Skip to main content
Log in

Cellular and Molecular Detection of Multi-doses of Ionizing Radiation-Induced Immunomodulatory Response

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) is used in a wide range of clinical applications. The study aims to evaluate various IR doses for their immunomodulatory responses, which can be used in multiple immunological conditions. Forty rats were exposed to whole-body gamma rays of 0, 0.25, 0.5, and 1 Gray (Gy). T-cell receptor (TCR) gene expression, serum transforming growth factor-beta, interleukin-10 (IL-10), and nitric oxide levels were measured on days 1 and 4 post irradiation. TCR activation occurred only at the genetic level, and radiation raised all measured parameters, even at low doses at α = 0.05 (P < 0.05). Except for IL-10, it shows a nearly 6% (P < 0.05) rise in early response in irradiated groups up to 0.5 Gy. At lower doses, the indirect impacts of IR were as essential as the direct impacts, and they increased over time in most measured parameters due to endogenous releases. They were having an anti-proliferative effect on the immune system. Lastly, a single acute IR dose can raise anti-inflammatory cytokines and anti-proliferative effects in the immune system, avoiding various contraindications associated with immunomodulatory drugs. More information on safety and clinical relevance is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and materials available.

References

  1. Calabrese, E. J. (2013). How the US National Academy of Sciences misled the world community on cancer risk assessment: New findings challenge historical foundations of the linear dose response. Archives of Toxicology, 87(12), 2063–2081. https://doi.org/10.1007/s00204-013-1105-6

    Article  CAS  PubMed  Google Scholar 

  2. Vaiserman, A., Koliada, A., Zabuga, O., & Socol, Y. (2018). Health impacts of low-dose ionizing radiation: Current scientific debates and regulatory issues. Dose Response, 16(3), 1559325818796331. https://pubmed.ncbi.nlm.nih.gov/30263019 https://pubmed.ncbi.nlm.nih.gov/30263019

    Article  Google Scholar 

  3. Leonard, B. E., Thompson, R. E., Beecher, G. C. (2019). Human lung cancer risks from radon – Part II – Influence from combined adaptive response and bystander effects – A microdose analysis. Dose Response, 9(4), 502–553. https://doi.org/10.2203/dose-response.09-058.Leonard

  4. Effects of ionizing radiation. UNSCEAR 2006 Report: Volume II Scientific ANNEX D. 116 (C.121, 121) (2016). https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-D.pdf

  5. US Centers for Disease Control and Prevention. A brochure for physicians: Acute radiation syndrome (2018). https://emergency.cdc.gov/radiation/pdf/ars.pdf

  6. Biological mechanisms of radiation actions at low doses. UNSCEAR WP. 9 (D.40) (2012). https://www.unscear.org/docs/reports/Biological_mechanisms_WP_12-57831.pdf.57831.pdf%5Cnpapers3://publication/uuid/41470CBA-B941-4DD3-B17B-456AC93AC569

  7. Cuttler, J. M. (2020). Application of low doses of ionizing radiation in medical therapies. Dose Response, 18(1), 1559325819895739. https://pubmed.ncbi.nlm.nih.gov/31933547 https://pubmed.ncbi.nlm.nih.gov/31933547

    Article  Google Scholar 

  8. Conley, J. M., Gallagher, M. P., Berg, L. J. (2016) T cells and gene regulation: The switching on and turning up of genes after T cell receptor stimulation in CD8 T cells. Frontiers in Immunology, 7, 76. https://www.frontiersin.org/article/10.3389/fimmu.2016.00076

  9. Oh, S. A., & Li, M. O. (2013). TGF-β: Guardian of T cell function. Journal of Immunology, 191(8), 3973–3979. https://pubmed.ncbi.nlm.nih.gov/24098055 https://pubmed.ncbi.nlm.nih.gov/24098055

    Article  CAS  Google Scholar 

  10. Kessler, B., Rinchai, D., Kewcharoenwong, C., Nithichanon, A., Biggart, R., & Hawrylowicz, C. M., et al. (2017). Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei. Scientific Reports, 7(1), 42791. https://doi.org/10.1038/srep42791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Azzam, E. I., Jay-Gerin, J.-P., & Pain, D. (2012). Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 327(1–2), 48–60. https://pubmed.ncbi.nlm.nih.gov/22182453 https://pubmed.ncbi.nlm.nih.gov/22182453

    Article  CAS  Google Scholar 

  12. Wink, D. A., Hines, H. B., Cheng, R. Y. S., Switzer, C. H., Flores-Santana, W. & Vitek, M. P. et al. (2011). Nitric oxide and redox mechanisms in the immune response. Journal of Leukocyte Biology, 89(6), 873–891. https://pubmed.ncbi.nlm.nih.gov/21233414 https://pubmed.ncbi.nlm.nih.gov/21233414

