Skip to main content
Log in

Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Precise regulation of transcriptome modulates several vital aspects in an organism that includes gene expression, cellular activities and development, and its perturbation ensuing pathological conditions. Around 150 post-transcriptional modifications of RNA have been identified till date, which are evolutionarily conserved and likewise prevalent across RNA classes including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and detected less frequently in small nuclear RNA (snRNA) and microRNAs (miRNA). Among the RNA modifications documented, N6-methyladenosine (m6A) is the best characterised till date. Also, N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine (Ψ) are some of the other prominent modifications detected in coding and non-coding RNAs. “Epitranscriptome”, ensemble of these post-transcriptional RNA modifications, precisely coordinates gene expression and biological processes. Current literatures suggest the critical involvement of epitranscriptomics in several organisms during early development, contributing to cell fate specification and physiology. Indeed, epitranscriptomics similar to DNA epigenetics involves combinatorial dynamics provided by modified RNA molecules and associated protein complexes, which function as “writers”, “erasers” and “readers” of these modifications. A novel code orchestrating gene expression during cell fate determination is generated by the coordinated effects of different classes of modified RNAs and its regulator proteins. In this review, we summarize the current knowhow on N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (ψ) modifications in RNA, the associated regulator proteins and enumerate how the epitranscriptomic regulations are involved in cell fate determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, S., & Mason, C. E. (2014). The pivotal regulatory landscape of RNA modifications. Annual Review of Genomics and Human Genetics, 15, 127–150.

    Article  CAS  Google Scholar 

  2. Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G., & Suzuki, T. (2016). RNA modifications: What have we learned and where are we headed? Nature Reviews Genetics, 17(6), 365–372.

    Article  CAS  Google Scholar 

  3. Helm, M., & Motorin, Y. (2017). Detecting RNA modifications in the epitranscriptome: Predict and validate. Nature Reviews Genetics, 18(5), 275–291.

    Article  CAS  Google Scholar 

  4. Cohn, W. E., & Volkin, E. (1951). Nucleoside-5′-phosphates from ribonucleic acid. Nature, 167, 483–484.

    Article  CAS  Google Scholar 

  5. Roundtree, I. A., Evans, M. E., Pan, T., & He, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell, 169(7), 1187–1200.

    Article  CAS  Google Scholar 

  6. Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., & Lyko, F. (2010). RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes and Development, 24(15), 1590–1595.

    Article  CAS  Google Scholar 

  7. Hussain, S., Sajini, A. A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J. G., Odom, D. T., Ule, J., & Frye, M. (2013). NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Reports, 4(2), 255–261.

    Article  CAS  Google Scholar 

  8. Peifer, C., Sharma, S., Watzinger, P., Lamberth, S., Kötter, P., & Entian, K. D. (2013). Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Research, 41(2), 1151–1163.

    Article  CAS  Google Scholar 

  9. Guy, M. P., & Phizicky, E. M. (2014). Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biology, 11(12), 1608–1618.

    Article  Google Scholar 

  10. Oerum, S., Dégut, C., Barraud, P., & Tisné, C. (2017). m1A post-transcriptional modification in tRNAs. Biomolecules, 7(1), 20.

    Article  Google Scholar 

  11. Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M. S., Dai, Q., Di Segni, A., Salmon-Divon, M., & Clark, W. C. (2016). The dynamic N 1-methyladenosine methylome in eukaryotic messenger RNA. Nature, 530(7591), 441–446.

    Article  CAS  Google Scholar 

  12. Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S., & Yi, C. (2016). Transcriptome-wide mapping reveals reversible and dynamic N 1-methyladenosine methylome. Nature Chemical Biology, 12(5), 311–316.

    Article  CAS  Google Scholar 

  13. Zhao, B. S., Roundtree, I. A., & He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecular Cell Biology, 18(1), 31–42.

    Article  CAS  Google Scholar 

  14. Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149(7), 1635–1646.

    Article  CAS  Google Scholar 

  15. Batista, P. J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D. M., Lujan, E., Haddad, B., Daneshvar, K., Carter, A. C., Flynn, R. A., Zhou, C., Lim, K. S., Dedon, P., Wernig, M. A., Mullen, C., Xing, Y., Giallourakis, C. C., & Chang, H. Y. (2014). M(6)a RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15(6), 707–719.

