Skip to main content
Log in

The Role of Low-Dose Radiation in Association with TNF-α on Immunomodulatory Properties of Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) is an important medical tool. Despite the effects associated with high-dose radiation during or after treatment, as well as in accidental exposures, the direct or indirect effect of low-dose IR in cells remain poorly documented. IR can affect the tissue microenvironment, including mesenchymal stem cells (MSCs), which have high regenerative and immunomodulatory capacities. This study aimed to investigate the effect of low-dose IR in association with the inflammatory stimuli of TNF-α on the immunomodulatory capacity of MSCs. MSCs were irradiated with a low-dose IR, stimulated with TNF-α, and cultivated in a bystander system with murine spleen cells. The results showed that TNF-R1 is expressed in MSCs and is not affected, even in irradiated MSCs. However, irradiated MSCs produced reduced amounts of IL-6 and increased amounts of IL-10. The levels of PGE2 and NO in MSCs were also increased when stimulated with TNF-α. Furthermore, conditioned media from irradiated MSCs reduced the proliferation of bystander lymphocytes and reduced the metabolic activity of macrophages. In addition, conditioned media from irradiated MSCs modulated the profile of cytokines in bystander spleen cells (lymphocytes and macrophages), reducing inflammatory and increasing anti-inflammatory cytokines, also increasing Treg cells. In conclusion, low-dose IR in association with an inflammatory stimulus affects the immunomodulatory properties of MSCs. In this way, the immunosuppressive capability of MSCs can be explored for several disease treatments where IR usually part of the context of the treatment. However, a complete understanding of the mechanisms underlying these interactions need further investigation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stefani, F. R., Eberstål, S., Vergani, S., Kristiansen, T. A., & Bengzon, J. (2018). Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. International Journal of Cancer, 143(9), 2200–2212. https://doi.org/10.1002/ijc.31599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrell, C. R., Jovicic, N., Djonov, V., & Volarevic, V. (2020). Therapeutic use of Mesenchymal stem cell-derived Exosomes: From basic science to clinics. Pharmaceutics, 12(5), E474. https://doi.org/10.3390/pharmaceutics12050474.

    Article  CAS  PubMed  Google Scholar 

  3. Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal Stem Cells, 6, 552–570. https://doi.org/10.4252/wjsc.v6.i5.552.

    Article  Google Scholar 

  4. De Miguel, M. P., Fuentes-Julián, S., & Blázquez-Martínez, A. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine, 12, 574–591. https://doi.org/10.2174/156652412800619950.

    Article  PubMed  Google Scholar 

  5. Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology, 15, 1009–1016. https://doi.org/10.1038/ni.3002.

    Article  CAS  PubMed  Google Scholar 

  6. Prise, K. M., & O’Sullivan, J. M. (2009). Radiation-induced bystander signalling in cancer therapy. Nature Reviews Cancer, 9(5), 351–360. https://doi.org/10.1038/nrc2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wakeford, R., & Tawn, E. J. (2010). The meaning of low dose and low dose-rate. Journal of Radiological Protection, 30(1), 1–3. https://doi.org/10.1088/0952-4746/30/1/E02.

    Article  PubMed  Google Scholar 

  8. Arnold, K. M., Flynn, N. J., Raben, A., Romak, L., Yu, Y., Dicker, A. P., Mourtada, F., & Sims-Mourtada, J. (2018). The impact of radiation on the tumor microenvironment: Effect of dose and fractionation schedules. Cancer Growth Metastasis, 11, 1179064418761639. https://doi.org/10.1177/1179064418761639.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Short, S. C., Bourne, S., Martindale, C., Woodcock, M., & Jackson, S. P. (2005). DNA damage responses at low radiation doses. Radiation Research, 164(3), 292–302. https://doi.org/10.1667/rr3421.1.

    Article  CAS  PubMed  Google Scholar 

  10. Schröder, S., Kriesen, S., Paape, D., Hildebrandt, G., & Manda, K. (2018). Modulation of inflammatory reactions by low-dose ionizing radiation: Cytokine release of murine endothelial cells is dependent on culture conditions. Journal of Immunology Research, 2856518, 1–13. https://doi.org/10.1155/2018/2856518.

    Article  CAS  Google Scholar 

  11. Barcellos-Hoff, M. H., Park, C., & Wright, E. G. (2005). Radiation and the microenvironment – Tumorigenesis and therapy. Nature Reviews Cancer, 5(11), 867–875. https://doi.org/10.1038/nrc1735.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai, K. K. C., Chuang, E. Y., Little, J. B., & Yuan, Z. M. (2005). Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Research, 65(15), 6734–6744. https://doi.org/10.1158/0008-5472.CAN-05-0703.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, T., Zhang, Y., Chang, P., Gong, S., Shao, L., & Dong, L. (2018). Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem Cell Research Therapy, 9(1), 18. https://doi.org/10.1186/s13287-018-0776-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan, L., Zheng, D., & Xu, R. H. (2018). Critical role of tumor necrosis factor signaling in mesenchymal stem cell-base therapy for autoimmune and inflammatory diseases. Frontiers Immunology, 9, 1658. https://doi.org/10.3389/fimmu.2018.01658.

