Tomek, J., Nagy, N., Virag, L., Passini, E., Rodriguez, B., & Baczko, I. (2021). Cardiac transmembrane ion channels and action potentials: Cellular physiology and arrhythmogenic behavior. Physiological Reviews, 101(3), 1083–1176. https://doi.org/10.1152/physrev.00024.2019

    Article  CAS  PubMed  Google Scholar 

  32. Veerman, C. C., Mengarelli, I., Lodder, E. M., Kosmidis, G., Bellin, M., Zhang, M., Dittmann, S., Guan, K., Wilde, A. A. M., Schulze-Bahr, E., Greber, B., Bezzina, C. R., & Verkerk, A. O. (2017). Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived Cardiomyocytes unmasks the cellular phenotype of a conduction disease-causing mutation. Journal of the American Heart Association, 6(7). https://doi.org/10.1161/JAHA.116.005135

  33. Wang, Y., Zhu, R., & Tung, L. (2019). Contribution of potassium channels to action potential repolarization of human embryonic stem cell-derived cardiomyocytes. British Journal of Pharmacology, 176(15), 2780–2794. https://doi.org/10.1111/bph.14704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dewenter, M., von der Lieth, A., Katus, H. A., & Backs, J. (2017). Calcium signaling and transcriptional regulation in Cardiomyocytes. Circulation Research, 121(8), 1000–1020. https://doi.org/10.1161/CIRCRESAHA.117.310355

    Article  CAS  PubMed  Google Scholar 

  35. Eisner, D. A., Caldwell, J. L., Kistamas, K., & Trafford, A. W. (2017). Calcium and excitation-contraction coupling in the heart. Circulation Research, 121(2), 181–195. https://doi.org/10.1161/CIRCRESAHA.117.310230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shattock, M. J., Ottolia, M., Bers, D. M., Blaustein, M. P., Boguslavskyi, A., Bossuyt, J., Bridge, J. H., Chen-Izu, Y., Clancy, C. E., Edwards, A., Goldhaber, J., Kaplan, J., Lingrel, J. B., Pavlovic, D., Philipson, K., Sipido, K. R., & Xie, Z. J. (2015). Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. The Journal of Physiology, 593(6), 1361–1382. https://doi.org/10.1113/jphysiol.2014.282319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, S., Chopra, A., Keung, W., Chan, C. W. Y., Costa, K. D., Kong, C. W., Hajjar, R. J., Chen, C. S., & Li, R. A. (2019). Sarco/endoplasmic reticulum Ca(2+)-ATPase is a more effective calcium remover than sodium-calcium exchanger in human embryonic stem cell-derived cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 317(5), H1105–H1115. https://doi.org/10.1152/ajpheart.00540.2018

    Article  CAS  PubMed  Google Scholar 

  38. Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Tse, H. F., Abu-Khalil, A., Huser, T., & Li, R. A. (2009). Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells and Development, 18(10), 1493–1500. https://doi.org/10.1089/scd.2009.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yanagi, K., Takano, M., Narazaki, G., Uosaki, H., Hoshino, T., Ishii, T., Misaki, T., & Yamashita, J. K. (2007). Hyperpolarization-activated cyclic nucleotide-gated channels and T-type calcium channels confer automaticity of embryonic stem cell-derived cardiomyocytes. Stem Cells, 25(11), 2712–2719. https://doi.org/10.1634/stemcells.2006-0388

    Article  CAS  PubMed  Google Scholar 

  40. Lindsey, S. E., Butcher, J. T., & Yalcin, H. C. (2014). Mechanical regulation of cardiac development. Frontiers in Physiology, 5, 318. https://doi.org/10.3389/fphys.2014.00318

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marchiano, S., Bertero, A., & Murry, C. E. (2019). Learn from your elders: Developmental biology lessons to guide maturation of stem cell-derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Litvinukova, M., Talavera-Lopez, C., Maatz, H., Reichart, D., Worth, C. L., Lindberg, E. L., Kanda, M., Polanski, K., Heinig, M., Lee, M., Nadelmann, E. R., Roberts, K., Tuck, L., Fasouli, E. S., DeLaughter, D. M., McDonough, B., Wakimoto, H., Gorham, J. M., Samari, S., et al. (2020). Cells of the adult human heart. Nature, 588(7838), 466–472. https://doi.org/10.1038/s41586-020-2797-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deb, A., & Ubil, E. (2014). Cardiac fibroblast in development and wound healing. Journal of Molecular and Cellular Cardiology, 70, 47–55. https://doi.org/10.1016/j.yjmcc.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  44. Hu, D., Linders, A., Yamak, A., Correia, C., Kijlstra, J. D., Garakani, A., Xiao, L., Milan, D. J., van der Meer, P., Serra, M., Alves, P. M., & Domian, I. J. (2018). Metabolic maturation of human pluripotent stem cell-derived Cardiomyocytes by inhibition of HIF1alpha and LDHA. Circulation Research, 123(9), 1066–1079. https://doi.org/10.1161/CIRCRESAHA.118.313249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abuid, J., Stinson, D. A., & Larsen, P. R. (1973). Serum triiodothyronine and thyroxine in the neonate and the acute increases in these hormones following delivery. The Journal of Clinical Investigation, 52(5), 1195–1199. https://doi.org/10.1172/JCI107286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirose, K., Payumo, A. Y., Cutie, S., Hoang, A., Zhang, H., Guyot, R., Lunn, D., Bigley, R. B., Yu, H., Wang, J., Smith, M., Gillett, E., Muroy, S. E., Schmid, T., Wilson, E., Field, K. A., Reeder, D. M., Maden, M., Yartsev, M. M., et al. (2019). Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science, 364(6436), 184–188. https://doi.org/10.1126/science.aar2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleischer, S., Jahnke, H. G., Fritsche, E., Girard, M., & Robitzki, A. A. (2019). Comprehensive human stem cell differentiation in a 2D and 3D mode to cardiomyocytes for long-term cultivation and multiparametric monitoring on a multimodal microelectrode array setup. Biosensors & Bioelectronics, 126, 624–631. https://doi.org/10.1016/j.bios.2018.10.061