    Article  CAS  Google Scholar 

  16. Liu, N., & Pan, T. (2016). N 6-methyladenosine–encoded epitranscriptomics. Nature Structural & Molecular Biology, 23(2), 98–102.

    Article  CAS  Google Scholar 

  17. Hsu, P. J., Shi, H., & He, C. (2017). Epitranscriptomic influences on development and disease. Genome Biology, 18(1), 197.

    Article  Google Scholar 

  18. Dunin-Horkawicz, S., Czerwoniec, A., Gajda, M. J., Feder, M., Grosjean, H., & Bujnicki, J. M. (2006). MODOMICS: A database of RNA modification pathways. Nucleic Acids Research, 34, D145–D149.

    Article  CAS  Google Scholar 

  19. Boccaletto, P., Machnicka, M. A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T. K., de Crecy-Lagard, V., Ross, R., Limbach, P. A., Kotter, A., Helm, M., & Bujnicki, J. M. (2018). MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Research, 46(D1), D303–D307.

    Article  CAS  Google Scholar 

  20. Sanchez-Vasquez, E., Alata Jimenez, N., Vazquez, N. A., & Strobl-Mazzulla, P. H. (2018). Emerging role of dynamic RNA modifications during animal development. Mechanisms of Development, 154, 24–32.

    Article  CAS  Google Scholar 

  21. Dubin, D. T., & Taylor, R. H. (1975). The methylation state of poly A-containing-messenger RNA from cultured hamster cells. Nucleic Acids Research, 2(10), 1653–1668.

    Article  CAS  Google Scholar 

  22. Peer, E., Rechavi, G., & Dominissini, D. (2017). Epitranscriptomics: Regulation of mRNA metabolism through modifications. Current Opinion in Chemical Biology, 41, 93–98.

    Article  CAS  Google Scholar 

  23. Angelova, M. T., Dimitrova, D. G., Dinges, N., Lence, T., Worpenberg, L., Carre, C., & Roignant, J. Y. (2018). The emerging field of Epitranscriptomics in neurodevelopmental and neuronal disorders. Frontiers in Bioengineering and Biotechnology, 6, 46.

    Article  Google Scholar 

  24. Gilbert, W. V., Bell, T. A., & Schaening, C. (2016). Messenger RNA modifications: Form, distribution, and function. Science, 352(6292), 1408–1412.

    Article  CAS  Google Scholar 

  25. Fustin, J. M., Doi, M., Yamaguchi, Y., Hida, H., Nishimura, S., Yoshida, M., Isagawa, T., Morioka, M. S., Kakeya, H., & Manabe, I. (2013). RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell, 155(4), 793–806.

    Article  CAS  Google Scholar 

  26. Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., & He, C. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 161(6), 1388–1399.

    Article  CAS  Google Scholar 

  27. Hubstenberger, A., Courel, M., Bénard, M., Souquere, S., Ernoult-Lange, M., Chouaib, R., Yi, Z., Morlot, J. B., Munier, A., & Fradet, M. (2017). P-body purification reveals the condensation of repressed mRNA regulons. Molecular Cell, 68(1), 144–157.

    Article  CAS  Google Scholar 

  28. Yang, Y., Hsu, P. J., Chen, Y. S., & Yang, Y. G. (2018). Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Research, 28(6), 616–624.

    Article  CAS  Google Scholar 

  29. Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G., & Rottman, F. M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 3(11), 1233–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, B. S., Wang, X., Beadell, A. V., Lu, Z., Shi, H., Kuuspalu, A., Ho, R. K., & He, C. (2017). M(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature, 542(7642), 475–478.

    Article  CAS  Google Scholar 

  31. Chang, M., Lv, H., Zhang, W., Ma, C., He, X., Zhao, S., Zhang, Z. W., Zeng, Y. X., Song, S., Niu, Y., & Tong, W. M. (2017). Region-specific RNA m(6)a methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biology, 7(9), 170166.

