Skip to main content

Advertisement

Log in

Meta-analytic Comparison Between PIB-PET and FDG-PET Results in Alzheimer’s Disease and MCI

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We conducted a meta-analysis of positron emission tomography (PET) findings in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) to clarify the changes underpinning these conditions. All studies that utilised the PET tracers Pittsburgh Compound-B (PIB) or 2-[18F]fluoro-2-deoxy-d-glucose (FDG) to investigate patients with MCI or AD, were considered for the meta-analysis. Meta-analyses of PIB-PET and FDG-PET changes between patients and controls were undertaken with the effect-size signed differential mapping (ES-SDM) voxel-based meta-analytic method. A total of 24 studies were included involving 728 AD patients, 211 MCI patients and 658 healthy controls. Individuals with AD showed a significant PIB retention in bilateral precuneus and temporal, supramarginal, cingulate and fusiform gyri, as well as right insula and putamen. In addition, AD patients showed significant glucose hypometabolism in bilateral precuneus and temporal, supramarginal, cingulate, fusiform, angular, inferior parietal and middle frontal gyri, as well as left precentral and parahippocampal gyri and right superior frontal gyrus and thalamus. An exploratory meta-analysis of the few studies on MCI showed mildly decreased glucose metabolism with a similar regional distribution than in patients with AD. We suggest that our results can be used for further region-of-interest studies of AD and MCI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rinne, J. O., & Nagren, K. (2010). Positron emission tomography in at risk patients and in the progression of mild cognitive impairment to Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(1), 291–300.

    PubMed  Google Scholar 

  2. Berti, V., Osorio, R. S., Mosconi, L., Li, Y., De Santi, S., & de Leon, M. J. (2010). Early detection of Alzheimer’s disease with PET imaging. Neurodegenerative Disease, 7(1–3), 131–135.

    Article  CAS  Google Scholar 

  3. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. Neuroimage, 11(6 Pt 1), 805–821.

    Article  CAS  PubMed  Google Scholar 

  4. Ashburner, J., & Friston, K. J. (2001). Why voxel-based morphometry should be used. Neuroimage, 14(6), 1238–1243.

    Article  CAS  PubMed  Google Scholar 

  5. Svarer, C., Madsen, K., Hasselbalch, S. G., Pinborg, L. H., Haugbol, S., Frokjaer, V. G., et al. (2005). MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage, 24(4), 969–979.

    Article  PubMed  Google Scholar 

  6. Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393–402.

    Article  PubMed  Google Scholar 

  7. Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., et al. (2011). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27(8), 605–611.

    Article  PubMed  Google Scholar 

  8. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage, 16(3 Pt 1), 765–780.

    Article  PubMed  Google Scholar 

  9. Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2(2), 150–158.

    Article  PubMed Central  PubMed  Google Scholar 

  10. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.

    Article  CAS  PubMed  Google Scholar 

  11. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.

    Article  CAS  PubMed  Google Scholar 

  12. Petersen, R. C., Parisi, J. E., Dickson, D. W., Johnson, K. A., Knopman, D. S., Boeve, B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology, 63(5), 665–672.

    Article  PubMed  Google Scholar 

  13. Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 1194–1205.

    Article  PubMed  Google Scholar 

  14. Okello, A., Koivunen, J., Edison, P., Archer, H. A., Turkheimer, F. E., Nagren, K., et al. (2009). Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology, 73(10), 754–760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mikhno, A., Devanand, D., Pelton, G., Cuasay, K., Gunn, R., Upton, N., et al. (2008). Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer’s disease. Journal of Nuclear Medicine, 49(8), 1262–1269.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Frisoni, G. B., Lorenzi, M., Caroli, A., Kemppainen, N., Nagren, K., & Rinne, J. O. (2009). In vivo mapping of amyloid toxicity in Alzheimer disease. Neurology, 72(17), 1504–1511.

    Article  CAS  PubMed  Google Scholar 

  17. Ng, S. Y., Villemagne, V. L., Masters, C. L., & Rowe, C. C. (2007). Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh Compound B. Archives of Neurology, 64(8), 1140–1144.

    Article  PubMed  Google Scholar 

  18. Nelissen, N., Vandenbulcke, M., Fannes, K., Verbruggen, A., Peeters, R., Dupont, P., et al. (2007). Abeta amyloid deposition in the language system and how the brain responds. Brain, 130(Pt 8), 2055–2069.

    Article  PubMed  Google Scholar 

  19. Drzezga, A., Grimmer, T., Henriksen, G., Muhlau, M., Perneczky, R., Miederer, I., et al. (2009). Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology, 72(17), 1487–1494.

    Article  CAS  PubMed  Google Scholar 

  20. Drzezga, A., Grimmer, T., Henriksen, G., Stangier, I., Perneczky, R., Diehl-Schmid, J., et al. (2008). Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage, 39(2), 619–633.