    Article  CAS  Google Scholar 

  15. Crisotomo, P. R., Wang, Y., Markel, T. A., Wang, M., Lahm, T., & Meldrum, D. R. (2008). Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism. American Journal Physiology-Cell Physiology, 294(3), C675–C682. https://doi.org/10.1152/ajpcell.00437.2007.

    Article  CAS  Google Scholar 

  16. Hehlgans, T., & Pfeffer, K. (2005). The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: Players, rules and the games. Immunology, 115(1), 1–20. https://doi.org/10.1111/j.1365-2567.2005.02143.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roederer, M. (2001). Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats. Cytometry, 45(3), 194–205. https://doi.org/10.1002/1097-0320(20011101)45:3<194::aid-cyto1163>3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  18. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods, 25, 402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  19. Lima, F. S., Romero, A. B. R., Hastreiter, A., Nogueira-Pedro, A., Makiyama, E., Colli, C., & Fock, R. A. (2018). An insight into the role of magnesium in the Immunomodulatory properties of Mesenchymal stem cells. The Journal of Nutritional Biochemistry, 55, 200–208. https://doi.org/10.1016/j.jnutbio.2018.02.006.

    Article  CAS  Google Scholar 

  20. Oliveira, D. C., Hastreiter, A. A., Mello, A. S., Beltran, J. S. O., Santos, E. W. C. O., Borelli, P., & Fock, R. A. (2014). The effects of protein malnutrition on the TNF-RI and NF-κB expression via the TNF-α signaling pathway. Cytokine, 69(2), 218–225. https://doi.org/10.1016/j.cyto.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  21. Schmitt, C. A. (2007). Cellular senescence and Cancer treatment. Biochimica et Biophysica Acta, 1775(1), 5–20. https://doi.org/10.1016/j.bbcan.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  22. Archer, S. (1993). Measurement of nitric oxide in biological models. FASEB Journal, 7(2), 349–360. https://doi.org/10.1096/fasebj.7.2.8440411.

    Article  CAS  PubMed  Google Scholar 

  23. Tario, J. D., Muirhead, K. A., Pan, D., Munson, M. E., & Wallace, P. K. (2011). Tracking immune cell proliferation and cytotoxic potential using flow Cytometry. Methods Molecular Biology, 699, 119–164. https://doi.org/10.1007/978-1-61737-950-5_7.

    Article  CAS  Google Scholar 

  24. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunology Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  Google Scholar 

  25. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., & Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843. https://doi.org/10.1182/blood.v99.10.3838.

    Article  PubMed  Google Scholar 

  26. Abdi, R., Fiorina, P., Adra, C. N., Atkinson, M., & Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells : A potential therapeutic strategy for type 1 diabetes. Diabetes, 57(7), 1759–1767. https://doi.org/10.2337/db08-0180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, F. H., Visger, J. M., Balian, G., Hurwitz, S. R., & Diduch, D. R. Systemically Administered Mesenchymal Stromal Cells Transduced With Insulin-Like Growth factor-I Localize to a Fracture Site and Potentiate Healing. Journal of Orthopaedic Trauma, 16(9), 651–659. https://doi.org/10.1097/00005131-200210000-00007.

  28. Neuss, S., Becher, E., Wöltje, M., Tietze, L., & Jahnen-Dechent, W. (2004). Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 22(3), 405–414. https://doi.org/10.1634/stemcells.22-3-405.

    Article  CAS  PubMed  Google Scholar 

  29. Satoh, H., Kishi, K., Tanaka, T., Kubota, Y., Nakajima, T., Akasaka, Y., & Ishii, T. (2004). Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplantation, 13(4), 405–412. https://doi.org/10.3727/000000004783983765.

    Article  PubMed  Google Scholar 

  30. Yang, H., Asaad, N., & Held, K. D. (2005). Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene, 24(12), 2096–2103. https://doi.org/10.1038/sj.onc.1208439.

    Article  CAS  PubMed  Google Scholar 

  31. Sugrue, T., Lowndes, N. F., & Ceredig, R. (2013). Mesenchymal stromal cells: Radio-resistant members of the bone marrow. Immunology Cell Biology, 91(1), 5–11. https://doi.org/10.1038/icb.2012.61.

    Article  CAS  PubMed  Google Scholar 

  32. Ankrum, J. A., Ong, J. F., & Karp, J. M. (2014). Mesenchymal stem cells: immune evasive, not immune privileged. Nature Biotechnology, 32(3), 252–260. https://doi.org/10.1038/nbt.2816 Epub 2014 Feb 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology, 15(11), 1009–1016. https://doi.org/10.1038/ni.3002.

    Article  CAS  PubMed  Google Scholar 

  34. English, K. (2013). Mechanisms of mesenchymal stromal cell immunomodulation. Immunology & Cell Biology, 91(1), 19–26. https://doi.org/10.1038/icb.2012.56.

