Skip to main content
Log in

Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Aptamer-Carbon Dot (CD) bioconjugation is an attractive target-tracking strategy in detecting cell surface antigens. This study describes an effective imaging paradigm for CA-125 antigen imaging. Our experience encompasses green CD synthesis and characterization, CD-capture probe conjugation through covalent bonding, the hybridization linkage of CD-probe to aptamer and their coupling confirmation, and fluorescent targeted imaging of ovarian cancer cells. As a result, the synthesized CDs from lemon extract by hydrothermal reaction show average size of 2 nm with maximum fluorescence intensity at excitation/emission 360/450 nm. CD-probe construction was provided by functional group interactions of CD and probe via EDC/NHS chemistry. The linkage of CD-probe to aptamer was conducted by Watson–Crick nucleotide pairing. The assessment of CD-probe and CD-probe-aptamer fabrication was validated by the increase in surface roughness through AFM analysis, the diminish of fluorescence intensity of CD after bioconjugation, and particle size growth of the construct. Conjugates with negligible cytotoxicity, appropriate zeta potential, and good aptamer release were applied in cellular imaging. This targeted diagnosis method was employed the four reported DNA aptamers toward fluorescence intensity. The DOV-3 aptamer showed more qualified detection over other aptamer conjugates during fluorescent microscopy analysis. In conclusion, the CD-probe-aptamer conjugate applications as toxic-free method can open new horizons in fluorescent nano-imaging in the field of targeted cancer cell diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faramarzi, L., Dadashpour, M., Sadeghzadeh, H., Mahdavi, M., & Zarghami, N. (2019). Enhanced anti-proliferative and pro-apoptotic effects of metformin encapsulated PLGA-PEG nanoparticles on SKOV3 human ovarian carcinoma cells. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 737–746. https://doi.org/10.1080/21691401.2019.1573737.

    Article  CAS  Google Scholar 

  2. Jayson, G. C., Kohn, E. C., Kitchener, H. C., & Ledermann, J. A. (2014). Ovarian cancer. The Lancet, 384(9951), 1376–1388.

    Article  Google Scholar 

  3. Goff, B. A., Mandel, L. S., Drescher, C. W., Urban, N., Gough, S., Schurman, K. M., & Andersen, M. R. (2007). Development of an ovarian cancer symptom index: possibilities for earlier detection. Cancer, 109(2), 221–227. https://doi.org/10.1002/cncr.22371.

    Article  PubMed  Google Scholar 

  4. Akbarzadeh, M., Majidinia, M., Aval, S. F., Mahbub, S., & Zarghami, N. (2018). Molecular targeting of notch signaling pathway by DAPT in human ovarian cancer: possible anti metastatic effects. Asian Pacific journal of cancer prevention: APJCP, 19(12), 3473 https://doi.org/10.31557/APJCP.2018.19.12.3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yilmaz, E. Z., & Yoruker, E. E. (2020). Predictive and Prognostic Markers for Cancer Medicine. Precision Medicine in Oncology. https://doi.org/10.1002/9781119432487.ch6.

  6. Nimse, S. B., Sonawane, M. D., Song, K.-S., & Kim, T. (2016). Biomarker detection technologies and future directions. Analyst, 141(3), 740–755. https://doi.org/10.1039/C5AN01790D.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, A., & Yang, S. (2015). Author’ s Accepted Manuscript Replacing Antibodies With Aptamers In Lateral Flow Immunoassay Reference: Biosensors and bioelectronics, 71, 230–242. https://doi.org/10.1016/j.bios.2015.04.041.

  8. Sun, H., & Zu, Y. (2015). A Highlight of recent advances in aptamer technology and its application. Molecules. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules200711959.

  9. Marcus, C. S., Maxwell, G. L., Darcy, K. M., Hamilton, C. A., & McGuire, W. P. (2014). Current approaches and challenges in managing and monitoring treatment response in ovarian cancer. Journal of Cancer, 5(1), 25 https://doi.org/10.7150/jca.7810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Charkhchi, P., Cybulski, C., Gronwald, J., Wong, F. O., Narod, S. A., & Akbari, M. R. (2020). Ca125 and ovarian cancer: a comprehensive review. Cancers, 12(12), 1–29. https://doi.org/10.3390/cancers12123730.

