Skip to main content
Log in

Insulin Downregulates the Expression of ATP-binding Cassette Transporter A-I in Human Hepatoma Cell Line HepG2 in a FOXO1 and LXR Dependent Manner

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 07 November 2022

This article has been updated

Abstract

ATP-binding cassette transporter A-I (ABCA1) is an ubiquitously expressed protein whose main function is the transmembrane transport of cholesterol and phospholipids. Synthesis of ABCA1 protein in liver is necessary for high-density lipoprotein (HDL) formation in mammals. Thus, the mechanism of ABCA1 gene expression regulation in hepatocytes are of critical importance. Recently, we have found the insulin-dependent downregulation of other key player in the HDL formation—apolipoprotein A-I gene (J. Cell. Biochem., 2017, 118:382-396). Nothing is known about the role of insulin in the regulation of ABCA1 gene. Here we show for the first time that insulin decreases the mRNA and protein levels of ABCA1 in human hepatoma cell line HepG2. PI3K, p38, MEK1/2, JNK and mTORC1 signaling pathways are involved in the insulin-mediated downregulation of human ABCA1 gene. Transcription factors LXRα, LXRβ, FOXO1 and NF-κB are important contributors to this process, while FOXA2 does not regulate ABCA1 gene expression. Insulin causes the decrease in FOXO1, LXRα and LXRβ binding to ABCA1 promoter, which is likely the cause of the decrease in the gene expression. Interestingly, the murine ABCA1 gene seems to be not regulated by insulin in hepatocytes (in vitro and in vivo). We suggest that the reason for this discrepancy is the difference in the 5ʹ-regulatory regions of human and murine ABCA1 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information file.

Change history

References

  1. Fielding, C. J. & Fielding, P. E. (1995). Molecular physiology of reverse cholesterol transport. Journal of Lipid Research, 36, 211–228.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, G. F. & Rader, D. J. (2005). New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circulation Research, 96, 1221–1232. https://doi.org/10.1161/01.RES.0000170946.56981.5c.

    Article  CAS  PubMed  Google Scholar 

  3. Brewer, H. B. (2004). High-density lipoproteins: a new potential therapeutic target for the prevention of cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 387–391. https://doi.org/10.1161/01.ATV.000012.

    Article  CAS  PubMed  Google Scholar 

  4. Brunham, L. R., Singaraja, R. R., Duong, M., Timmins, J. M., Fievet, C., Bissada, N., Kang, M. H., Samra, A., Fruchart, J. C., McManus, B., Staels, B., Parks, J. S. & Hayden, M. R. (2009). Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 548–554. https://doi.org/10.1161/ATVBAHA.108.182303.

    Article  CAS  PubMed  Google Scholar 

  5. Timmins, J. M., Lee, J., Boudyguina, E., Kluckman, K. D., Brunham, L. R., Mulya, A., Gebre, A. K., Coutinho, J. M., Colvin, P. L., Smith, T. L., Hayden, M. R., Maeda, N. & Parks, J. S. (2005). Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. Journal of Clinical Investigation, 115, 1333–1342. https://doi.org/10.1172/JCI23915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wellington, C. L., Brunham, L. R., Zhou, S., Singaraja, R. R., Visscher, H., Gelfer, A., Ross, C., James, E., Liu, G., Huber, M. T., Yang, Y. Z., Parks, R. J., Groen, A., Fruchart-Najib, J. & Hayden, M. R. (2003). Alterations of plasma lipids in mice via adenoviral mediated hepatic overexpression of human ABCA1. Journal of Lipid Research, 44, 1470–1480. https://doi.org/10.1194/jlr.M300110-JLR200.

    Article  CAS  PubMed  Google Scholar 

  7. Brooks-Wilson, A., Marcil, A., Clee, S. M., Zhang, L. H., Roomp, K., van Dam, M., Yu, L., Brewer, C., Collins, J. A., Molhuizen, H. O., Loubser, O., Ouelette, B. F., Fichter, K., Ashbourne-Excoffon, K. J., Sensen, C. W., Scherer, S., Mott, S., Denis, M., Martindale, D., Frohlich, J., Morgan, K., Koop, B., Pimstone, S., Kastelein, J. J., Genest, J. & Hayden, M. R. (1999). Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics, 22, 336–345. https://doi.org/10.1038/11905.