    Article  CAS  Google Scholar 

  48. Ebert, A., Joshi, A. U., Andorf, S., Dai, Y., Sampathkumar, S., Chen, H., Li, Y., Garg, P., Toischer, K., Hasenfuss, G., Mochly-Rosen, D., & Wu, J. C. (2019). Proteasome-dependent regulation of distinct metabolic states during long-term culture of human iPSC-derived Cardiomyocytes. Circulation Research, 125(1), 90–103. https://doi.org/10.1161/CIRCRESAHA.118.313973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pasquier, J., Gupta, R., Rioult, D., Hoarau-Vechot, J., Courjaret, R., Machaca, K., Al Suwaidi, J., Stanley, E. G., Rafii, S., Elliott, D. A., Abi Khalil, C., & Rafii, A. (2017). Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes. The Journal of Heart and Lung Transplantation, 36(6), 684–693. https://doi.org/10.1016/j.healun.2017.01.001

    Article  PubMed  Google Scholar 

  50. Lee, D. S., Chen, J. H., Lundy, D. J., Liu, C. H., Hwang, S. M., Pabon, L., Shieh, R. C., Chen, C. C., Wu, S. N., Yan, Y. T., Lee, S. T., Chiang, P. M., Chien, S., Murry, C. E., & Hsieh, P. C. (2015). Defined MicroRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived Cardiomyocytes. Cell Reports, 12(12), 1960–1967. https://doi.org/10.1016/j.celrep.2015.08.042

    Article  CAS  PubMed  Google Scholar 

  51. Dunn, K. K., Reichardt, I. M., Simmons, A. D., Jin, G., Floy, M. E., Hoon, K. M., & Palecek, S. P. (2019). Coculture of endothelial cells with human pluripotent stem cell-derived cardiac progenitors reveals a differentiation stage-specific enhancement of Cardiomyocyte maturation. Biotechnology Journal, 14(8), e1800725. https://doi.org/10.1002/biot.201800725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Biendarra-Tiegs, S. M., Clemens, D. J., Secreto, F. J., & Nelson, T. J. (2020). Human induced pluripotent stem cell-derived non-Cardiomyocytes modulate cardiac electrophysiological maturation through Connexin 43-mediated cell-cell interactions. Stem Cells and Development, 29(2), 75–89. https://doi.org/10.1089/scd.2019.0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giacomelli, E., Meraviglia, V., Campostrini, G., Cochrane, A., Cao, X., van Helden, R. W. J., Krotenberg Garcia, A., Mircea, M., Kostidis, S., Davis, R. P., van Meer, B. J., Jost, C. R., Koster, A. J., Mei, H., Miguez, D. G., Mulder, A. A., Ledesma-Terron, M., Pompilio, G., Sala, L., et al. (2020). Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell, 26(6), 862–879.e811. https://doi.org/10.1016/j.stem.2020.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Varzideh, F., Mahmoudi, E., & Pahlavan, S. (2019). Coculture with noncardiac cells promoted maturation of human stem cell-derived cardiomyocyte microtissues. Journal of Cellular Biochemistry, 120(10), 16681–16691. https://doi.org/10.1002/jcb.28926

    Article  CAS  PubMed  Google Scholar 

  55. Winbo, A., Ramanan, S., Eugster, E., Jovinge, S., Skinner, J. R., & Montgomery, J. M. (2020). Functional coculture of sympathetic neurons and cardiomyocytes derived from human-induced pluripotent stem cells. American Journal of Physiology Heart and Circulatory Physiology, 319(5), H927–H937. https://doi.org/10.1152/ajpheart.00546.2020

    Article  CAS  PubMed  Google Scholar 

  56. Yoshida, S., Miyagawa, S., Fukushima, S., Kawamura, T., Kashiyama, N., Ohashi, F., Toyofuku, T., Toda, K., & Sawa, Y. (2018). Maturation of human induced pluripotent stem cell-derived Cardiomyocytes by soluble factors from human Mesenchymal stem cells. Molecular Therapy, 26(11), 2681–2695. https://doi.org/10.1016/j.ymthe.2018.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tallawi, M., Rai, R., Boccaccini, A. R., & Aifantis, K. E. (2015). Effect of substrate mechanics on cardiomyocyte maturation and growth. Tissue Engineering. Part B, Reviews, 21(1), 157–165. https://doi.org/10.1089/ten.TEB.2014.0383