    Article  CAS  Google Scholar 

  35. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology., 8(9), 726–736. https://doi.org/10.1038/nri2395.

    Article  CAS  PubMed  Google Scholar 

  36. Vieira, P. L., Christensen, J. R., Minaee, S., O'Neill, E. J., Barrat, F. J., Boonstra, A., Barthlott, T., Stockinger, B., Wraith, D. C., & O’Garra, A. IL-10-secreting Regulatory T Cells Do Not Express Foxp3 but Have Comparable Regulatory Function to Naturally Occurring CD4+CD25+ Regulatory T Cells. The Journal of Immunology, 172(10), 5986–5993. https://doi.org/10.4049/jimmunol.172.10.5986.

  37. O'Garra, A., Vieira, P. L., Vieira, P., & Goldfeld, A. E. (2004). IL-10-producing and naturally occurring CD4+ Tregs: Limiting collateral damage. The Journal of Clinical Investigation, 114(10), 1372–1378. https://doi.org/10.1172/JCI23215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Consentius, C., Akyüz, L., Schmidt-Lucke, J. A., Tschöpe, C., Pinzur, L., Ofir, R., Reinke, P., Volk, H.-D., & Juelke, K. (2015). Mesenchymal stromal cells prevent Allostimulation in vivo and control checkpoints of Th1 priming: Migration of human DC to lymph nodes and NK cell activation. Stem Cells, 33(10), 3087–3099. https://doi.org/10.1002/stem.2104.

    Article  CAS  PubMed  Google Scholar 

  39. Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3(1), 23–35. https://doi.org/10.1038/nri978.

    Article  CAS  PubMed  Google Scholar 

  40. Melief, S. M., Schrama, E., Brugman, M. H., Tiemessen, M. M., Hoogduijn, M. J., Fibbe, W. E., & Roelofs, H. (2013). Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells, 31(9), 1980–1991. https://doi.org/10.1002/stem.1432.

    Article  CAS  PubMed  Google Scholar 

  41. Okeke, E. B., & Uzonna, J. E. (2019). The pivotal role of regulatory T cells in the regulation of innate immune cells. Frontiers in Immunology, 10, 680e. https://doi.org/10.3389/fimmu.2019.00680.

    Article  CAS  Google Scholar 

  42. Duffy, M. M., Ritter, T., Ceredig, R., & Griffin, M. D. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research & Therapy, 2(4), 34. https://doi.org/10.1186/scrt75.

    Article  CAS  Google Scholar 

  43. Ramasamy, R., Tong, C. K., Seow, H. F., Vidyadaran, S., & Dazzi, F. (2008). The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cellular Immunology, 251(2), 131–136. https://doi.org/10.1016/j.cellimm.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  44. O'Brown, Z. K., Van Nostrand, E. L., Higgins, J. P., & Kim, S. K. (2015). The inflammatory transcription factors NFκB, STAT1 and STAT3 drive age-associated transcriptional changes in the human kidney. PLoS Genetics, 11(12), e1005734. https://doi.org/10.1371/journal.pgen.1005734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arora, S., Hernandez, Y., Erb-Downward, J. R., McDonald, R. A., Toews, G. B., & Huffnagle, G. B. Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. The Journal of Immunology, 174(10), 6346–6356. https://doi.org/10.4049/jimmunol.174.10.6346.

  46. Kaplan, M. H. (2013). STAT signaling in inflammation. JAKSTAT, 2(1), e24198. https://doi.org/10.4161/jkst.24198.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wager, C. M. L., Hole, C. R., Wozniak, K. L., Olszewski, M. A., & Wormley Jr., F. L. STAT1 Signaling Is Essential for Protection Against Cryptococcus neoformans Infection in Mice. The Journal of Immunology, 193(8), 4060–4071. https://doi.org/10.4049/jimmunol.1400318.

  48. Gaba, A., Grivennikov, S. I., Do, M. V., Stumpo, D. J., Blackshear, P. J., & Karin, M. (2012). IL-10 mediated Tristetraprolin induction is part of feedback loop that controls macrophage STAT3 activation and cytokine production. The Journal of Immunology, 189(5), 2089–2093. https://doi.org/10.4049/jimmunol.1201126.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, T. L. L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F. M., Fatani, A. S., Chamley, L. W., & Knawy, B. A. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641. https://doi.org/10.1007/s12015-013-9455-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fundação de Amparo a Pesquisa do Estado de São Paulo – FAPESP (grant number: 2018/25813-8). Fock RA is fellow of the Conselho Nacional de Pesquisa e Tecnologia (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ambrósio Fock.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Standard and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the University of São Paulo (CEUA/FCF/344).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira-Pedro, A., Makiyama, E.N., Segreto, H.R.C. et al. The Role of Low-Dose Radiation in Association with TNF-α on Immunomodulatory Properties of Mesenchymal Stem Cells. Stem Cell Rev and Rep 17, 968–980 (2021). https://doi.org/10.1007/s12015-020-10084-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10084-9

Keywords

Navigation