    Article  Google Scholar 

  32. Li, M., Zhao, X., Wang, W., Shi, H., Pan, Q., Lu, Z., Perez, S. P., Suganthan, R., He, C., Bjoras, M., & Klungland, A. (2018). Ythdf2-mediated m(6)a mRNA clearance modulates neural development in mice. Genome Biology, 19(1), 69.

    Article  Google Scholar 

  33. Yoon, K. J., Ringeling, F. R., Vissers, C., Jacob, F., Pokrass, M., Jimenez-Cyrus, D., Su, Y., Kim, N. S., Zhu, Y., Zheng, L., Kim, S., Wang, X., Dore, L. C., Jin, P., Regot, S., Zhuang, X., Canzar, S., He, C., Ming, G. L., & Song, H. (2017). Temporal control of mammalian cortical neurogenesis by m(6)a methylation. Cell, 171(4), 877–889.

    Article  CAS  Google Scholar 

  34. Ma, C., Chang, M., Lv, H., Zhang, Z. W., Zhang, W., He, X., Wu, G., Zhao, S., Zhang, Y., Wang, D., Teng, X., Liu, C., Li, Q., Klungland, A., Niu, Y., Song, S., & Tong, W. M. (2018). RNA m(6)a methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biology, 19(1), 68.

    Article  Google Scholar 

  35. Wang, C. X., Cui, G. S., Liu, X., Xu, K., Wang, M., Zhang, X. X., Jiang, L. Y., Li, A., Yang, Y., Lai, W. Y., Sun, B. F., Jiang, G. B., Wang, H. L., Tong, W. M., Li, W., Wang, X. J., Yang, Y. G., & Zhou, Q. (2018). METTL3-mediated m6A modification is required for cerebellar development. PLoS Biology, 16(6), e2004880.

    Article  Google Scholar 

  36. Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R. J., Zhang, Z., Ogawa, Y., Kellis, M., Duester, G., & Zhao, J. C. (2018). N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 21(2), 195–206.

    Article  CAS  Google Scholar 

  37. Li, L., Zang, L., Zhang, F., Chen, J., Shen, H., Shu, L., Liang, F., Feng, C., Chen, D., Tao, H., Xu, T., Li, Z., Kang, Y., Wu, H., Tang, L., Zhang, P., Jin, P., Shu, Q., & Li, X. (2017). Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Human Molecular Genetics, 26(13), 2398–2411.

    Article  CAS  Google Scholar 

  38. Kimelman, D. (2006). Mesoderm induction: From caps to chips. Nature Reviews. Genetics, 7(5), 360–372.

    Article  CAS  Google Scholar 

  39. Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., Lv, J., Heng, J., Ding, Y., Xue, Y., Lu, X., Xiao, W., Yang, Y. G., & Liu, F. (2017). M(6)a modulates haematopoietic stem and progenitor cell specification. Nature, 549(7671), 273–276.

    Article  CAS  Google Scholar 

  40. Vu, L. P., Pickering, B. F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., Chou, T., Chow, A., Saletore, Y., MacKay, M., Schulman, J., Famulare, C., Patel, M., Klimek, V. M., Garrett-Bakelman, F. E., Melnick, A., Carroll, M., Mason, C. E., Jaffrey, S. R., & Kharas, M. G. (2017). The N(6)-methyladenosine (m(6)a)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 23(11), 1369–1376.

    Article  CAS  Google Scholar 

  41. Kudou, K., Komatsu, T., Nogami, J., Maehara, K., Harada, A., Saeki, H., Oki, E., Maehara, Y., & Ohkawa, Y. (2017). The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biology, 7(9), 170119.

    Article  Google Scholar 

  42. Ben-Haim, M. S., Moshitch-Moshkovitz, S., & Rechavi, G. (2015). FTO: Linking m6A demethylation to adipogenesis. Cell Research, 25(1), 3–4.

    Article  CAS  Google Scholar 

  43. Zhao, X., Yang, Y., Sun, B. F., Shi, Y., Yang, X., Xiao, W., Hao, Y. J., Ping, X. L., Chen, Y. S., Wang, W. J., Jin, K. X., Wang, X., Huang, C. M., Fu, Y., Ge, X. M., Song, S. H., Jeong, H. S., Yanagisawa, H., Niu, Y., Jia, G. F., Wu, W., Tong, W. M., Okamoto, A., He, C., Rendtlew-Danielsen, J. M., Wang, X. J., & Yang, Y. G. (2014). FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research, 24(12), 1403–1419.

