Skip to main content

Advertisement

Log in

Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Giant unilamellar vesicles (GUVs) are used extensively as models that mimic cell membranes. The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. Thus, a methodological paper pertaining to preparations of model lipid bilayer membranes with high Chol content would significantly help the study of properties of these membranes. Lipid solutions containing 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and Chol were fluorescently labeled with phospholipid analog 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiIC18(3)) and spin-coated to produce thin lipid films. GUVs were formed from these films using the electroformation method and the results were obtained using fluorescent microscopy. Electroformation outcomes were examined for different electrical parameters and different Chol concentrations. A wide range of field frequency–field strength (ff–fs) combinations was explored: 10–10,000 Hz and 0.625–9.375 V/mm peak-to-peak. Optimal values for GUVs preparation were found to be 10–100 Hz and 1.25–6.25 V/mm, with largest vesicles occurring for 10 Hz and 3.75 V/mm. Chol:POPC mixing ratios (expressed as a molar ratio) ranged from 0 to 3.5. We show that increasing the Chol concentration decreases the GUVs size, but this effect can be reduced by choosing the appropriate ff–fs combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Menger, F. M., & Angelova, M. I. (1998). Giant vesicles: imitating the cytological processes of cell membranes. Accounts of Chemical Research, 31, 789–797.

    Article  CAS  Google Scholar 

  2. Veatch, S. L., & Keller, S. L. (2002). Organization in lipid membranes containing cholesterol. Physical Review Letters, 89, 268101.

    Article  Google Scholar 

  3. Montes, L.-R., Alonso, A., Goni, F. M., & Bagatolli, L. A. (2007). Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophysical Journal, 93, 3548–3554.

    Article  CAS  Google Scholar 

  4. Valkenier, H., López Mora, N., Kros, A., & Davis, A. P. (2015). Visualization and quantification of transmembrane ion transport into giant unilamellar vesicles. Angewandte Chemie, 54, 2137–2141.

    Article  CAS  Google Scholar 

  5. Li, Q., Wang, X., Ma, S., Zhang, Y., & Han, X. (2016). Electroformation of giant unilamellar vesicles in saline solution. Colloids Surfaces B Biointerfaces, 147, 368–375.

    Article  CAS  Google Scholar 

  6. Pott, T., Bouvrais, H., & Méléard, P. (2008). Giant unilamellar vesicle formation under physiologically relevant conditions. Chemistry and Physics of Lipids, 154, 115–119.

    Article  CAS  Google Scholar 

  7. Nacka, F., Cansell, M., Méléard, P., & Combe, N. (2001). Incorporation of α-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies. Lipids., 36, 1313–1320.

    Article  CAS  Google Scholar 

  8. Patil, Y. P., & Jadhav, S. (2015). Preparation of Liposomes for drug delivery applications by extrusion of giant unilamellar vesicles. In Nanoscale and microscale phenomena (pp. 17–29). Springer, India.

  9. Alavi, M., Karimi, N., & Safaei, M. (2017). Application of various types of liposomes in drug delivery systems. Advanced Pharmaceutical Bulletin, 7, 3.

    Article  CAS  Google Scholar 

  10. van Swaay, D., et al. (2013). Microfluidic methods for forming liposomes. Lab on a Chip, 13, 752–767.

    Article  Google Scholar 

  11. Reeves, J. P., & Dowben, R. M. (1969). Formation and properties of thin-walled phospholipid vesicles. Journal of Cellular Physiology, 73, 49–60.

    Article  CAS  Google Scholar 

  12. Angelova, M. I., & Dimitrov, D. S. (1986). Liposome electroformation. Faraday Discussions of the Chemical Society, 81, 303–311.

    Article  CAS  Google Scholar 

  13. Angelova, M. I., Soléau, S., Méléard, P., Faucon, F., & Bothorel, P. (1992). Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Progress in Colloid and Polymer Science, 89, 127–131.

    Article  CAS  Google Scholar 

  14. Walde, P., Cosentino, K., Engel, H., & Stano, P. (2010). Giant vesicles: preparations and applications. ChemBioChem, 11, 848–865.

    Article  CAS  Google Scholar 

  15. Dimitrov, D. S., & Angelova, M. I. (1987). Lipid swelling and liposome formation on solid surfaces in external electric fields. Progress in Colloid and Polymer Science, 73, 48–56.

    Article  CAS  Google Scholar 

  16. Rodriguez, N., Pincet, F., & Cribier, S. (2005). Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids Surfaces B Biointerfaces, 42, 125–130.