    Article  CAS  Google Scholar 

  11. Felder, M., Kapur, A., Gonzalez-Bosquet, J., Horibata, S., Heintz, J., Albrecht, R., & Patankar, M. S. (2014). MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Molecular Cancer, 13(1), 129 https://doi.org/10.1186/1476-4598-13-129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, T. D., Park, K. J., Smith-Jones, P., Iasonos, A., Linkov, I., Soslow, R. A., & Spriggs, D. R. (2010). Novel monoclonal antibodies against the proximal (carboxy-terminal) portions of MUC16. Applied immunohistochemistry & molecular morphology: AIMM/official publication of the Society for Applied Immunohistochemistry, 18(5), 462 https://doi.org/10.1097/PAI.0b013e3181dbfcd2.Novel.

    Article  Google Scholar 

  13. Kudłak, B., & Wieczerzak, M. (2020). Aptamer based tools for environmental and therapeutic monitoring: a review of developments, applications, future perspectives. Critical Reviews in Environmental Science and Technology, 50(8), 816–867. https://doi.org/10.1080/10643389.2019.1634457.

    Article  Google Scholar 

  14. Jo, H., & Ban, C. (2016). Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Experimental and Molecular Medicine, 48(5), e230 https://doi.org/10.1038/emm.2016.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matthew, R. D., R., M. J., & J., C. C. (2017). Analysis of aptamer discovery and technology. Nature Reviews Chemistry, 1(April), 2720 https://doi.org/10.1038/s41570017-0076.

    Article  Google Scholar 

  16. Pang, X., Cui, C., Wan, S., Jiang, Y., Zhang, L., Xia, L., & Tan, W. (2018). Bioapplications of cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: a comprehensive review. Cancers, 10(2), 47 https://doi.org/10.3390/cancers10020047.

    Article  CAS  PubMed Central  Google Scholar 

  17. Shangguan, D., Cao, Z., Meng, L., Mallikaratchy, P., Sefah, K., Wang, H., & Tan, W. (2008). Cell-specific aptamer probes for membrane protein elucidation in cancer cells. Journal of Proteome Research, 7(5), 2133–2139.

    Article  CAS  Google Scholar 

  18. Yoon, S., & Rossi, J. J. (2018). Targeted molecular imaging using aptamers in cancer. Pharmaceuticals, 11(3), 71 https://doi.org/10.3390/ph11030071.

    Article  CAS  PubMed Central  Google Scholar 

  19. Santos-Cancel, M., Simpson, L. W., Leach, J. B., & White, R. J. (2019). Direct, real-time detection of adenosine triphosphate release from astrocytes in three-dimensional culture using an integrated electrochemical aptamer-based sensor. ACS Chemical Neuroscience, 10(4), 2070–2079. https://doi.org/10.1021/acschemneuro.9b00033. research-article.

    Article  CAS  PubMed  Google Scholar 

  20. Mohajeri, N., Imani, M., Akbarzadeh, A., Sadighi, A., & Zarghami, N. (2019). An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: possible applications in medical and biotechnological utilities. Biosensors and Bioelectronics, 144(June), 111633 https://doi.org/10.1016/j.bios.2019.111633.

    Article  CAS  PubMed  Google Scholar 

  21. Li, C. H., Kuo, T. R., Su, H. J., Lai, W. Y., Yang, P. C., Chen, J. S., & Chen, C. C. (2015). Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Scientific Reports, 5(Sept), 15675 https://doi.org/10.1038/srep15675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, M. W., Jeong, H. Y., Kang, S. J., Choi, M. J., You, Y. M., Im, C. S., & Rhee, K.-J. (2017). Cancer-targeted nucleic acid delivery and quantum dot imaging using EGF receptor aptamer-conjugated lipid nanoparticles. Scientific Reports, 7(1), 9474 https://doi.org/10.1038/s41598-017-09555-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, Y., Zhao, C., Liu, Y., Nie, H., Guo, X., Song, X., & Wang, J. (2020). A novel fluorescence method for the rapid and effective detection of: Listeria monocytogenes using aptamer-conjugated magnetic nanoparticles and aggregation-induced emission dots. Analyst, 145(11), 3857–3863. https://doi.org/10.1039/d0an00397b.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, B., Yang, J., Hwang, M., Choi, J., Kim, H.-O., Jang, E., & Huh, Y.-M. (2013). Aptamer-modified magnetic nanoprobe for molecular MR imaging of VEGFR2 on angiogenic vasculature. Nanoscale Research Letters, 8(1), 399.