    Article  CAS  Google Scholar 

  44. Kobayashi, M., Ohsugi, M., Sasako, T., Awazawa, M., Umehara, T., Iwane, A., Kobayashi, N., Okazaki, Y., Kubota, N., Suzuki, R., Waki, H., Horiuchi, K., Hamakubo, T., Kodama, T., Aoe, S., Tobe, K., Kadowaki, T., & Ueki, K. (2018). The RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in Adipogenesis. Molecular and Cellular Biology, 38(16), e00116–e00118.

    Article  Google Scholar 

  45. Hsu, P. J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., Qi, M., Lu, Z., Shi, H., Wang, J., Cheng, Y., Luo, G., Dai, Q., Liu, M., Guo, X., Sha, J., Shen, B., & He, C. (2017). Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 27(9), 1115–1127.

    Article  CAS  Google Scholar 

  46. Kasowitz, S. D., Ma, J., Anderson, S. J., Leu, N. A., Xu, Y., Gregory, B. D., Schultz, R. M., & Wang, P. J. (2018). Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genetics, 14(5), e1007412.

    Article  Google Scholar 

  47. Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C. M., Li, C. J., Vagbo, C. B., Shi, Y., Wang, W. L., Song, S. H., Lu, Z., Bosmans, R. P., Dai, Q., Hao, Y. J., Yang, X., Zhao, W. M., Tong, W. M., Wang, X. J., Bogdan, F., Furu, K., Fu, Y., Jia, G., Zhao, X., Liu, J., Krokan, H. E., Klungland, A., Yang, Y. G., & He, C. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49(1), 18–29.

    Article  CAS  Google Scholar 

  48. Lin, Z., Hsu, P. J., Xing, X., Fang, J., Lu, Z., Zou, Q., Zhang, K. J., Zhang, X., Zhou, Y., Zhang, T., Zhang, Y., Song, W., Jia, G., Yang, X., He, C., & Tong, M. H. (2017). Mettl3−/Mettl14-mediated mRNA N(6)-methyladenosine modulates murine spermatogenesis. Cell Research, 27(10), 1216–1230.

    Article  CAS  Google Scholar 

  49. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A. A., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y. S., Ben-Haim, M. S., Eyal, E., Yunger, S., Pinto, Y., Jaitin, D. A., Viukov, S., Rais, Y., Krupalnik, V., Chomsky, E., Zerbib, M., Maza, I., Rechavi, Y., Massarwa, R., Hanna, S., Amit, I., Levanon, E. Y., Amariglio, N., Stern-Ginossar, N., Novershtern, N., Rechavi, G., & Hanna, J. H. (2015). Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science, 347(6225), 1002–1006.

    Article  CAS  Google Scholar 

  50. Lin, S., & Gregory, R. I. (2014). Methyltransferases modulate RNA stability in embryonic stem cells. Nature Cell Biology, 16(2), 129–131.

    Article  CAS  Google Scholar 

  51. Wang, Y., Li, Y., Toth, J. I., Petroski, M. D., Zhang, Z., & Zhao, J. C. (2014). N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nature Cell Biology, 16(2), 191–198.

    Article  CAS  Google Scholar 

  52. Aguilo, F., Zhang, F., Sancho, A., Fidalgo, M., Di Cecilia, S., Vashisht, A., Lee, D. F., Chen, C. H., Rengasamy, M., Andino, B., Jahouh, F., Roman, A., Krig, S. R., Wang, R., Zhang, W., Wohlschlegel, J. A., Wang, J., & Walsh, M. J. (2015). Coordination of m(6)a mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell, 17(6), 689–704.

    Article  CAS  Google Scholar 

  53. Chen, T., Hao, Y. J., Zhang, Y., Li, M. M., Wang, M., Han, W., Wu, Y., Lv, Y., Hao, J., Wang, L., Li, A., Yang, Y., Jin, K. X., Zhao, X., Li, Y., Ping, X. L., Lai, W. Y., Wu, L. G., Jiang, G., Wang, H. L., Sang, L., Wang, X. J., Yang, Y. G., & Zhou, Q. (2015). M(6)a RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell, 16(3), 289–301.