    Article  CAS  Google Scholar 

  13. National Research Council. (1996). Guide for the Care and Use of Laboratory Animals. Washington, DC: The National Academies Press. https://doi.org/10.17226/5140

  14. Montgomery, H., & Dymock, J. F. (1961). The determination of nitrite in water. Analyst, 86, 414–416

  15. Candéias, S. M., Mika, J., Finnon, P., Verbiest, T., Finnon, R., & Brown, N., et al. (2017). Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cellular and Molecular Life Sciences, 74(23), 4339–4351. https://doi.org/10.1007/s00018-017-2581-2

    Article  CAS  PubMed  Google Scholar 

  16. Li, H.-H., Wang, Y., Chen, R., Zhou, B., Ashwell, J. D., & Fornace, A. J. (2015). Ionizing radiation impairs T cell activation by affecting metabolic reprogramming. International Journal of Biological Sciences, 11(7), 726–736. http://www.ijbs.com/v11p0726.htm http://www.ijbs.com/v11p0726.htm

    Article  CAS  Google Scholar 

  17. Li, J.-M., Nichols, M. A., Chandrasekharan, S., Xiong, Y., & Wang, X.-F. (1995) Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. Journal of Biological Chemistry, 270(45), 26750–26753. http://www.jbc.org/cgi/content/short/270/45/26750

  18. Di Meo, S., Reed, T. T., Venditti, P., & Victor, V. M. (2016). Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity, 2016, 1245049 https://doi.org/10.1155/2016/1245049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manda, K., Glasow, A., Paape, D., & Hildebrandt, G. (2012). Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Frontiers in Oncology, 2, 102 https://pubmed.ncbi.nlm.nih.gov/22937525 https://pubmed.ncbi.nlm.nih.gov/22937525

    Article  Google Scholar 

  20. Harris, N. L., & Ronchese, F. (1999). The role of B7 costimulation in T-cell immunity. Immunology and Cell Biology, 77(4), 304–311. https://doi.org/10.1046/j.1440-1711.1999.00835.x

    Article  CAS  PubMed  Google Scholar 

  21. Jahns, J., Anderegg, U., Saalbach, A., Rosin, B., Patties, I., Glasow, A., et al. (2011). Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutation Research, 709–710, 32–39. https://pubmed.ncbi.nlm.nih.gov/21376737

  22. Fardid, R., Ghahramani, P., Mosleh-Shirazi, M.-A., Kalantari, T., Behzad-Behbahani, A., & Kazemi, E., et al. (2019). Expression of transforming growth factor-beta and interferon gamma biomarkers after whole body gamma irradiation. Journal of Cancer Research and Therapeutics, 15(Supplement), S135–S139. https://doi.org/10.4103/jcrt.JCRT_1324_16

    Article  CAS  PubMed  Google Scholar 

  23. Mosser, D. M., & Zhang, X. (2008). Interleukin-10: New perspectives on an old cytokine. Immunological Reviews, 226(1), 205–218. https://doi.org/10.1111/j.1600-065X.2008.00706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, R.-M., & Gaston Pravia, K. A. (2010). Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radical Biology and Medicine, 48(1), 1–15. http://www.sciencedirect.com/science/article/pii/S0891584909005681 http://www.sciencedirect.com/science/article/pii/S0891584909005681

    Article  Google Scholar 

  25. Rödel, F., Frey, B., Manda, K., Hildebrandt, G., Hehlgans, S., & Keilholz, L., et al. (2012). Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Frontiers in Oncology, 2, 120

    Article  Google Scholar 

  26. Burns, E. A., & Leventhal, E. A. (2000). Aging, immunity, and cancer. Cancer Control, 7(6), 513–522. https://doi.org/10.1177/107327480000700603

    Article  CAS  PubMed  Google Scholar 

  27. Little, M. P., Tawn, E. J., Tzoulaki, I., Wakeford, R., Hildebrandt, G., & Paris, F., et al. (2008). A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiation Research, 169(1), 99–109. https://doi.org/10.1667/RR1070.1

    Article  CAS  PubMed  Google Scholar 

  28. Schaue, D., Kachikwu, E. L., & McBride, W. H. (2012). Cytokines in radiobiological responses: A review. Radiation Research, 178(6), 505–523. https://doi.org/10.1667/RR3031.1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soha M. Hussien.

Ethics declarations

Conflict of interests

The author declares no competing interests.

Consent for publication

I consent to be published.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussien, S.M. Cellular and Molecular Detection of Multi-doses of Ionizing Radiation-Induced Immunomodulatory Response. Cell Biochem Biophys 79, 887–894 (2021). https://doi.org/10.1007/s12013-021-01017-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01017-5

Keywords

Navigation