    Article  CAS  PubMed  Google Scholar 

  58. Weber, N., Schwanke, K., Greten, S., Wendland, M., Iorga, B., Fischer, M., Geers-Knorr, C., Hegermann, J., Wrede, C., Fiedler, J., Kempf, H., Franke, A., Piep, B., Pfanne, A., Thum, T., Martin, U., Brenner, B., Zweigerdt, R., & Kraft, T. (2016). Stiff matrix induces switch to pure beta-cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic Research in Cardiology, 111(6), 68. https://doi.org/10.1007/s00395-016-0587-9

    Article  CAS  PubMed  Google Scholar 

  59. Martewicz, S., Serena, E., Zatti, S., Keller, G., & Elvassore, N. (2017). Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Research, 25, 107–114. https://doi.org/10.1016/j.scr.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  60. Feaster, T. K., Cadar, A. G., Wang, L., Williams, C. H., Chun, Y. W., Hempel, J. E., Bloodworth, N., Merryman, W. D., Lim, C. C., Wu, J. C., Knollmann, B. C., & Hong, C. C. (2015). Matrigel mattress: A method for the generation of single contracting human-induced pluripotent stem cell-derived Cardiomyocytes. Circulation Research, 117(12), 995–1000. https://doi.org/10.1161/CIRCRESAHA.115.307580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Happe, C. L., & Engler, A. J. (2016). Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circulation Research, 118(2), 296–310. https://doi.org/10.1161/CIRCRESAHA.115.305139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stoppel, W. L., Kaplan, D. L., & Black 3rd., L. D. (2016). Electrical and mechanical stimulation of cardiac cells and tissue constructs. Advanced Drug Delivery Reviews, 96, 135–155. https://doi.org/10.1016/j.addr.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  63. Hirt, M. N., Boeddinghaus, J., Mitchell, A., Schaaf, S., Bornchen, C., Muller, C., Schulz, H., Hubner, N., Stenzig, J., Stoehr, A., Neuber, C., Eder, A., Luther, P. K., Hansen, A., & Eschenhagen, T. (2014). Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. Journal of Molecular and Cellular Cardiology, 74, 151–161. https://doi.org/10.1016/j.yjmcc.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  64. Crestani, T., Steichen, C., Neri, E., Rodrigues, M., Fonseca-Alaniz, M. H., Ormrod, B., Holt, M. R., Pandey, P., Harding, S., Ehler, E., & Krieger, J. E. (2020). Electrical stimulation applied during differentiation drives the hiPSC-CMs towards a mature cardiac conduction-like cells. Biochemical and Biophysical Research Communications, 533(3), 376–382. https://doi.org/10.1016/j.bbrc.2020.09.021

    Article  CAS  PubMed  Google Scholar 

  65. Ma, R., Liang, J., Huang, W., Guo, L., Cai, W., Wang, L., Paul, C., Yang, H. T., Kim, H. W., & Wang, Y. (2018). Electrical stimulation enhances cardiac differentiation of human induced pluripotent stem cells for myocardial infarction therapy. Antioxidants & Redox Signaling, 28(5), 371–384. https://doi.org/10.1089/ars.2016.6766

    Article  CAS  Google Scholar 

  66. Ruan, J. L., Tulloch, N. L., Saiget, M., Paige, S. L., Razumova, M. V., Regnier, M., Tung, K. C., Keller, G., Pabon, L., Reinecke, H., & Murry, C. E. (2015). Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells, 33(7), 2148–2157. https://doi.org/10.1002/stem.2036

    Article  CAS  PubMed  Google Scholar 

  67. Abilez, O. J., Tzatzalos, E., Yang, H., Zhao, M. T., Jung, G., Zollner, A. M., Tiburcy, M., Riegler, J., Matsa, E., Shukla, P., Zhuge, Y., Chour, T., Chen, V. C., Burridge, P. W., Karakikes, I., Kuhl, E., Bernstein, D., Couture, L. A., Gold, J. D., et al. (2018). Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells, 36(2), 265–277. https://doi.org/10.1002/stem.2732

    Article  CAS  PubMed  Google Scholar 

  68. Leonard, A., Bertero, A., Powers, J. D., Beussman, K. M., Bhandari, S., Regnier, M., Murry, C. E., & Sniadecki, N. J. (2018). Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. Journal of Molecular and Cellular Cardiology, 118, 147–158. https://doi.org/10.1016/j.yjmcc.2018.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirt, M. N., Sorensen, N. A., Bartholdt, L. M., Boeddinghaus, J., Schaaf, S., Eder, A., Vollert, I., Stohr, A., Schulze, T., Witten, A., Stoll, M., Hansen, A., & Eschenhagen, T. (2012). Increased afterload induces pathological cardiac hypertrophy: A new in vitro model. Basic Research in Cardiology, 107(6), 307. https://doi.org/10.1007/s00395-012-0307-z

