Skip to main content
Log in

Role of Early Glycation Amadori Products of Lysine-Rich Proteins in the Production of Autoantibodies in Diabetes Type 2 Patients

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In diabetes, protein glycation mostly occurs at intrachain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). Several studies have reported autoantibodies against AGEs in diabetes but not much data are found in respect of Amadori products. In this study, poly-l-lysine (PLL) was glycated with 50 mM glucose and the resultant Amadori products were estimated by fructosamine or nitroblue tetrazolium assay. We report high content of Amadori products in PLL upon glycation. Glycated PLL showed marked hyperchromicity in the UV spectrum, ellipticity changes in CD spectroscopy, and variations in ε-methylene protons shift in NMR. It was better recognized by autoantibodies in type 2 diabetics compared to the native PLL. Induced antibodies against glycated PLL were successfully used to probe early glycation in the IgG isolated from diabetes type 2 patients. Role of Amadori products of glycated proteins in the induction of autoantibodies in type 2 diabetes as well as in associated secondary complications has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PLL:

Poly-l-lysine

NBT:

Nitroblue tetrazolium

HMF:

5-Hydroxymethylfurfural

NaBH4 :

Sodium borohydride

AGEs:

Advanced glycation end products

UV:

Ultraviolet

CD spectroscopy:

Circular dichroism

NMR:

Nuclear magnetic resonance

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Ansari, N. A., & Moinuddin, (2013). Amadori glycated proteins: role in production of autoantibodies in diabetes mellitus and effect of inhibitors on non-enzymatic glycation. Aging and Disease, 4(1), 50–56.

    PubMed  PubMed Central  Google Scholar 

  2. Armbruster, D. A. (1987). Fructosamine: structure, analysis and clinical usefulness. Clinical Chemistry, 33, 2153–2163.

    PubMed  CAS  Google Scholar 

  3. Schalkwijk, G. C., & Miyata, T. (2012). Early- and advanced non-enzymatic glycation in diabetic vascular complications: The search for therapeutics. Amino Acids, 42(4), 1193–1204.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Khan, M. W. A., Qadrie, Z. L., & Khan, W. A. (2010). Antibodies against gluco-oxidatively modified human serum albumin detected in diabetes-associated complications. International Archives of Allergy and Immunology, 153, 207–214.

    Article  PubMed  CAS  Google Scholar 

  5. Ansari, N. A., Moinuddin, Alam, K., & Ali, A. (2009). Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: Role of protein glycation in the disease process. Human Immunology, 70, 417–424.

    Article  PubMed  CAS  Google Scholar 

  6. Arif, B., Ashraf, J. M., Moinuddin, Ahmad, J., Arif, Z., & Alam, K. (2012). Structural and immunological characterization of Amadori-rich human serum albumin: role in diabetes mellitus. Archives of Biochemistry and Biophysics, 522(1), 17–25.

    Article  PubMed  CAS  Google Scholar 

  7. Fu, M. X., Wells-knecht, K. J., Blackledge, J. A., Lyons, T. J., Thorpe, S. R., & Baynes, J. W. (1994). Glycation, glycoxidation and cross-linking of collagen by glucose. Diabetes, 43, 676–683.

    Article  PubMed  CAS  Google Scholar 

  8. Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986). Identification of N epsilon-carboxymethyllysine as a degradation product of fructose lysine in glycated protein. Journal of Biological Chemistry, 261, 4889–4894.

    PubMed  CAS  Google Scholar 

  9. Hunt, J. V., Bottoms, M. A., Clare, K., Skamarauskas, J. T., & Mitchinson, M. J. (1994). Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation. Biochemical Journal, 300, 243–249.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Johnson, R., Metcalf, P. A., & Baker, J. R. (1982). Fructosamine: a new approach to the estimation of serum glycosylprotein. Clinica Chimica Acta, 127, 87–95.

    Article  Google Scholar 

  11. Fluckiger, R., & Winterhalter, K. H. (1976). In vitro synthesis of hemoglobin A1C. FEBS Letters, 71, 356–360.

    Article  PubMed  CAS  Google Scholar 

  12. Nagai, R., Ikeda, K., Higashi, T., et al. (1997). Hydroxyl radical mediates N ε-(carboxymethyl) lysine formation from Amadori product. Biochemical and Biophysical Research Communications, 234, 167–172.