    Article  CAS  PubMed  Google Scholar 

  8. Bodzioch, M., Orsó, E., Klucken, J., Langmann, T., Böttcher, A., Diederich, W., Drobnik, W., Barlage, S., Büchler, C., Porsch-Özcürümez, M., Kaminski, W. E., Hahmann, H. W., Oette, K., Rothe, G., Aslanidis, C., Lackner, K. J. & Schmitz, G. (1999). The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genetics, 22, 347–351. https://doi.org/10.1038/11914.

    Article  CAS  PubMed  Google Scholar 

  9. Rust, S., Rosier, M., Funke, H., Real, J., Amoura, Z., Piette, J. C., Deleuze, J. F., Brewer, H. B., Duverger, N., Denefle, P. & Assmann, G. (1999). Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genetics, 22, 352–355. https://doi.org/10.1038/11921.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, N., Silver, D. L., Costet, P. & Tall, A. R. (2000). Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. Journal of Biological Chemistry, 275, 33053–33058. https://doi.org/10.1074/jbc.M005438200.

    Article  CAS  PubMed  Google Scholar 

  11. Joyce, C., Freeman, L., Brewer, H. B. & Santamarina-Fojo, S. (2003). Study of ABCA1 function in transgenic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 965–971.

    Article  CAS  PubMed  Google Scholar 

  12. Kontush, A. & Chapman, M. J. (2006). Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacological Reviews, 58, 342–374. https://doi.org/10.1124/pr.58.3.1.

    Article  CAS  PubMed  Google Scholar 

  13. Kontush, A. (2014). HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovascular Research, 103, 341–349. https://doi.org/10.1093/cvr/cvu147.

    Article  CAS  PubMed  Google Scholar 

  14. Eggerman, T. L., Hoeg, J. M., Meng, M. S., Tombragel, A., Bojanovski, D. & Brewer, H. B. J. (1991). Differential tissue-specific expression of human apoA-I and apoA-II. Journal of Lipid Research, 32, 821–828.

    Article  CAS  PubMed  Google Scholar 

  15. Costet, P., Luo, Y., Wang, N. & Tall, A. R. (2000). Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. Journal of Biological Chemistry, 275, 28240–28245. https://doi.org/10.1074/jbc.M003337200.

    Article  CAS  PubMed  Google Scholar 

  16. Hossain, M. A., Tsujita, M., Gonzalez, F. J. & Yokoyama, S. (2008). Effects of fibrate drugs on expression of ABCA1 and HDL biogenesis in hepatocytes. Journal of Cardiovascular Pharmacology, 51, 258–266. https://doi.org/10.1097/FJC.0b013e3181624b22.

    Article  CAS  PubMed  Google Scholar 

  17. Mogilenko, D. A., Shavva, V. S., Dizhe, E. B., Orlov, S. V. & Perevozchikov, A. P. (2010). PPARγ activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells. Biochemical and Biophysical Research Communications, 402, 477–482. https://doi.org/10.1016/j.bbrc.2010.10.053.

    Article  CAS  PubMed  Google Scholar 

  18. Ogata, M., Tsujita, M., Hossain, M. A., Akita, N. U., Gonzalez, F. J., Staels, B., Suzuki, S., Fukutomi, T., Kimura, G., & Yokoyama, S. (2009). On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis, 205, 413–419. https://doi.org/10.1016/j.atherosclerosis.2009.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donath, M. Y. & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11, 98–107. https://doi.org/10.1038/nri2925.

    Article  CAS  PubMed  Google Scholar 

  20. Bansilal, S., Farkouh, M. E. & Fuster, V. (2007). Role of insulin resistance and hyperglycemia in the development of atherosclerosis. The American Journal of Cardiology, 99, 6B–14B. https://doi.org/10.1016/j.amjcard.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  21. Fuentes, L., de Simone, G., Arnett, D. K. & Dávila-Román, V. G. (2010). Molecular determinants of the cardiometabolic phenotype. Endocrine, Metabolic & Immune Disorders - Drug Targets, 10, 109–123. https://doi.org/10.2174/187153010791213119.