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kit-Anan, W., Mazo, M. M., Wang, B. X., Leonardo, V., Pence, I. J., Gopal, S., Gelmi, A., Nagelkerke, A., Becce, M., Chiappini, C., Harding, S. E., Terracciano, C. M., & Stevens, M. M. (2021). Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication, 13(2), 025004. https://doi.org/10.1088/1758-5090/abce0a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ruan, J. L., Tulloch, N. L., Razumova, M. V., Saiget, M., Muskheli, V., Pabon, L., Reinecke, H., Regnier, M., & Murry, C. E. (2016). Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation, 134(20), 1557–1567. https://doi.org/10.1161/CIRCULATIONAHA.114.014998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ulmer, B. M., Stoehr, A., Schulze, M. L., Patel, S., Gucek, M., Mannhardt, I., Funcke, S., Murphy, E., Eschenhagen, T., & Hansen, A. (2018). Contractile work contributes to maturation of energy metabolism in hiPSC-derived Cardiomyocytes. Stem Cell Reports, 10(3), 834–847. https://doi.org/10.1016/j.stemcr.2018.01.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rog-Zielinska, E. A., Thomson, A., Kenyon, C. J., Brownstein, D. G., Moran, C. M., Szumska, D., Michailidou, Z., Richardson, J., Owen, E., Watt, A., Morrison, H., Forrester, L. M., Bhattacharya, S., Holmes, M. C., & Chapman, K. E. (2013). Glucocorticoid receptor is required for foetal heart maturation. Human Molecular Genetics, 22(16), 3269–3282. https://doi.org/10.1093/hmg/ddt182

    Article  CAS  PubMed  Google Scholar 

  74. Parikh, S. S., Blackwell, D. J., Gomez-Hurtado, N., Frisk, M., Wang, L., Kim, K., Dahl, C. P., Fiane, A., Tonnessen, T., Kryshtal, D. O., Louch, W. E., & Knollmann, B. C. (2017). Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived Cardiomyocytes. Circulation Research, 121(12), 1323–1330. https://doi.org/10.1161/CIRCRESAHA.117.311920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thorpe-Beeston, J. G., Nicolaides, K. H., Felton, C. V., Butler, J., & McGregor, A. M. (1991). Maturation of the secretion of thyroid hormone and thyroid-stimulating hormone in the fetus. The New England Journal of Medicine, 324(8), 532–536. https://doi.org/10.1056/NEJM199102213240805

    Article  CAS  PubMed  Google Scholar 

  76. Yang, X., Rodriguez, M., Pabon, L., Fischer, K. A., Reinecke, H., Regnier, M., Sniadecki, N. J., Ruohola-Baker, H., & Murry, C. E. (2014). Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 72, 296–304. https://doi.org/10.1016/j.yjmcc.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garbern, J. C., & Lee, R. T. (2021). Mitochondria and metabolic transitions in cardiomyocytes: Lessons from development for stem cell-derived cardiomyocytes. Stem Cell Research & Therapy, 12(1), 177. https://doi.org/10.1186/s13287-021-02252-6

    Article  Google Scholar 

  78. Correia, C., Koshkin, A., Duarte, P., Hu, D., Teixeira, A., Domian, I., Serra, M., & Alves, P. M. (2017). Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Scientific Reports, 7(1), 8590. https://doi.org/10.1038/s41598-017-08713-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Horikoshi, Y., Yan, Y., Terashvili, M., Wells, C., Horikoshi, H., Fujita, S., Bosnjak, Z. J., & Bai, X. (2019). Fatty acid-treated induced pluripotent stem cell-derived human Cardiomyocytes exhibit adult Cardiomyocyte-like energy metabolism phenotypes. Cells, 8(9). https://doi.org/10.3390/cells8091095

  80. Yang, X., Rodriguez, M. L., Leonard, A., Sun, L., Fischer, K. A., Wang, Y., Ritterhoff, J., Zhao, L., Kolwicz Jr., S. C., Pabon, L., Reinecke, H., Sniadecki, N. J., Tian, R., Ruohola-Baker, H., Xu, H., & Murry, C. E. (2019). Fatty acids enhance the maturation of Cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports, 13(4), 657–668. https://doi.org/10.1016/j.stemcr.2019.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puente, B. N., Kimura, W., Muralidhar, S. A., Moon, J., Amatruda, J. F., Phelps, K. L., Grinsfelder, D., Rothermel, B. A., Chen, R., Garcia, J. A., Santos, C. X., Thet, S., Mori, E., Kinter, M. T., Rindler, P. M., Zacchigna, S., Mukherjee, S., Chen, D. J., Mahmoud, A. I., et al. (2014). The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell, 157(3), 565–579. https://doi.org/10.1016/j.cell.2014.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lim, G. B. (2020). Inhibiting fatty acid oxidation promotes cardiomyocyte proliferation. Nature Reviews Cardiology, 17(5), 266–267. https://doi.org/10.1038/s41569-020-0361-4

    Article  CAS  PubMed  Google Scholar 

  83. Nakano, H., Minami, I., Braas, D., Pappoe, H., Wu, X., Sagadevan, A., Vergnes, L., Fu, K., Morselli, M., Dunham, C., Ding, X., Stieg, A. Z., Gimzewski, J. K., Pellegrini, M., Clark, P. M., Reue, K., Lusis, A. J., Ribalet, B., Kurdistani, S. K., et al. (2017). Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. eLife, 6. https://doi.org/10.7554/eLife.29330