    Article  CAS  Google Scholar 

  17. Bagatolli, L. A., Parasassi, T., & Gratton, E. (2000). Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chemistry and Physics of Lipids, 105, 135–147.

    Article  CAS  Google Scholar 

  18. Veatch, S. L. (2007). Electro-formation and fluorescence microscopy of giant vesicles with coexisting liquid phases. In: McIntosh, T. J. (ed.), Methods in Molecular Biology in Lipid Rafts, (vol. 398, pp. 59–72). Humana Press Inc., Totowa, NJ, Springer.

  19. Estes, D. J., & Mayer, M. (2005). Electroformation of giant liposomes from spin-coated films of lipids. Colloids Surfaces B Biointerfaces, 42, 115–123.

    Article  CAS  Google Scholar 

  20. Riske, K. A., & Dimova, R. (2005). Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophysical Journal, 88, 1143–1155.

    Article  CAS  Google Scholar 

  21. Gudheti, M. V., Mlodzianoski, M., & Hess, S. T. (2007). Imaging and shape analysis of GUVs as model plasma membranes: effect of trans DOPC on membrane properties. Biophysical Journal, 93, 2011–2023.

    Article  CAS  Google Scholar 

  22. Politano, T. J., Froude, V. E., Jing, B., & Zhu, Y. (2010). AC-electric field dependent electroformation of giant lipid vesicles. Colloids Surfaces B Biointerfaces, 79, 75–82.

    Article  CAS  Google Scholar 

  23. Li, W., Wang, Q., Yang, Z., Wang, W., Cao, Y., Hu, N., Luo, H., Liao, Y., & Yang, J. (2016). Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips. Colloids Surfaces B Biointerfaces, 140, 560–566.

    Article  CAS  Google Scholar 

  24. Wang, Q., Zhang, X., Fan, T., Yang, Z., Chen, X., Wang, Z., Xu, J., Li, Y., Hu, N., & Yang, J. (2017). Frequency-dependent electroformation of giant unilamellar vesicles in 3D and 2D microelectrode systems. Micromachines, 8, 24.

    Article  Google Scholar 

  25. Mason, R. P., Tulenko, T. N., & Jacob, R. F. (2003). Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1610, 198–207.

    Article  Google Scholar 

  26. Silvius, J. R. (2003). Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1610, 174–183.

    Article  CAS  Google Scholar 

  27. Van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/nrm2330.

  28. Portet, T., Mauroy, C., Démery, V., Houles, T., Escoffre, J.-M., Dean, D. S., & Rols, M.-P. (2012). Destabilizing giant vesicles with electric fields: an overview of current applications. The Journal of Membrane Biology, 245, 555–564.

    Article  CAS  Google Scholar 

  29. Baykal-Caglar, E., Hassan-Zadeh, E., Saremi, B., & Huang, J. (2012). Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818, 2598–2604.

    Article  CAS  Google Scholar 

  30. Li, L.-K., So, L., & Spector, A. (1985). Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. Journal of Lipid Research, 26, 600–609.

    CAS  PubMed  Google Scholar 

  31. Li, L.-K., So, L., & Spector, A. (1987). Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids. Biochimica et Biophysica Acta (BBA)-Lipids Lipid Metab, 917, 112–120.

    Article  CAS  Google Scholar 

  32. Rujoi, M., Jin, J., Borchman, D., Tang, D., & Yappert, M. C. (2003). Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Investigative Ophthalmology and Visual Science, 44, 1634–1642.

    Article  Google Scholar 

  33. Zelenka, P. S. (1984). Lens lipids. Current Eye Research, 3, 1337–1359.

    Article  CAS  Google Scholar 

  34. Subczynski, W. K., Raguz, M., Widomska, J., Mainali, L., & Konovalov, A. (2012). Functions of cholesterol and the cholesterol bilayer domain specific to the fiber-cell plasma membrane of the eye lens. The Journal of Membrane Biology. https://doi.org/10.1007/s00232-011-9412-4.

  35. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2017). Changes in the properties and organization of human lens lipid membranes occurring with age. Current Eye Research, 42, 721–731.

    Article  CAS  Google Scholar 

  36. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2015). Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61–70-year-old human donors. European Biophysics Journal, 44, 91–102.

    Article  CAS  Google Scholar 

  37. Mainali, L., Raguz, M., O’Brien, W. J., & Subczynski, W. K. (2013). Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 1432–1440.