    Article  Google Scholar 

  22. Olefsky, J. M. & Glass, C. K. (2010). Macrophages, inflammation, and insulin resistance. Annual Review of Physiology, 72, 219–246. https://doi.org/10.1146/annurev-physiol-021909-135846.

    Article  CAS  PubMed  Google Scholar 

  23. Key, C. C., Liu, M., Kurtz, C. L., Chung, S., Boudyguina, E., Dinh, T. A., Bashore, A., Phelan, P. E., Freedman, B. I., Osborne, T. F., Zhu, X., Ma, L., Sethupathy, P., Biddinger, S. B. & Parks, J. S. (2017). Hepatocyte ABCA1 deletion impairs liver insulin signaling and lipogenesis. Cell Reports, 19, 2116–2129. https://doi.org/10.1016/j.celrep.2017.05.032.

    Article  CAS  PubMed  Google Scholar 

  24. de Haan, W., Karasinska, J. M., Ruddle, P., & Hayden, M. R. (2014). Hepatic ABCA1 expression improves β-cell function and glucose tolerance. Diabetes, 63, 4076–4082. https://doi.org/10.2337/db14-0548.

    Article  CAS  PubMed  Google Scholar 

  25. Shavva, V. S., Bogomolova, A. M., Nikitin, A. A., Dizhe, E. B., Tanyanskiy, D. A., Efremov, A. M., Oleinikova, G. N., Perevozchikov, A. P. & Orlov, S. V. (2017). Insulin-mediated downregulation of apolipoprotein A-I gene in human hepatoma cell line HepG2: the role of interaction between FOXO1 and LXRβ transcription factors. Journal of Cellular Biochemistry, 118, 382–396. https://doi.org/10.1002/jcb.25651.

    Article  CAS  PubMed  Google Scholar 

  26. Lyu, J., Imachi, H., Iwama, H., Zhang, H. & Murao, K. (2016). Insulin-like growth factor 1 regulates the expression of ATP-binding cassette transporter A1 in pancreatic beta cells. Hormone and Metabolic Research, 48, 338–344. https://doi.org/10.1055/s-0035-1569272.

    Article  CAS  PubMed  Google Scholar 

  27. Tobin, K. A. R., Ulven, S. M., Schuster, G. U., Steineger, H. H., Andresen, S. M., Gustafsson, J.-A. & Nebb, H. I. (2002). Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. Journal of Biological Chemistry, 277, 10691–10697. https://doi.org/10.1074/jbc.M109771200.

    Article  CAS  PubMed  Google Scholar 

  28. Tang, E. D., Nuñez, G., Barr, F. G. & Guan, K. L. (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. Journal of Biological Chemistry, 274, 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  29. Dizhe, E. B., Ignatovich, I. A., Burov, S. V., Pohvoscheva, A. V., Akifiev, B. N., Efremov, A. M., Perevozchikov, A. P., & Orlov, S. V. (2006). Complexes of DNA with cationic peptides: conditions of formation and factors effecting internalization by mammalian cells. Biochemistry (Mosc.), 71, 1350–1356. https://doi.org/10.1134/s0006297906120108.

    Article  CAS  PubMed  Google Scholar 

  30. Shavva, V. S., Mogilenko, D. A., Bogomolova, A. M., Nikitin, A. A., Dizhe, E. B., Efremov, A. M., Oleinikova, G. N., Perevozchikov, A. P. & Orlov, S. V. (2016). PPARγ represses apolipoprotein A-I gene but impedes TNFα-mediated apoA-I downregulation in HepG2 cells. Journal of Cellular Biochemistry, 117, 2010–2022. https://doi.org/10.1002/jcb.25498.

    Article  CAS  PubMed  Google Scholar 

  31. Mogilenko, D. A., Orlov, S. V., Trulioff, A. S., Ivanov, A. V., Nagumanov, V. K., Kudriavtsev, I. V., Shavva, V. S., Tanyanskiy, D. A. & Perevozchikov, A. P. (2012). Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. The FASEB Journal, 26, 2019–2030. https://doi.org/10.1096/fj.11-193946.