  84. Gentillon, C., Li, D., Duan, M., Yu, W. M., Preininger, M. K., Jha, R., Rampoldi, A., Saraf, A., Gibson, G. C., Qu, C. K., Brown, L. A., & Xu, C. (2019). Targeting HIF-1alpha in combination with PPARalpha activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 132, 120–135. https://doi.org/10.1016/j.yjmcc.2019.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Semenza, G. L. (2014). Hypoxia-inducible factor 1 and cardiovascular disease. Annual Review of Physiology, 76, 39–56. https://doi.org/10.1146/annurev-physiol-021113-170322

    Article  CAS  PubMed  Google Scholar 

  86. Menendez-Montes, I., Escobar, B., Palacios, B., Gomez, M. J., Izquierdo-Garcia, J. L., Flores, L., Jimenez-Borreguero, L. J., Aragones, J., Ruiz-Cabello, J., Torres, M., & Martin-Puig, S. (2016). Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Developmental Cell, 39(6), 724–739. https://doi.org/10.1016/j.devcel.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  87. Semenza, G. L. (2001). Hypoxia-inducible factor 1: Control of oxygen homeostasis in health and disease. Pediatric Research, 49(5), 614–617. https://doi.org/10.1203/00006450-200105000-00002

    Article  CAS  PubMed  Google Scholar 

  88. Rey, S., Luo, W., Shimoda, L. A., & Semenza, G. L. (2011). Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood, 117(18), 4988–4998. https://doi.org/10.1182/blood-2010-11-321190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rowe, G. C., Jiang, A., & Arany, Z. (2010). PGC-1 coactivators in cardiac development and disease. Circulation Research, 107(7), 825–838. https://doi.org/10.1161/CIRCRESAHA.110.223818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, Y., Bai, H., Guo, F., Thai, P. N., Luo, X., Zhang, P., Yang, C., Feng, X., Zhu, D., Guo, J., Liang, P., Xu, Z., Yang, H., & Lu, X. (2020). PGC-1alpha activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells. Aging (Albany NY), 12(8), 7411–7430. https://doi.org/10.18632/aging.103088

    Article  CAS  Google Scholar 

  91. Murphy, S. A., Miyamoto, M., Kervadec, A., Kannan, S., Tampakakis, E., Kambhampati, S., Lin, B. L., Paek, S., Andersen, P., Lee, D. I., Zhu, R., An, S. S., Kass, D. A., Uosaki, H., Colas, A. R., & Kwon, C. (2021). PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nature Communications, 12(1), 1648. https://doi.org/10.1038/s41467-021-21957-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rupert, C. E., & Coulombe, K. L. K. (2017). IGF1 and NRG1 enhance proliferation, metabolic maturity, and the force-frequency response in hESC-derived engineered cardiac tissues. Stem Cells International, 2017, 7648409. https://doi.org/10.1155/2017/7648409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McDevitt, T. C., Laflamme, M. A., & Murry, C. E. (2005). Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. Journal of Molecular and Cellular Cardiology, 39(6), 865–873. https://doi.org/10.1016/j.yjmcc.2005.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chong, Z. Z., Shang, Y. C., & Maiese, K. (2011). Cardiovascular disease and mTOR signaling. Trends in Cardiovascular Medicine, 21(5), 151–155. https://doi.org/10.1016/j.tcm.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Garbern, J. C., Helman, A., Sereda, R., Sarikhani, M., Ahmed, A., Escalante, G. O., Ogurlu, R., Kim, S. L., Zimmerman, J. F., Cho, A., MacQueen, L., Bezzerides, V. J., Parker, K. K., Melton, D. A., & Lee, R. T. (2020). Inhibition of mTOR signaling enhances maturation of Cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation, 141(4), 285–300. https://doi.org/10.1161/circulationaha.119.044205

    Article  CAS  PubMed  Google Scholar 

  96. Jackman, C. P., Carlson, A. L., & Bursac, N. (2016). Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials, 111, 66–79. https://doi.org/10.1016/j.biomaterials.2016.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sakamoto, T., Matsuura, T. R., Wan, S., Ryba, D. M., Kim, J. U., Won, K. J., Lai, L., Petucci, C., Petrenko, N., Musunuru, K., Vega, R. B., & Kelly, D. P. (2020). A critical role for estrogen-related receptor signaling in cardiac maturation. Circulation Research, 126(12), 1685–1702. https://doi.org/10.1161/CIRCRESAHA.119.316100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miao, S., Zhao, D., Wang, X., Ni, X., Fang, X., Yu, M., Ye, L., Yang, J., Wu, H., Han, X., Qu, L., Li, L., Lan, F., Shen, Z., Lei, W., Zhao, Z. A., & Hu, S. (2020). Retinoic acid promotes metabolic maturation of human embryonic stem cell-derived Cardiomyocytes. Theranostics, 10(21), 9686–9701. https://doi.org/10.7150/thno.44146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, J., Ding, N., Zhao, D., Yu, Y., Shao, C., Ni, X., Zhao, Z. A., Li, Z., Chen, J., Ying, Z., Yu, M., Lei, W., & Hu, S. (2021). Intermittent starvation promotes maturation of human embryonic stem cell-derived Cardiomyocytes. Frontiers in Cell and Development Biology, 9, 687769. https://doi.org/10.3389/fcell.2021.687769