    Article  CAS  Google Scholar 

  54. Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., Jiao, F., Liu, H., Yang, P., Tan, L., Lan, F., Shi, Y. G., He, C., Shi, Y., & Diao, J. (2018). Zc3h13 regulates nuclear RNA m(6)a methylation and mouse embryonic stem cell self-renewal. Molecular Cell, 69(6), 1028–1038.

    Article  CAS  Google Scholar 

  55. Bertero, A., Brown, S., Madrigal, P., Osnato, A., Ortmann, D., Yiangou, L., Kadiwala, J., Hubner, N. C., de Los Mozos, I. R., Sadee, C., Lenaerts, A. S., Nakanoh, S., Grandy, R., Farnell, E., Ule, J., Stunnenberg, H. G., Mendjan, S., & Vallier, L. (2018). The SMAD2/3 interactome reveals that TGFbeta controls m(6)a mRNA methylation in pluripotency. Nature, 555(7695), 256–259.

    Article  CAS  Google Scholar 

  56. Verma, M. K., & Lenka, N. (2010). Temporal and contextual orchestration of cardiac fate by WNT-BMP synergy and threshold. Journal of Cellular and Molecular Medicine, 14(8), 2094–2108.

    Article  CAS  Google Scholar 

  57. Faulds, K. J., Egelston, J. N., Sedivy, L. J., Mitchell, M. K., Garimella, S., Kozlowski, H., D'Alessandro, A., Hansen, K. C., Balsbaugh, J. L., & Phiel, C. J. (2018). Glycogen synthase kinase-3 (Gsk-3) activity regulates mRNA methylation in mouse embryonic stem cells. The Journal of Biological Chemistry, 293(27), 10731–10743.

    Article  CAS  Google Scholar 

  58. Yang, D., Qiao, J., Wang, G., Lan, Y., Li, G., Guo, X., Xi, J., Ye, D., Zhu, S., Chen, W., Jia, W., Leng, Y., Wan, X., & Kang, J. (2018). N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 46(8), 3906–3920.

    Article  CAS  Google Scholar 

  59. Desrosiers, R., Friderici, K., & Rottman, F. (1974). Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proceedings of the National Academy of Sciences, 71(10), 3971–3975.

    Article  CAS  Google Scholar 

  60. Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C. M., & Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research, 40(11), 5023–5033.

    Article  CAS  Google Scholar 

  61. Khoddami, V., & Cairns, B. R. (2013). Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nature Biotechnology, 31(5), 458–464.

    Article  CAS  Google Scholar 

  62. Yang, X., Yang, Y., Sun, B. F., Chen, Y. S., Xu, J. W., Lai, W. Y., Li, A., Wang, X., Bhattarai, D. P., Xiao, W., Sun, H. Y., Zhu, Q., Ma, H. L., Adhikari, S., Sun, M., Hao, Y. J., Zhang, B., Huang, C. M., Huang, N., Jiang, G. B., Zhao, Y. L., Wang, H. L., Sun, Y. P., & Yang, Y. G. (2017). 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Research, 27(5), 606–625.

    Article  CAS  Google Scholar 

  63. Fu, L., Guerrero, C. R., Zhong, N., Amato, N. J., Liu, Y., Liu, S., Cai, Q., Ji, D., Jin, S. G., Niedernhofer, L. J., Pfeifer, G. P., Xu, G. L., & Wang, Y. (2014). Tet-mediated formation of 5-hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 136(33), 11582–11585.

    Article  CAS  Google Scholar 

  64. Delatte, B., Wang, F., Ngoc, L. V., Collignon, E., Bonvin, E., Deplus, R., Calonne, E., Hassabi, B., Putmans, P., Awe, S., Wetzel, C., Kreher, J., Soin, R., Creppe, C., Limbach, P. A., Gueydan, C., Kruys, V., Brehm, A., Minakhina, S., Defrance, M., Steward, R., & Fuks, F. (2016). RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science, 351(6270), 282–285.

