Skip to main content
Log in

Curcumin and Ferroptosis: a Promising Target for Disease Prevention and Treatment

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ferroptosis is a recently identified form of cell death characterized by iron accumulation and lipid peroxidation. Unlike apoptosis, necrosis, and autophagy, ferroptosis operates through a distinct molecular pathway. Curcumin, derived from turmeric rhizomes, is a natural compound with diverse therapeutic benefits, including neuroprotective, anti-metabolic syndrome, anti-inflammatory, and anti-cancer properties. Growing evidence suggests that curcumin possesses both pro-oxidant and antioxidant properties, which can vary depending on the cell type. In this review, we explore the relationship between the effects of curcumin and the molecular mechanisms underlying the ferroptosis signaling pathway, drawing from current in vivo and in vitro research. Curcumin has been found to induce ferroptosis in cancer cells while acting as an inhibitor of ferroptosis in tissue injuries. Notably, curcumin treatment leads to alterations in key ferroptosis markers, underscoring its significant impact on this process. Nonetheless, further research focused on elucidating this important attribute of turmeric is crucial for advancing disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Galluzzi, L., Vitale, I. & Aaronson, S. A. et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death & Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  Google Scholar 

  2. Yang, W. S., & Stockwell, B. R. (2016). Ferroptosis: death by lipid peroxidation. Trends in Cell Biology, 26(3), 165–176. https://doi.org/10.1016/j.tcb.2015.10.014.

    Article  PubMed  CAS  Google Scholar 

  3. Xie, L.-H., Fefelova, N., Pamarthi, S. H., & Gwathmey, J. K. (2022). Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells, 11(17), 2726 https://doi.org/10.3390/cells11172726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dixon, S. J., Lemberg, K. M., & Lamprecht, M. R., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., & Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences USA, 113(34), E4966–E4975. https://doi.org/10.1073/pnas.1603244113.

    Article  CAS  Google Scholar 

  6. Forcina, G. C., & Dixon, S. J. (2019). GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics, 19(18), 1800311 https://doi.org/10.1002/pmic.201800311.

    Article  CAS  Google Scholar 

  7. Koppula, P., Zhuang, L., & Gan, B. (2021). Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein & Cell, 12(8), 599–620. https://doi.org/10.1007/s13238-020-00789-5.

    Article  CAS  Google Scholar 

  8. Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment, 46(1), 2–18. https://doi.org/10.4143/crt.2014.46.1.2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cicero, A. F. G., Sahebkar, A., Fogacci, F., Bove, M., Giovannini, M., & Borghi, C. (2020). Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. European Journal of Nutrition, 59(2), 477–483. https://doi.org/10.1007/s00394-019-01916-7.

    Article  PubMed  CAS  Google Scholar 

  10. Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. (2018). Curcumin, hemostasis, thrombosis, and coagulation. Journal of Cellular Physiology, 233(6), 4497–4511. https://doi.org/10.1002/jcp.26249.

    Article  PubMed  CAS  Google Scholar 

  11. Khayatan D., Razavi S. M., Arab Z. N., et al. Protective effects of curcumin against traumatic brain injury. Biomedicine and Pharmacotherapy. 2022;154. https://doi.org/10.1016/j.biopha.2022.113621

  12. Marjaneh, R. M., Rahmani, F., & Hassanian, S. M., et al. (2018). Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. Journal of Cellular Physiology, 233(10), 6785–6798. https://doi.org/10.1002/jcp.26538.

    Article  PubMed  CAS  Google Scholar 

  13. Mohajeri, M., & Sahebkar, A. (2018). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Critical Reviews in Oncology/Hematology, 122, 30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005.

    Article  PubMed  Google Scholar 

  14. Mohammadi, A., Blesso, C. N., Barreto, G. E., Banach, M., Majeed, M., & Sahebkar, A. (2019). Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. Journal of Nutritional Biochemistry, 66, 1–16. https://doi.org/10.1016/j.jnutbio.2018.12.005.

    Article  PubMed  CAS  Google Scholar 

  15. Mokhtari-Zaer, A., Marefati, N., Atkin, S. L., Butler, A. E., & Sahebkar, A. (2018). The protective role of curcumin in myocardial ischemia–reperfusion injury. Journal of Cellular Physiology, 234(1), 214–222. https://doi.org/10.1002/jcp.26848.

    Article  PubMed  CAS  Google Scholar 

  16. Panahi, Y., Fazlolahzadeh, O., & Atkin, S. L., et al. (2019). Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. Journal of Cellular Physiology, 234(2), 1165–1178. https://doi.org/10.1002/jcp.27096.