    Article  Google Scholar 

  100. Abbas, N., Perbellini, F., & Thum, T. (2020). Non-coding RNAs: Emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Research in Cardiology, 115(5), 52. https://doi.org/10.1007/s00395-020-0816-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fang, X., Miao, S., Yu, Y., Ding, F., Han, X., Wu, H., Zhao, Z. A., Wang, Y., Hu, S., & Lei, W. (2019). MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway. Journal of Molecular and Cellular Cardiology, 134, 1–12. https://doi.org/10.1016/j.yjmcc.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  102. Devaux, Y., Zangrando, J., Schroen, B., Creemers, E. E., Pedrazzini, T., Chang, C. P., Dorn 2nd, G. W., Thum, T., Heymans, S., & Cardiolinc, n. (2015). Long noncoding RNAs in cardiac development and ageing. Nature Reviews Cardiology, 12(7), 415–425. https://doi.org/10.1038/nrcardio.2015.55

    Article  CAS  PubMed  Google Scholar 

  103. Kay, M., & Soltani, B. M. (2021). LncRNAs in Cardiomyocyte maturation: New window for cardiac regenerative medicine. Noncoding RNA, 7(1). https://doi.org/10.3390/ncrna7010020

  104. Kumar, N., Dougherty, J. A., Manring, H. R., Elmadbouh, I., Mergaye, M., Czirok, A., Greta Isai, D., Belevych, A. E., Yu, L., Janssen, P. M. L., Fadda, P., Gyorke, S., Ackermann, M. A., Angelos, M. G., & Khan, M. (2019). Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Scientific Reports, 9(1), 13188. https://doi.org/10.1038/s41598-019-49653-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Poon, E. N., Hao, B., Guan, D., Jun Li, M., Lu, J., Yang, Y., Wu, B., Wu, S. C., Webb, S. E., Liang, Y., Miller, A. L., Yao, X., Wang, J., Yan, B., & Boheler, K. R. (2018). Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovascular Research, 114(6), 894–906. https://doi.org/10.1093/cvr/cvy019

    Article  CAS  PubMed  Google Scholar 

  106. Kuppusamy, K. T., Jones, D. C., Sperber, H., Madan, A., Fischer, K. A., Rodriguez, M. L., Pabon, L., Zhu, W. Z., Tulloch, N. L., Yang, X., Sniadecki, N. J., Laflamme, M. A., Ruzzo, W. L., Murry, C. E., & Ruohola-Baker, H. (2015). Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 112(21), E2785–E2794. https://doi.org/10.1073/pnas.1424042112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miklas, J. W., Clark, E., Levy, S., Detraux, D., Leonard, A., Beussman, K., Showalter, M. R., Smith, A. T., Hofsteen, P., Yang, X., Macadangdang, J., Manninen, T., Raftery, D., Madan, A., Suomalainen, A., Kim, D. H., Murry, C. E., Fiehn, O., Sniadecki, N. J., et al. (2019). TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nature Communications, 10(1), 4671. https://doi.org/10.1038/s41467-019-12482-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, Q., Cheng, Z., Yu, Z., Zhu, C., & Qian, L. (2019). Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes. Molecular Medicine Reports, 19(6), 4927–4934. https://doi.org/10.3892/mmr.2019.10132

    Article  CAS  PubMed  Google Scholar 

  109. Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., Li, C., Chen, Y., Chen, Y., Liao, W., Liao, Y., & Bin, J. (2019). Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 139(25), 2857–2876. https://doi.org/10.1161/CIRCULATIONAHA.118.038361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gilsbach, R., Schwaderer, M., Preissl, S., Gruning, B. A., Kranzhofer, D., Schneider, P., Nuhrenberg, T. G., Mulero-Navarro, S., Weichenhan, D., Braun, C., Dressen, M., Jacobs, A. R., Lahm, H., Doenst, T., Backofen, R., Krane, M., Gelb, B. D., & Hein, L. (2018). Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nature Communications, 9(1), 391. https://doi.org/10.1038/s41467-017-02762-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saheli, M., Pirhajati Mahabadi, V., Mesbah-Namin, S. A., Seifalian, A., & Bagheri-Hosseinabadi, Z. (2020). DNA methyltransferase inhibitor 5-azacytidine in high dose promotes ultrastructural maturation of cardiomyocyte. Stem Cell Investig, 7, 22. https://doi.org/10.21037/sci-2020-007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Biermann, M., Cai, W., Lang, D., Hermsen, J., Profio, L., Zhou, Y., Czirok, A., Isai, D. G., Napiwocki, B. N., Rodriguez, A. M., Brown, M. E., Woon, M. T., Shao, A., Han, T., Park, D., Hacker, T. A., Crone, W. C., Burlingham, W. J., Glukhov, A. V., et al. (2019). Epigenetic priming of human pluripotent stem cell-derived cardiac progenitor cells accelerates Cardiomyocyte maturation. Stem Cells, 37(7), 910–923. https://doi.org/10.1002/stem.3021