    Article  PubMed  Google Scholar 

  21. Ziolko, S. K., Weissfeld, L. A., Klunk, W. E., Mathis, C. A., Hoge, J. A., Lopresti, B. J., et al. (2006). Evaluation of voxel-based methods for the statistical analysis of PIB PET amyloid imaging studies in Alzheimer’s disease. Neuroimage, 33(1), 94–102.

    Article  PubMed  Google Scholar 

  22. Chetelat, G., Villemagne, V. L., Pike, K. E., Ellis, K. A., Bourgeat, P., Jones, G., et al. (2011). Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain, 134(Pt 3), 798–807.

    Article  PubMed  Google Scholar 

  23. Shin, J., Lee, S. Y., Kim, S. J., Kim, S. H., Cho, S. J., & Kim, Y. B. (2010). Voxel-based analysis of Alzheimer’s disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG. Neuroimage, 52(2), 488–496.

    Article  PubMed  Google Scholar 

  24. Kemppainen, N. M., Aalto, S., Wilson, I. A., Nagren, K., Helin, S., Bruck, A., et al. (2007). PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology, 68(19), 1603–1606.

    Article  CAS  PubMed  Google Scholar 

  25. Del Sole, A., Clerici, F., Chiti, A., Lecchi, M., Mariani, C., Maggiore, L., et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: An FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35(7), 1357–1366.

    Article  PubMed  Google Scholar 

  26. Smith, G. S., Kramer, E., Ma, Y., Hermann, C. R., Dhawan, V., Chaly, T., et al. (2009). Cholinergic modulation of the cerebral metabolic response to citalopram in Alzheimer’s disease. Brain, 132(Pt 2), 392–401.

    PubMed Central  PubMed  Google Scholar 

  27. Yakushev, I., Landvogt, C., Buchholz, H. G., Fellgiebel, A., Hammers, A., Scheurich, A., et al. (2008). Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Research, 164(2), 143–153.

    Article  PubMed  Google Scholar 

  28. Chetelat, G., Desgranges, B., Landeau, B., Mezenge, F., Poline, J. B., de la Sayette, V., et al. (2008). Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain, 131(Pt 1), 60–71.

    CAS  PubMed  Google Scholar 

  29. Habeck, C., Foster, N. L., Perneczky, R., Kurz, A., Alexopoulos, P., Koeppe, R. A., et al. (2008). Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage, 40(4), 1503–1515.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hunt, A., Schonknecht, P., Henze, M., Seidl, U., Haberkorn, U., & Schroder, J. (2007). Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Research, 155(2), 147–154.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, S. H., Seo, S. W., Yoon, D. S., Chin, J., Lee, B. H., Cheong, H. K., et al. (2010). Comparison of neuropsychological and FDG-PET findings between early- versus late-onset mild cognitive impairment: A five-year longitudinal study. Dementia and Geriatric Cognitive Disorders, 29(3), 213–223.

    Article  PubMed  Google Scholar 

  32. Lee, D. Y., Seo, E. H., Choo, I. H., Kim, S. G., Lee, J. S., Lee, D. S., et al. (2008). Neural correlates of the Clock Drawing Test performance in Alzheimer’s disease: A FDG-PET study. Dementia and Geriatric Cognitive Disorders, 26(4), 306–313.

    Article  CAS  PubMed  Google Scholar 

  33. Matsunari, I., Samuraki, M., Chen, W. P., Yanase, D., Takeda, N., Ono, K., et al. (2007). Comparison of 18F-FDG PET and optimized voxel-based morphometry for detection of Alzheimer’s disease: Aging effect on diagnostic performance. Journal of Nuclear Medicine, 48(12), 1961–1970.

    Article  PubMed  Google Scholar 

  34. Mosconi, L., Herholz, K., Prohovnik, I., Nacmias, B., De Cristofaro, M. T., Fayyaz, M., et al. (2005). Metabolic interaction between ApoE genotype and onset age in Alzheimer’s disease: Implications for brain reserve. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 15–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wu, X., Chen, K., Yao, L., Ayutyanont, N., Langbaum, J. B., Fleisher, A., et al. (2010). Assessing the reliability to detect cerebral hypometabolism in probable Alzheimer’s disease and amnestic mild cognitive impairment. Journal of Neuroscience Methods, 192(2), 277–285.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Xu, C., Wang, Z., Fan, M., Liu, B., Song, M., Zhen, X., et al. (2010). Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer’s disease. NeuroReport, 21(12), 802–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Choo, I. H., Lee, D. Y., Youn, J. C., Jhoo, J. H., Kim, K. W., Lee, D. S., et al. (2007). Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Disease and Associated Disorders, 21(2), 77–84.

    Article  PubMed  Google Scholar 

  38. Ishii, K., Sasaki, H., Kono, A. K., Miyamoto, N., Fukuda, T., & Mori, E. (2005). Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. European Journal of Nuclear Medicine and Molecular Imaging, 32(8), 959–963.