    Article  PubMed  CAS  Google Scholar 

  17. Panahi, Y., Sahebkar, A., & Amiri, M., et al. (2012). Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: Results of a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition, 108(7), 1272–1279. https://doi.org/10.1017/S0007114511006544.

    Article  PubMed  CAS  Google Scholar 

  18. Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nature Reviews Cardiology. 2014;11(2). https://doi.org/10.1038/nrcardio.2013.140-c1

  19. Fu, Y.-S., Chen, T.-H., Weng, L., Huang, L., Lai, D., & Weng, C.-F. (2021). Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomedicine & Pharmacotherapy, 141, 111888 https://doi.org/10.1016/j.biopha.2021.111888.

    Article  CAS  Google Scholar 

  20. Grynkiewicz G., Ślifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochimica Polonica. 2012;59(2). https://doi.org/10.18388/abp.2012_2139

  21. Kunwar, A., Sandur, S. K., Krishna, M., & Priyadarsini, K. I. (2009). Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells. European Journal of Pharmacology, 611(1-3), 8–16. https://doi.org/10.1016/j.ejphar.2009.03.060.

    Article  PubMed  CAS  Google Scholar 

  22. AloK, A., Singh, I. D., Singh, S., Kishore, M., & Jha, P. C. (2015). Curcumin–pharmacological actions and its role in oral submucous fibrosis: a review. Journal of Clinical and Diagnostic Research, 9(10), ZE01 https://doi.org/10.7860/JCDR/2015/13857.6552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ahmed, S., Khan, H., & Mirzaei, H. (2019). Mechanics insights of curcumin in myocardial ischemia: Where are we standing? European Journal of Medicinal Chemistry, 183, 111658 https://doi.org/10.1016/j.ejmech.2019.111658.

    Article  PubMed  CAS  Google Scholar 

  24. Bernfeld, E., & Foster, D. A. (2019). Glutamine as an essential amino acid for KRas-driven cancer cells. Trends in Endocrinology & Metabolism, 30(6), 357–368. https://doi.org/10.1016/j.tem.2019.03.003.

    Article  CAS  Google Scholar 

  25. Yang, J., Dai, X., Xu, H., Tang, Q., & Bi, F. (2022). Regulation of ferroptosis by amino acid metabolism in cancer. International Journal of Biological Sciences, 18(4), 1695 https://doi.org/10.7150/ijbs.64982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cao, X., Li, Y., & Wang, Y., et al. (2022). Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS ONE, 17(1), e0261370 https://doi.org/10.1371/journal.pone.0261370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li R., Zhang J., Zhou Y., et al. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxidative Medicine and Cellular Longevity. 2020;2020. https://doi.org/10.1155/2020/3469840

  28. Kwon, M.-Y., Park, E., Lee, S.-J., & Chung, S. W. (2015). Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 6(27), 24393 https://doi.org/10.18632/oncotarget.5162.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, T.-C., Chuang, J.-Y., & Ko, C.-Y., et al. (2020). AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biology, 30, 101413 https://doi.org/10.1016/j.redox.2019.101413.

    Article  PubMed  CAS  Google Scholar 

  30. Pignanelli, C., Ma, D., & Noel, M., et al. (2017). Selective targeting of cancer cells by oxidative vulnerabilities with novel curcumin analogs. Scientific Reports, 7(1), 1105 https://doi.org/10.1038/s41598-017-01230-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chen M., Tan A-h, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling. Nutrition and Cancer. 2022:1–8. https://doi.org/10.1080/01635581.2022.2139398

  32. Zheng, Z., Zhang, X., Carbo, D., Clark, C., Nathan, C.-A., & Lvov, Y. (2010). Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir, 26(11), 7679–7681. https://doi.org/10.1021/la101246a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang, Q., Dou, Y., & Zhao, S., et al. (2020). Analysis of chemical consistency and the anti-tumor activity of Huangqi-Ezhu (HQ-EZ) concentrated-granules and decoction. Ann Palliat Med, 9(4), 1648–1659. https://doi.org/10.21037/apm-19-592.

    Article  PubMed  Google Scholar 

  34. Zhang, R., Pan, T., & Xiang, Y., et al. (2022). Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioactive Materials, 13, 23–36. https://doi.org/10.1016/j.bioactmat.2021.11.013.