    Article  Google Scholar 

  25. Jana, J., Lee, H. J., Chung, J. S., Kim, M. H., & Hur, S. H. (2019). Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Analytica Chimica Acta, 1079, 212–219. https://doi.org/10.1016/j.aca.2019.06.064.

    Article  CAS  PubMed  Google Scholar 

  26. Wolfbeis, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44(14), 4743–4768. https://doi.org/10.1039/c4cs00392f.

    Article  CAS  PubMed  Google Scholar 

  27. Naseri, N., Ajorlou, E., Asghari, F., & Pilehvar-Soltanahmadi, Y. (2018). An update on nanoparticle-based contrast agents in medical imaging. Artificial Cells, Nanomedicine and Biotechnology, 46(6), 1111–1121. https://doi.org/10.1080/21691401.2017.1379014.

    Article  CAS  Google Scholar 

  28. Sharma, A., & Das, J. (2019). Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of nanobiotechnology, 17(1), 92.

    Article  Google Scholar 

  29. Unnikrishnan, B., Wu, R. S., Wei, S. C., Huang, C. C., & Chang, H. T. (2020). Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega, 5(20), 11248–11261. https://doi.org/10.1021/acsomega.9b04301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doñate-Buendia, C., Torres-Mendieta, R., Pyatenko, A., Falomir, E., Fernández-Alonso, M., & Mínguez-Vega, G. (2018). Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega, 3(3), 2735–2742. https://doi.org/10.1021/acsomega.7b02082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ganguly, S., Das, P., Itzhaki, E., Hadad, E., Gedanken, A., & Margel, S. (2020). Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Applied Materials and Interfaces, 12(46), 51940–51951. https://doi.org/10.1021/acsami.0c14527.

    Article  CAS  PubMed  Google Scholar 

  32. Hou, Y., Lu, Q., Deng, J., Li, H., & Zhang, Y. (2015). One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Analytica Chimica Acta, 866, 69–74. https://doi.org/10.1016/j.aca.2015.01.039.

    Article  CAS  PubMed  Google Scholar 

  33. Shang, W., Cai, T., Zhang, Y., Liu, D., & Liu, S. (2018). Facile one pot pyrolysis synthesis of carbon quantum dots and graphene oxide nanomaterials: all carbon hybrids as eco-environmental lubricants for low friction and remarkable wear-resistance. Tribology International, 118, 373–380. https://doi.org/10.1016/j.triboint.2017.09.029.

    Article  CAS  Google Scholar 

  34. Kim, S., Song, Y., & Heller, M. J. (2017). Seamless aqueous arc discharge process for producing graphitic carbon nanostructures. Carbon, 120, 83–88. https://doi.org/10.1016/j.carbon.2017.04.006.

    Article  CAS  Google Scholar 

  35. Wu, Y., Liu, Y., Yin, J., Li, H., & Huang, J. (2019). Facile ultrasonic synthesized NH2-carbon quantum dots for ultrasensitive Co2+ ion detection and cell imaging. Talanta, 205(May), 120121 https://doi.org/10.1016/j.talanta.2019.120121.

    Article  CAS  PubMed  Google Scholar 

  36. Hashemi, F., Heidari, F., Mohajeri, N., Mahmoodzadeh, F., & Zarghami, N. (2020). Fluorescence intensity enhancement of green carbon dots: synthesis, characterization and cell imaging. Photochemistry and Photobiology, 96(5), 1032–1040. https://doi.org/10.1111/php.13261.

    Article  CAS  PubMed  Google Scholar 

  37. Shao, Y., Zhu, C., Fu, Z., Lin, K., Wang, Y., Chang, Y., Tian, F. (2020). Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. Journal of Nanoparticle Research, 22(8). https://doi.org/10.1007/s11051-020-04917-4.

  38. Radnia, F., Mohajeri, N., & Zarghami, N. (2020). New insight into the engineering of green carbon dots: Possible applications in emerging cancer theranostics. Talanta: Elsevier. 10.1016/j.talanta.2019.120547.

    Google Scholar 

  39. Mohajeri, N., Mostafavi, E., & Zarghami, N. (2020). The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. Journal of Photochemistry and Photobiology B: Biology, 209. https://doi.org/10.1016/j.jphotobiol.2020.111944.