    Article  CAS  Google Scholar 

  65. Guallar, D., Bi, X., Pardavila, J. A., Huang, X., Saenz, C., Shi, X., Zhou, H., Faiola, F., Ding, J., Haruehanroengra, P., Yang, F., Li, D., Sanchez-Priego, C., Saunders, A., Pan, F., Valdes, V. J., Kelley, K., Blanco, M. G., Chen, L., Wang, H., Sheng, J., Xu, M., Fidalgo, M., Shen, X., & Wang, J. (2018). RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 50(3), 443–451.

    Article  CAS  Google Scholar 

  66. Trixl, L., Amort, T., Wille, A., Zinni, M., Ebner, S., Hechenberger, C., Eichin, F., Gabriel, H., Schoberleitner, I., Huang, A., Piatti, P., Nat, R., Troppmair, J., & Lusser, A. (2018). RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cellular and Molecular Life Sciences, 75(8), 1483–1497.

    Article  CAS  Google Scholar 

  67. Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X. Y., Micura, R., & Lusser, A. (2017). Distinct 5-methylcytosine profiles in poly(a) RNA from mouse embryonic stem cells and brain. Genome Biology, 18(1), 1.

    Article  Google Scholar 

  68. Miao, Z., Xin, N., Wei, B., Hua, X., Zhang, G., Leng, C., Zhao, C., Wu, D., Li, J., Ge, W., Sun, M., & Xu, X. (2016). 5-hydroxymethylcytosine is detected in RNA from mouse brain tissues. Brain Research, 1642, 546–552.

    Article  CAS  Google Scholar 

  69. Flores, J. V., Cordero-Espinoza, L., Oeztuerk-Winder, F., Andersson-Rolf, A., Selmi, T., Blanco, S., Tailor, J., Dietmann, S., & Frye, M. (2017). Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Reports, 8(1), 112–124.

    Article  CAS  Google Scholar 

  70. Blanco, S., Dietmann, S., Flores, J. V., Hussain, S., Kutter, C., Humphreys, P., Lukk, M., Lombard, P., Treps, L., Popis, M., Kellner, S., Holter, S. M., Garrett, L., Wurst, W., Becker, L., Klopstock, T., Fuchs, H., Gailus-Durner, V., Hrabe de Angelis, M., Karadottir, R. T., Helm, M., Ule, J., Gleeson, J. G., Odom, D. T., & Frye, M. (2014). Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. The EMBO Journal, 33(18), 2020–2039.

    Article  CAS  Google Scholar 

  71. Cohn, W. E. (1960). Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: Isolation, structure, and chemical characteristics. The Journal of Biological Chemistry, 235, 1488–1498.

    CAS  PubMed  Google Scholar 

  72. Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F., & Yi, C. (2015). Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nature Chemical Biology, 11(8), 592–597.

    Article  CAS  Google Scholar 

  73. Schwartz, S., Bernstein, D. A., Mumbach, M. R., Jovanovic, M., Herbst, R. H., Leon-Ricardo, B. X., Engreitz, J. M., Guttman, M., Satija, R., Lander, E. S., Fink, G., & Regev, A. (2014). Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell, 159(1), 148–162.

    Article  CAS  Google Scholar 

  74. Carlile, T. M., Rojas-Duran, M. F., Zinshteyn, B., Shin, H., Bartoli, K. M., & Gilbert, W. V. (2014). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515(7525), 143–146.

    Article  CAS  Google Scholar 

  75. Guzzi, N., Ciesla, M., Ngoc, P. C. T., Lang, S., Arora, S., Dimitriou, M., Pimkova, K., Sommarin, M. N. E., Munita, R., Lubas, M., Lim, Y., Okuyama, K., Soneji, S., Karlsson, G., Hansson, J., Jonsson, G., Lund, A. H., Sigvardsson, M., Hellstrom-Lindberg, E., Hsieh, A. C., & Bellodi, C. (2018). Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell, 173(5), 1204–1216.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by intramural funding from NCCS to NL and VH is a graduate student supported by fellowship from Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibedita Lenka.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haran, V., Lenka, N. Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development. Stem Cell Rev and Rep 15, 474–496 (2019). https://doi.org/10.1007/s12015-019-09894-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09894-3

Keywords

Navigation