    Article  CAS  PubMed  Google Scholar 

  113. Lee, J., Sutani, A., Kaneko, R., Takeuchi, J., Sasano, T., Kohda, T., Ihara, K., Takahashi, K., Yamazoe, M., Morio, T., Furukawa, T., & Ishino, F. (2020). In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nature Communications, 11(1), 4283. https://doi.org/10.1038/s41467-020-18031-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hofbauer, P., Jahnel, S. M., Papai, N., Giesshammer, M., Deyett, A., Schmidt, C., Penc, M., Tavernini, K., Grdseloff, N., Meledeth, C., Ginistrelli, L. C., Ctortecka, C., Salic, S., Novatchkova, M., & Mendjan, S. (2021). Cardioids reveal self-organizing principles of human cardiogenesis. Cell. https://doi.org/10.1016/j.cell.2021.04.034

  115. Nugraha, B., Buono, M. F., & Emmert, M. Y. (2018). Modelling human cardiac diseases with 3D organoid. European Heart Journal, 39(48), 4234–4237. https://doi.org/10.1093/eurheartj/ehy765

    Article  CAS  PubMed  Google Scholar 

  116. Richards, D. J., Li, Y., Kerr, C. M., Yao, J., Beeson, G. C., Coyle, R. C., Chen, X., Jia, J., Damon, B., Wilson, R., Starr Hazard, E., Hardiman, G., Menick, D. R., Beeson, C. C., Yao, H., Ye, T., & Mei, Y. (2020). Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nature Biomedical Engineering, 4(4), 446–462. https://doi.org/10.1038/s41551-020-0539-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao, D., Lei, W., & Hu, S. (2021). Cardiac organoid - a promising perspective of preclinical model. Stem Cell Research & Therapy, 12(1), 272. https://doi.org/10.1186/s13287-021-02340-7

    Article  Google Scholar 

  118. Mills, R. J., Titmarsh, D. M., Koenig, X., Parker, B. L., Ryall, J. G., Quaife-Ryan, G. A., Voges, H. K., Hodson, M. P., Ferguson, C., Drowley, L., Plowright, A. T., Needham, E. J., Wang, Q. D., Gregorevic, P., Xin, M., Thomas, W. G., Parton, R. G., Nielsen, L. K., Launikonis, B. S., et al. (2017). Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 114(40), E8372–E8381. https://doi.org/10.1073/pnas.1707316114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Varzideh, F., Pahlavan, S., Ansari, H., Halvaei, M., Kostin, S., Feiz, M. S., Latifi, H., Aghdami, N., Braun, T., & Baharvand, H. (2019). Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials, 192, 537–550. https://doi.org/10.1016/j.biomaterials.2018.11.033

    Article  CAS  PubMed  Google Scholar 

  120. Rao, C., Prodromakis, T., Kolker, L., Chaudhry, U. A., Trantidou, T., Sridhar, A., Weekes, C., Camelliti, P., Harding, S. E., Darzi, A., Yacoub, M. H., Athanasiou, T., & Terracciano, C. M. (2013). The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials, 34(10), 2399–2411. https://doi.org/10.1016/j.biomaterials.2012.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abadi, P. P. S. S., Garbern, J. C., Behzadi, S., Hill, M. J., Tresback, J. S., Heydari, T., Ejtehadi, M. R., Ahmed, N., Copley, E., Aghaverdi, H., Lee, R. T., Farokhzad, O. C., & Mahmoudi, M. (2018). Engineering of mature human induced pluripotent stem cell-derived Cardiomyocytes using substrates with multiscale topography. Advanced Functional Materials, 28(19). https://doi.org/10.1002/adfm.201707378

  122. Liu, T., Zhang, S., Huang, C., Ma, S., Bai, R., Li, Y., Chang, Y., Hang, C., Saleem, A., Dong, T., Guo, T., Jiang, Y., Lu, W., Zhang, L., Jianwen, L., Jiang, H., & Lan, F. (2021). Microscale grooves regulate maturation development of hPSC-CMs by the transient receptor potential channels (TRP channels). Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/jcmm.16429

  123. Huethorst, E., Hortigon, M., Zamora-Rodriguez, V., Reynolds, P. M., Burton, F., Smith, G., & Gadegaard, N. (2016). Enhanced human-induced pluripotent stem cell derived Cardiomyocyte maturation using a dual microgradient substrate. ACS Biomaterials Science & Engineering, 2(12), 2231–2239. https://doi.org/10.1021/acsbiomaterials.6b00426

    Article  CAS  Google Scholar 

  124. Carson, D., Hnilova, M., Yang, X., Nemeth, C. L., Tsui, J. H., Smith, A. S., Jiao, A., Regnier, M., Murry, C. E., Tamerler, C., & Kim, D. H. (2016). Nanotopography-induced structural anisotropy and sarcomere development in human Cardiomyocytes derived from induced pluripotent stem cells. ACS Applied Materials & Interfaces, 8(34), 21923–21932. https://doi.org/10.1021/acsami.5b11671