    Article  PubMed  Google Scholar 

  39. Kanda, T., Ishii, K., Uemura, T., Miyamoto, N., Yoshikawa, T., Kono, A. K., et al. (2008). Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2227–2234.

    Article  PubMed  Google Scholar 

  40. Kawachi, T., Ishii, K., Sakamoto, S., Sasaki, M., Mori, T., Yamashita, F., et al. (2006). Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 33(7), 801–809.

    Article  PubMed  Google Scholar 

  41. Kim, E. J., Cho, S. S., Jeong, Y., Park, K. C., Kang, S. J., Kang, E., et al. (2005). Glucose metabolism in early onset versus late onset Alzheimer’s disease: An SPM analysis of 120 patients. Brain, 128(Pt 8), 1790–1801.

    Article  CAS  PubMed  Google Scholar 

  42. Langbaum, J. B., Chen, K., Lee, W., Reschke, C., Bandy, D., Fleisher, A. S., et al. (2009). Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage, 45(4), 1107–1116.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sakamoto, S., Ishii, K., Hosaka, K., Mori, T., Sasaki, M., & Mori, E. (2005). Detectability of hypometabolic regions in mild Alzheimer disease: Function of time after the injection of 2-[fluorine 18]-fluoro-2-deoxy-d-glucose. AJNR. American Journal of Neuroradiology, 26(4), 843–847.

    PubMed  Google Scholar 

  44. Samuraki, M., Matsunari, I., Chen, W. P., Yajima, K., Yanase, D., Fujikawa, A., et al. (2007). Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 34(10), 1658–1669.

    Article  PubMed  Google Scholar 

  45. Yuan, X., Shan, B., Ma, Y., Tian, J., Jiang, K., Cao, Q., et al. (2010). Multi-center study on Alzheimer’s disease using FDG PET: Group and individual analyses. Journal of Alzheimer’s Disease, 19(3), 927–935.

    CAS  PubMed  Google Scholar 

  46. Ishii, H., Ishikawa, H., Meguro, K., Tashiro, M., & Yamaguchi, S. (2009). Decreased cortical glucose metabolism in converters from CDR 0.5 to Alzheimer’s disease in a community: The Osaki-Tajiri Project. International Psychogeriatrics, 21(1), 148–156.

    Article  PubMed  Google Scholar 

  47. Morbelli, S., Piccardo, A., Villavecchia, G., Dessi, B., Brugnolo, A., Piccini, A., et al. (2010). Mapping brain morphological and functional conversion patterns in amnestic MCI: A voxel-based MRI and FDG-PET study. European Journal of Nuclear Medicine and Molecular Imaging, 37(1), 36–45.

    Article  PubMed  Google Scholar 

  48. Schroeter, M. L., Stein, T., Maslowski, N., & Neumann, J. (2009). Neural correlates of Alzheimer’s disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. Neuroimage, 47(4), 1196–1206.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Edison, P., Archer, H. A., Hinz, R., Hammers, A., Pavese, N., Tai, Y. F., et al. (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. Neurology, 68(7), 501–508.

    Article  CAS  PubMed  Google Scholar 

  50. Herholz, K., Carter, S. F., & Jones, M. (2007). Positron emission tomography imaging in dementia. The British Journal of Radiology, 80 Spec No. 2, S160–S167.

    Article  PubMed  Google Scholar 

  51. Wong, K. P., Wardak, M., Shao, W., Dahlbom, M., Kepe, V., Liu, J., et al. (2010). Quantitative analysis of [18F]FDDNP PET using subcortical white matter as reference region. European Journal of Nuclear Medicine and Molecular Imaging, 37(3), 575–588.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

    Article  CAS  PubMed  Google Scholar 

  53. Hoffman, E. J., Huang, S. C., & Phelps, M. E. (1979). Quantitation in positron emission computed tomography: 1. Effect of object size. Journal of Computer Assisted Tomography, 3(3), 299–308.

    Article  CAS  PubMed  Google Scholar 

  54. Tohru, S., Isabelle, M., Ken, H., Gjermund, H., Christine, P., Markus, S., et al. (2009). The effect of partial volume effect correction on PIB and FDG PET data in MCI and AD patients. Journal of Nuclear Medicine, 50(Supplement 2), 428.

    Google Scholar 

  55. Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. Neuroimage, 45(3), 810–823.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the authors of the included studies for providing additional data and methodological details that were not reported in the original publications. Especially, we want to thank Joaquim Radua for great instructions and kind help about the ES-SDM software. We also thank Hao Su and Wei Wu for helpful suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghua Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Liu, D., Radua, J. et al. Meta-analytic Comparison Between PIB-PET and FDG-PET Results in Alzheimer’s Disease and MCI. Cell Biochem Biophys 71, 17–26 (2015). https://doi.org/10.1007/s12013-014-0138-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0138-7

Keywords

Navigation