    Article  PubMed  CAS  Google Scholar 

  13. Njoroge, F. G., Fernandes, A. A., & Monnier, V. M. (1988). Mechanism of formation of the putative advanced glycosylation end product and protein cross-link 2-(2-furoyl)-4(5)-(2-furanyl)-lH-imidazole. Journal of Biological Chemistry, 263, 10646–10652.

    PubMed  CAS  Google Scholar 

  14. Ali, R., & Alam, K. (2002). Evaluation of antibodies against oxygen free radical-modified DNA by ELISA. In D. Armstrong (Ed.), Methods in molecular biology: Oxidative stress biomarkers and antioxidants protocols (pp. 171–181). New Jersey: Humana Press.

    Google Scholar 

  15. Habib, S., & Moinuddin, Ali R. (2005). Acquired antigenicity of DNA after modification with peroxynitrite. International Journal of Biological Macromolecules, 35, 221–225.

    Article  PubMed  CAS  Google Scholar 

  16. Dixit, K., Moinuddin, & Ali, A. (2005). Immunological studies on peroxynitrite modified human DNA. Life Sciences, 77, 2626–2642.

    Article  PubMed  CAS  Google Scholar 

  17. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets, procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350–4354.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ansari, N. A., & Moinuddin, Ali R. (2011). Physico-chemical analysis of poly-l-lysine: An insight into the changes induced in lysine residues of proteins upon modification with glucose. IUBMB Life, 63, 26–29.

    Article  PubMed  CAS  Google Scholar 

  19. Graf, E., Empson, K. L., & Eaton, J. W. (1987). Phytic acid a natural antioxidant. Journal of Biological Chemistry, 262(11647), 11650.

    Google Scholar 

  20. Graf, E., Moheney, J. R., & Bryant, R. G. (1984). Iron catalysed hydroxyl radical formation. Journal of Biological Chemistry, 259, 3620–3624.

    PubMed  CAS  Google Scholar 

  21. Kim, J., Hong, C., Koo, Y., Choi, H., & Lee, K. (2012). Anti-glycation effect of gold nanoparticles on collagen. Biological and Pharmaceutical Bulletin, 35, 260–264.

    Article  PubMed  CAS  Google Scholar 

  22. Ney, K. A., Colley, K. J., & Pizzo, S. V. (1981). The standardization of thiobarbituric acid assay for nonenzymatic glucosylation of human serum albumin. Analytical Biochemistry, 118, 294–298.

    Article  PubMed  CAS  Google Scholar 

  23. Tsuchiya, S., Sakurai, T., & Sekiguchi, S. (1984). Nonenzymatic glucosylation of human serum albumin and its influence on binding capacity of sulfonylureas. Biochemical Pharmacology, 33, 2967–2971.

    Article  PubMed  CAS  Google Scholar 

  24. Rosenheck, K., & Doty, P. (1961). The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation. Proceedings of the National Academy of Sciences of the United States of America, 47, 1775–1785.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Rahmanpour, R., & Bathai, S. Z. (2011). Histone H1 structural changes and its interaction with DNA in the presence of high glucose concentration in vivo and in vitro. Journal of Biomolecular Structure & Dynamics, 28(4), 575–586.

    Article  CAS  Google Scholar 

  26. Oliveira, L. M. A., Lages, A., Gomes, R. A., Neves, H., Família, C., Coelho, A. V., et al. (2011). Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochemistry, 12, 41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Liang, J. N. (1990). Circular dichroism of the non-enzymatic browning products of poly-l-lysine and albumin. International Journal of Biological Macromolecules, 12, 273–277.

    Article  PubMed  CAS  Google Scholar 

  28. Tressi, R., Piechotta, C. T., Rewicki, D. T., & Krause, E. (2002). Modification of peptide lysine during Maillard reaction of d-glucose and d-lactose. International Congress Series, 1245, 203–209.

    Article  CAS  Google Scholar 

  29. Kalia, K., Sharma, S., & Mistry, K. (2004). Non-enzymatic glycosylation of immunoglobulins in diabetic nephropathy. Clinica Chimica Acta, 347, 169–176.