    Article  PubMed  CAS  Google Scholar 

  35. Wang W., Xie Y., Malhotra A. Potential of curcumin and quercetin in modulation of premature mitochondrial senescence and related changes during lung carcinogenesis. Journal of Environmental Pathology Toxicology and Oncology. 2021;40(4). https://doi.org/10.1615/jenvironpatholtoxicoloncol.2021039371

  36. Tang, X., Ding, H., & Liang, M., et al. (2021). Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thoracic Cancer, 12(8), 1219–1230. https://doi.org/10.1111/1759-7714.13904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Doll, S., Proneth, B., & Tyurina, Y. Y., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 13(1), 91–98. https://doi.org/10.1038/nchembio.2239.

    Article  PubMed  CAS  Google Scholar 

  38. Kose, T., Vera-Aviles, M., Sharp, P. A., & Latunde-Dada, G. O. (2019). Curcumin and (−)-epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals, 12(1), 26 https://doi.org/10.3390/ph12010026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dodson, M., Castro-Portuguez, R., & Zhang, D. D. (2019). NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biology, 23, 101107 https://doi.org/10.1016/j.redox.2019.101107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wei Z., Shaohuan Q., Pinfang K., Chao S. Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovascular Therapeutics. 2022;2022. https://doi.org/10.1155/2022/3159717

  41. Ursini, F., & Maiorino, M. (2020). Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biology and Medicine, 152, 175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027.

    Article  PubMed  CAS  Google Scholar 

  42. Ikawa, T., Sato, M., Oh-Hashi, K., Furuta, K., & Hirata, Y. (2021). Oxindole–curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase. European Journal of Pharmacology, 896, 173898 https://doi.org/10.1016/j.ejphar.2021.173898.

    Article  PubMed  CAS  Google Scholar 

  43. Hirata, Y., Tsunekawa, Y., & Takahashi, M., et al. (2021). Identification of novel neuroprotective N, N-dimethylaniline derivatives that prevent oxytosis/ferroptosis and localize to late endosomes and lysosomes. Free Radical Biology and Medicine, 174, 225–235. https://doi.org/10.1016/j.freeradbiomed.2021.08.015.

    Article  PubMed  CAS  Google Scholar 

  44. Hirata, Y., Okazaki, R., Sato, M., Oh-Hashi, K., Takemori, H., & Furuta, K. (2022). Effect of ferroptosis inhibitors oxindole-curcumin hybrid compound and N, N-dimethylaniline derivatives on rotenone-induced oxidative stress. European Journal of Pharmacology, 928, 175119 https://doi.org/10.1016/j.ejphar.2022.175119.

    Article  PubMed  CAS  Google Scholar 

  45. Zhou, S.-Y., Cui, G.-Z., & Yan, X.-L., et al. (2020). Mechanism of ferroptosis and its relationships with other types of programmed cell death: insights for potential interventions after intracerebral hemorrhage. Frontiers in Neuroscience, 14, 589042 https://doi.org/10.3389/fnins.2020.589042.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang, C., Han, M., & Li, R., et al. (2021). Curcumin nanoparticles inhibiting ferroptosis for the enhanced treatment of intracerebral hemorrhage. International Journal of Nanomedicine, 16, 8049 https://doi.org/10.2147/IJN.S334965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zheng, Y., Zhao, T., & Wang, J., et al. (2022). Curcumol alleviates liver fibrosis through inducing autophagy and ferroptosis in hepatic stellate cells. The FASEB Journal, 36(12), e22665 https://doi.org/10.1096/fj.202200933RR.

    Article  PubMed  Google Scholar 

  48. Tang, X., Li, Z., & Yu, Z., et al. (2021). Effect of curcumin on lung epithelial injury and ferroptosis induced by cigarette smoke. Human & Experimental Toxicology, 40(12_suppl), S753–S762. https://doi.org/10.1177/09603271211059497.

    Article  CAS  Google Scholar 

  49. Córdoba-David, G., Duro-Castano, A., & Castelo-Branco, R. C., et al. (2020). Effective nephroprotection against acute kidney injury with a star-shaped polyglutamate-curcuminoid conjugate. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-58974-9.

    Article  CAS  Google Scholar 

  50. Guerrero‐Hue, M., García‐Caballero, C., & Palomino‐Antolín, A., et al. (2019). Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis‐mediated cell death. The FASEB Journal, 33(8), 8961–8975. https://doi.org/10.1096/fj.201900077R.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.F. and G.K.- researched the literature and wrote the first draft of the manuscript. A.S.- conceptualization and editing. A.E.B. edited the manuscript. All authors approved the final version of the manuscript. A.S. is the guarantor of this work.

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Consent to Publication

All authors gave their consent for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroutan, Z., Butler, A.E., Zengin, G. et al. Curcumin and Ferroptosis: a Promising Target for Disease Prevention and Treatment. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-023-01212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-023-01212-6

Keywords

Navigation