    Article  CAS  PubMed  Google Scholar 

  32. Mogilenko, D. A., Kudriavtsev, I. V., Trulioff, A. S., Shavva, V. S., Dizhe, E. B., Missyul, B. V., Zhakhov, A. V., Ischenko, A. M., Perevozchikov, A. P. & Orlov, S. V. (2012). Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Toll-like receptor 4 activation in human macrophages. Journal of Biological Chemistry, 287, 5954–5968. https://doi.org/10.1074/jbc.M111.289322.

    Article  CAS  PubMed  Google Scholar 

  33. Mogilenko, D. A., Dizhe, E. B., Shavva, V. S., Lapikov, I. A., Orlov, S. V., & Perevozchikov, A. P. (2009). Role of the nuclear receptors HNF4α, PPARα, and LXRs in the TNFα-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry, 48, 11950–11960. https://doi.org/10.1021/bi9015742.

    Article  CAS  PubMed  Google Scholar 

  34. Hwahng, S. H., Ki, S. H., Bae, E. J., Kim, H. E. & Kim, S. G. (2009). Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-α-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology, 49, 1913–1925. https://doi.org/10.1002/hep.22887.

    Article  CAS  PubMed  Google Scholar 

  35. Kanaki, M., Tiniakou, I., Thymiakou, E. & Kardassis, D. (2017). Physical and functional interactions between nuclear receptor LXRα and the forkhead box transcription factor FOXA2 regulate the response of the human lipoprotein lipase gene to oxysterols in hepatic cells. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1860, 848–860. https://doi.org/10.1016/j.bbagrm.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  36. Huuskonen, J., Vishnu, M., Chau, P., Fielding, P. E., & Fielding, C. J. (2006). Liver X receptor inhibits the synthesis and secretion of apolipoprotein A1 by human liver-derived cells. Biochemistry, 45, 15068–15074. https://doi.org/10.1021/bi061378y.

    Article  CAS  PubMed  Google Scholar 

  37. Sánchez-Aguilera, P., Diaz-Vegas, A., Campos, C., Quinteros-Waltemath, O., Cerda-Kohler, H., Barrientos, G., Contreras-Ferrat, A., & Llanos, P. (2018). Role of ABCA1 on membrane cholesterol content, insulin-dependent Akt phosphorylation and glucose uptake in adult skeletal muscle fibers from mice. Biochim Biophys Acta - Mol Cell Biol Lipids, 1863, 1469–1477. https://doi.org/10.1016/j.bbalip.2018.09.005.

    Article  CAS  PubMed  Google Scholar 

  38. de Haan, W., Bhattacharjee, A., Ruddle, P., Kang, M. H. & Hayden, M. R. (2014). ABCA1 in adipocytes regulates adipose tissue lipid content, glucose tolerance, and insulin sensitivity. Journal of Lipid Research, 55, 516–523. https://doi.org/10.1194/jlr.M045294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vincent, V., Thakkar, H., Aggarwal, S., Mridha, A. R., Ramakrishnan, L. & Singh, A. (2018). ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes, Metabolic Syndrome and Obesity, 12, 275–284. https://doi.org/10.2147/DMSO.S186565.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. D. Denisenko (Institute of Experimental Medicine, Russia) for useful discussion.

Author Contributions

V.S.S. wrote the manuscript; V.S.S., A.V.B., E.V.N. carried out the experiments and analyzed the results; A.V.L. performed the gene engineering manipulations; E.B.D. and G.N.O. performed the cell cultivation and the cell transfection experiments; S.V.O. designed the study, wrote the manuscript. All authors revised the manuscript and agreed to be accountable for all aspects of the presented work.

Funding

This work was supported by Russian Science Foundation (Grant No. 17-15-01326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Orlov.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Consent for Publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavva, V.S., Babina, A.V., Nekrasova, E.V. et al. Insulin Downregulates the Expression of ATP-binding Cassette Transporter A-I in Human Hepatoma Cell Line HepG2 in a FOXO1 and LXR Dependent Manner. Cell Biochem Biophys 81, 151–160 (2023). https://doi.org/10.1007/s12013-022-01109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01109-w

Keywords

Navigation