    Article  CAS  Google Scholar 

  125. Silbernagel, N., Korner, A., Balitzki, J., Jaggy, M., Bertels, S., Richter, B., Hippler, M., Hellwig, A., Hecker, M., Bastmeyer, M., & Ullrich, N. D. (2020). Shaping the heart: Structural and functional maturation of iPSC-cardiomyocytes in 3D-micro-scaffolds. Biomaterials, 227, 119551. https://doi.org/10.1016/j.biomaterials.2019.119551

    Article  CAS  PubMed  Google Scholar 

  126. Gorain, B., Choudhury, H., Pandey, M., Kesharwani, P., Abeer, M. M., Tekade, R. K., & Hussain, Z. (2018). Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomedicine & Pharmacotherapy, 104, 496–508. https://doi.org/10.1016/j.biopha.2018.05.066

    Article  CAS  Google Scholar 

  127. Lekshmi, G., Sana, S. S., Nguyen, V. H., Nguyen, T. H. C., Nguyen, C. C., Le, Q. V., & Peng, W. (2020). Recent Progress in carbon nanotube polymer composites in tissue engineering and regeneration. International Journal of Molecular Sciences, 21(17). https://doi.org/10.3390/ijms21176440

  128. Ren, J., Xu, Q., Chen, X., Li, W., Guo, K., Zhao, Y., Wang, Q., Zhang, Z., Peng, H., & Li, Y. G. (2017). Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Advanced Materials, 29(44). https://doi.org/10.1002/adma.201702713

  129. Wang, J., Cui, C., Nan, H., Yu, Y., Xiao, Y., Poon, E., Yang, G., Wang, X., Wang, C., Li, L., Boheler, K. R., Ma, X., Cheng, X., Ni, Z., & Chen, M. (2017). Graphene sheet-induced global maturation of Cardiomyocytes derived from human induced pluripotent stem cells. ACS Applied Materials & Interfaces, 9(31), 25929–25940. https://doi.org/10.1021/acsami.7b08777

    Article  CAS  Google Scholar 

  130. Shiekh, P. A., Singh, A., & Kumar, A. (2018). Engineering bioinspired antioxidant materials promoting Cardiomyocyte functionality and maturation for tissue engineering application. ACS Applied Materials & Interfaces, 10(4), 3260–3273. https://doi.org/10.1021/acsami.7b14777

    Article  CAS  Google Scholar 

  131. Cui, C., Wang, J., Qian, D., Huang, J., Lin, J., Kingshott, P., Wang, P. Y., & Chen, M. (2019). Binary colloidal crystals drive spheroid formation and accelerate maturation of human-induced pluripotent stem cell-derived Cardiomyocytes. ACS Applied Materials & Interfaces, 11(4), 3679–3689. https://doi.org/10.1021/acsami.8b17090

    Article  CAS  Google Scholar 

  132. Wang, Y., Cui, H., Wang, Y., Xu, C., Esworthy, T. J., Hann, S. Y., Boehm, M., Shen, Y. L., Mei, D., & Zhang, L. G. (2021). 4D printed cardiac construct with aligned Myofibers and adjustable curvature for myocardial regeneration. ACS Applied Materials & Interfaces, 13(11), 12746–12758. https://doi.org/10.1021/acsami.0c17610

    Article  CAS  Google Scholar 

  133. Zhu, Y., Do, V. D., Richards, A. M., & Foo, R. (2021). What we know about cardiomyocyte dedifferentiation. Journal of Molecular and Cellular Cardiology, 152, 80–91. https://doi.org/10.1016/j.yjmcc.2020.11.016

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, Y., Gago-Lopez, N., Li, N., Zhang, Z., Alver, N., Liu, Y., Martinson, A. M., Mehri, A., & MacLellan, W. R. (2019). Single-cell imaging and transcriptomic analyses of endogenous cardiomyocyte dedifferentiation and cycling. Cell Discovery, 5, 30. https://doi.org/10.1038/s41421-019-0095-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yu, M., Lei, W., Cao, J., Wang, L., Ma, A., Zhao, Z. A., Yang, H. T., Shen, Z., Lan, F., Cao, F., Liang, P., Pei, X., Xiang, A. P., Yu, J., Zhang, Y., Zhang, Y., Li, Q., Zhou, J., Wei, J., et al. (2021). Requirements for human cardiomyocytes. Cell Proliferation, e13150. https://doi.org/10.1111/cpr.13150

Download references

Funding

This study was supported by the National Key R&D Program of China (2021YFA1101902), the National Natural Science Foundation of China (82170364, 91949111, 81970223, 82003756), Jiangsu Province’s Key Discipline/Laboratory of Medicine (XK201118) and Introduction Project of Clinical Medicine Expert Team for Suzhou (SZYJTD201704).

Author information

Authors and Affiliations

Authors

Contributions

YW, MY and KH wrote the manuscript and contributed equally to this work. LW revised the manuscript. MT and SH wrote and revised the manuscript.

Corresponding authors

Correspondence to Mingliang Tang or Shijun Hu.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

All the authors declared their consent to publish.

Competing Interests

All the authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yaning Wang, Miao Yu, and Kaili Hao are co-first authors and contribute equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, M., Hao, K. et al. Cardiomyocyte Maturation–the Road is not Obstructed. Stem Cell Rev and Rep 18, 2966–2981 (2022). https://doi.org/10.1007/s12015-022-10407-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10407-y

Keywords

Navigation