    Article  CAS  Google Scholar 

  38. Widomska, J., Subczynski, W. K., Mainali, L., & Raguz, M. (2017). Cholesterol bilayer domains in the eye lens health: a review. Cell Biochemistry and Biophysics. https://doi.org/10.1007/s12013-017-0812-7.

  39. Mainali, L., Raguz, M., Camenisch, T. G., Hyde, J. S., & Subczynski, W. K. (2011). Spin-label saturation-recovery EPR at W-band: applications to eye lens lipid membranes. Journal of Magnetic Resonance. https://doi.org/10.1016/j.jmr.2011.06.014.

  40. Raguz, M., Widomska, J., Dillon, J., Gaillard, E. R., & Subczynski, W. K. (2009). Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies. Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbamem.2009.09.005.

  41. Raguz, M., Widomska, J., Dillon, J., Gaillard, E. R., & Subczynski, W. K. (2008). Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches. Biochimica et Biophysica Acta. Biomembrane. https://doi.org/10.1016/j.bbamem.2008.01.024.

  42. Widomska, J., Raguz, M., & Subczynski, W. K. (2007). Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochimica et Biophysica Acta. Biomembrane. https://doi.org/10.1016/j.bbamem.2007.06.018.

  43. Widomska, J., Raguz, M., Dillon, J., Gaillard, E. R., & Subczynski, W. K. (2007). Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochimica et Biophysica Acta. Biomembrane. https://doi.org/10.1016/j.bbamem.2007.03.007.

  44. Huang, J., Buboltz, J. T., & Feigenson, G. W. (1999). Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1417, 89–100.

    Article  CAS  Google Scholar 

  45. Stevens, M. M., Honerkamp-Smith, A. R., & Keller, S. L. (2010). Solubility limits of cholesterol, lanosterol, ergosterol, stigmasterol, and β-sitosterol in electroformed lipid vesicles. Soft Matter., 6, 5882–5890.

    Article  CAS  Google Scholar 

  46. Buboltz, J. T., & Feigenson, G. W. (1999). A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1417, 232–245.

    Article  CAS  Google Scholar 

  47. Ratanabanangkoon, P., Gropper, M., Merkel, R., Sackmann, E., & Gast, A. P. (2002). Two-dimensional streptavidin crystals on giant lipid bilayer vesicles. Langmuir., 18, 4270–4276.

    Article  CAS  Google Scholar 

  48. Bernard, A.-L., Guedeau-Boudeville, M.-A., Jullien, L., & Di Meglio, J.-M. (2000). Strong adhesion of giant vesicles on surfaces: dynamics and permeability. Langmuir., 16, 6809–6820.

    Article  CAS  Google Scholar 

  49. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., & Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods., 9, 676.

    Article  CAS  Google Scholar 

  50. R Development Core Team (2008). R: A language and environment for statistical computing. http://www.r-project.org.

  51. Breton, M., Amirkavei, M., & Mir, L. M. (2015). Optimization of the electroformation of giant unilamellar vesicles (GUVs) with unsaturated phospholipids. The Journal of Membrane Biology. (2015). https://doi.org/10.1007/s00232-015-9828-3.

  52. Mainali, L., Pasenkiewicz-Gierula, M., & Subczynski, W. K. (2020). Formation of cholesterol Bilayer domains precedes formation of cholesterol crystals in membranes made of the major phospholipids of human eye lens fiber cell plasma membranes. Current Eye Research. (2020). https://doi.org/10.1080/02713683.2019.1662058.

  53. Raguz, M., Kumar, S. N., Zareba, M., Ilic, N., Mainali, L., & Subczynski, W. K. (2019). Confocal microscopy confirmed that in phosphatidylcholine giant unilamellar vesicles with very high cholesterol content pure cholesterol bilayer domains form. Cell Biochemistry and Biophysics. https://doi.org/10.1007/s12013-019-00889-y.

Download references

Acknowledgements

We thank Ante Bilušić, Katarina Vukojević, Damir Sapunar, Sandra Kostić, Jasna Puizina, Ivana Bočina, Ivica Aviani, and Lucija Krce for access to their lab equipment and helpful discussions and comments.

Funding

Research reported in this publication was supported by the Croatian Science Foundation (Croatia) under Grant [IP-2019-04-1958], by the National Institutes of Health (USA) under Grant R01 EY 015526, and by the Polish National Science Center under Grant [2016/22/M/NZ1/00187].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Raguz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boban, Z., Puljas, A., Kovač, D. et al. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Cell Biochem Biophys 78, 157–164 (2020). https://doi.org/10.1007/s12013-020-00910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00910-9

Keywords

Navigation