  40. Van Simaeys, D., López-Colón, D., Sefah, K., Sutphen, R., Jimenez, E., & Tan, W. (2010). Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PloS one, 5(11), e13770 https://doi.org/10.1371/journal.pone.0013770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scoville, D. J., Uhm, T. K. B., Shallcross, J. A., & Whelan, R. J. (2017). Selection of DNA aptamers for ovarian cancer biomarker CA125 using one-pot SELEX and high-throughput sequencing. Journal of nucleic acids, 2017. https://doi.org/10.1155/2017/9879135.

  42. Gedi, V., Song, C. K., Kim, G. B., Lee, J. O., Oh, E., Shin, B. S., & Kim, Y.-P. (2018). Sensitive on-chip detection of cancer antigen 125 using a DNA aptamer/carbon nanotube network platform. Sensors and Actuators B: Chemical, 256, 89–97. https://doi.org/10.1016/j.snb.2017.10.049.

    Article  CAS  Google Scholar 

  43. Nimith, K. M., Satyanarayan, M. N., & Umesh, G. (2018). Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications. Optical Materials, 80(April), 143–148. https://doi.org/10.1016/j.optmat.2018.04.046.

    Article  CAS  Google Scholar 

  44. Kloudová, K., Hromádková, H., Partlová, S., Brtnický, T., Rob, L., Bartůňková, J., & Fialová, A. (2016). Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines. Oncotarget, 7(29), 46120 https://doi.org/10.18632/oncotarget.10028.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Radnia, F., Mohajeri, N., Hashemi, F., Imani, M., & Zarghami, N. (2021). Design and development of folate-chitosan/CD nanogel: An efficient fluorescent platform for Cancer-specific delivery of AntimiR-21. Reactive and Functional Polymers, 104814. https://doi.org/10.1016/j.reactfunctpolym.2021.104814.

  46. Ţucureanu, V., Matei, A., Avram, A. M., Ţucureanu, V., Matei, A., Marius, A., & Avram, A. M. (2016). Critical reviews in analytical chemistry FTIR spectroscopy for carbon family study FTIR spectroscopy for carbon family study. Critical reviews in analytical chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013.

    Article  CAS  PubMed  Google Scholar 

  47. Hermanson, G. T. (2013). Bioconjugate Techniquese (3rd ed.). Elsevier Inc.

  48. Ma, X., Song, S., Kim, S., Kwon, M., Lee, H., Park, W., & Sim, S. J. (2019). Single gold-bridged nanoprobes for identification of single point DNA mutations. Nature Communications, 10(1), 836 https://doi.org/10.1038/s41467-019-08769-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, B., Chen, Y., Wu, Y., Weng, B., Liu, Y., Lu, Z., & Yu, C. (2016). Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosensors and Bioelectronics, 78, 23–30. https://doi.org/10.1016/j.bios.2015.11.015.

    Article  CAS  PubMed  Google Scholar 

  50. Shokri, E., Hosseini, M., Davari, M. D., Ganjali, M. R., Peppelenbosch, M. P., & Rezaee, F. (2017). Disulfide-induced self-assembled targets: a novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles. Scientific reports, 7(Mar), 45837 https://doi.org/10.1038/srep45837.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yuanyuan L, Liping J, Bijun L, Xinyue F, Wei W, Pingping L, Shenghao X & Luo, X. (2019). Nitrogen doped carbon dots: mechanism investigation and their application for label free CA125 analysis. Journal of Materials Chemistry B. https://doi.org/10.1039/C9TB00021F.

  52. Kurt, H., Yüce, M., Hussain, B., & Budak, H. (2016). Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosensors and Bioelectronics, 81, 280–286. https://doi.org/10.1016/j.bios.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  53. Vasimalai, N., Vilas-Boas, V., Gallo, J., de Fátima Cerqueira, M., Menéndez-Miranda, M., Costa-Fernández, J. M., & Fernández-Argüelles, M. T. (2018). Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein journal of nanotechnology, 9(1), 530–544. https://doi.org/10.3762/bjnano.9.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Torchynska, T. V., Vorobiev, Y. V., Makhniy, V. P., & Horley, P. P. (2014). The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots. Physica B: Condensed Matter, 453(i), 68–71. https://doi.org/10.1016/j.physb.2014.05.026.

  55. Brownell, L. V., Robins, K. A., Jeong, Y., Lee, Y., & Lee, D.-C. (2013). Highly systematic and efficient HOMO–LUMO energy gap control of thiophene-pyrazine-acenes. The Journal of Physical Chemistry C, 117(48), 25236–25247. https://doi.org/10.1021/jp407269p.