    Article  CAS  Google Scholar 

  30. Stig, B., & Hajdu, N. (2008). Endproducts and receptor of advanced glycation and lipoxidation (AGE, ALE, RAGE) and chronic diseases—a food perspective. Orvosi Hetilap, 149, 771–778.

    Article  PubMed  Google Scholar 

  31. Jaleel, A., Halvatsiotis, P., & Williamson, B. (2005). Identification of Amadori-modified plasma proteins in type 2 diabetes and the effect of short-term intensive insulin treatment. Diabetes Care, 28, 645–652.

    Article  PubMed  CAS  Google Scholar 

  32. Cohen, M. P., & Ziyadeh, F. N. (1994). Amadori glucose adducts modulate mesangial cell growth and collagen gene expression. Kidney International, 45, 475–484.

    Article  PubMed  CAS  Google Scholar 

  33. Sakai, H., Jinde, K., Suzuki, D., Yagame, M., & Nomoto, Y. (1996). Localization of glycated proteins in the glomeruli of patients with diabetic nephropathy. Nephrology Dialysis Transplantation, 11, 66–71.

    Article  Google Scholar 

  34. Ibrahim, A. S., El-Remessy, A. B., Matragoon, S., Zhang, W., Patel, Y., Khan, S., et al. (2011). Retinal microglial activation and inflammation induced by Amadori-glycated albumin in a rat model of diabetes. Diabetes, 60(4), 1122–1133.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Monnier, V. M., Sell, D. R., Dai, Z., Nemet, I., Collard, F., & Zhang, J. (2008). The role of the Amadori product in complications of diabetes. Annals of the New York Academy of Sciences, 1126, 81–88.

    Article  PubMed  CAS  Google Scholar 

  36. Amore, A., Cirina, P., Mitola, S., Peruzzi, L., Gianoglio, B., Rabbone, I., et al. (1997). Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney International, 51, 27–35.

    Article  PubMed  CAS  Google Scholar 

  37. Predescu, D., Simionescu, M., Simionescu, N., & Palade, G. (1988). Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: Evidence that glycoalbumin behaves as a bifunctional ligand. Journal of Cell Biology, 107, 1729–1738.

    Article  PubMed  CAS  Google Scholar 

  38. Cohen, M. P., Hud, E., Wu, V. Y., & Shearman, C. W. (2008). Amelioration of diabetes-associated abnormalities in the vitreous fluid by an inhibitor of albumin glycation. Investigative Ophthalmology & Visual Science, 49, 5089–5093.

    Article  Google Scholar 

  39. Schalkwijk, C. G., Ligtvoet, N., Twaalfhoven, H., Jager, A., Blaauwgeers, H. G., Schlingemann, R. O., et al. (1999). Amodori albumin in type 1 diabetic patients, correlation with markers of endothelial function associated with diabetic nephropathy and localization in retinal capillaries. Diabetes, 48, 2446–2453.

    Article  PubMed  CAS  Google Scholar 

  40. Kaneshige, H. (1987). Nonenzymatic glycosylation of serum IgG and its effect on antibody activity in patients with diabetes mellitus. Diabetes, 36, 822–828.

    Article  PubMed  CAS  Google Scholar 

  41. Ahmad, S., & Moinuddin, Ali A. (2012). Immunological studies on glycated human IgG. Life Sciences, 90, 980–987.

    Article  PubMed  CAS  Google Scholar 

  42. Lapolla, A., Molin, L., & Traldi, P. (2013). Protein glycation in diabetes as determined by mass spectrometry. International Journal of Endocrinology, 2013, 412103. doi:10.1155/2013/412103.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are thankful to Sophisticated Analytical Instrument Facility of Central Drug Research Institute, Lucknow (India) for NMR experiments. Thanks are also due to Prof. Jamal Ahmad (Department of Medicine, J.N. Medical College, Aligarh Muslim University) for providing the type 2 diabetes mellitus samples. Financial assistance from UPCST, Lucknow and ICMR, New Delhi to Moinuddin is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moinuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, N.A., Moinuddin, Mir, A.R. et al. Role of Early Glycation Amadori Products of Lysine-Rich Proteins in the Production of Autoantibodies in Diabetes Type 2 Patients. Cell Biochem Biophys 70, 857–865 (2014). https://doi.org/10.1007/s12013-014-9991-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9991-7

Keywords

Navigation