    Article  CAS  Google Scholar 

  56. Miao, H., Wang, L., Zhuo, Y., Zhou, Z., & Yang, X. (2016). Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosensors and Bioelectronics, 86, 83–89. https://doi.org/10.1016/j.bios.2016.06.043.

    Article  CAS  PubMed  Google Scholar 

  57. Chem, J. M. (2012). Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots †. Journal of Materials Chemistry, 11801–11807. https://doi.org/10.1039/c2jm31191g.

  58. Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., & Zhou, X. (2017). The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta, 184(7), 1899–1914. https://doi.org/10.1007/s00604-017-2318-9.

    Article  CAS  Google Scholar 

  59. Srivastava, I., Misra, S. K., Bangru, S., Boateng, K. A., Soares, J. A. N. T., Schwartz-Duval, A. S., & Pan, D. (2020). Complementary oligonucleotide conjugated multicolor carbon dots for intracellular recognition of biological events. ACS Applied Materials and Interfaces, 12(14), 16137–16149. https://doi.org/10.1021/acsami.0c02463.

    Article  CAS  PubMed  Google Scholar 

  60. Ashwood, B., Sanstead, P. J., Dai, Q., He, C., & Tokmakoff, A. (2020). 5-carboxylcytosine and cytosine protonation distinctly alter the stability and dehybridization dynamics of the DNA duplex. Journal of Physical Chemistry B, 124(4), 627–640. https://doi.org/10.1021/acs.jpcb.9b11510.

    Article  CAS  Google Scholar 

  61. Zhang, J., Lang, H. P., Yoshikawa, G., & Gerber, C. (2012). Optimization of DNA hybridization efficiency by pH-driven nanomechanical bending. Langmuir, 28(15), 6494–6501. https://doi.org/10.1021/la205066h.

    Article  CAS  PubMed  Google Scholar 

  62. Takezawa, Y., & Shionoya, M. (2012). Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. Accounts of Chemical Research, 45(12), 2066–2076. https://doi.org/10.1021/ar200313h.

    Article  CAS  PubMed  Google Scholar 

  63. Hong, L., Lu, M., Dinel, M.-P., Blain, P., Peng, W., Gu, H., & Masson, J.-F. (2018). Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA. Biosensors and Bioelectronic, 109, 230–236. https://doi.org/10.1016/j.bios.2018.03.032.

    Article  CAS  Google Scholar 

  64. Robert E. Farrell, J. (2017). RNA methodologies: a laboratory guide for isolation and characterization. FEBS Letters (5rd ed., Vol. 331). Academic Press.

  65. Rahaie, M., Naghavi, M. R., Alizadeh, H., Malboobi, M. A., & Dimitrov, K. (2011). A novel DNA-based nanostructure for single molecule detection purposes. International Journal of Nanotechnology, 8(6–7), 458–470. https://doi.org/10.1504/IJNT.2011.040188.

    Article  CAS  Google Scholar 

  66. Yang, T., & Gao, H. (2019). Atomic force microscopy study of EDTA induced desorption of metal ions immobilized DNA from mica surface. Ultramicroscopy, 199(Jan), 7–15. https://doi.org/10.1016/j.ultramic.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  67. Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., & Parak, W. J. (2017). Diverse applications of nanomedicine. ACS Nano, 11(3), 2313–2381. https://doi.org/10.1021/acsnano.6b06040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Long, F., Wu, S., He, M., Tong, T., & Shi, H. (2011). Ultrasensitive quantum dots-based DNA detection and hybridization kinetics analysis with evanescent wave biosensing platform. Biosensors and Bioelectronics, 26(5), 2390–2395. https://doi.org/10.1016/j.bios.2010.10.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tabriz University of Medical Sciences (TUOMS) for financially supporting this project. This study was partly taken from the MSc thesis (IR.TBZMED.VCR.REC.1397.114) that performed at the Faculty of Advanced Medical Sciences of Tabriz University of Medical Science, Tabriz, Iran.

Author contributions

All the authors contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasrin Mohajeri or Nosratollah Zarghami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was approved by the Local Research ethical committee of TUOMS.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, F., Mohajeri, N. & Zarghami, N. Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys 80, 75–88 (2022). https://doi.org/10.1007/s12013-021-01034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01034-4

Keywords

Navigation