Skip to main content
Log in

Identification of Circulating Inflammatory Proteins Associated with Calcific Aortic Valve Stenosis by Multiplex Analysis

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Calcific aortic valve stenosis (CAVS) is characterized by increasing inflammation and progressive calcification in the aortic valve leaflets and is a major cause of death in the aging population. This study aimed to identify the inflammatory proteins involved in CAVS and provide potential therapeutic targets. We investigated the observational and causal associations of 92 inflammatory proteins, which were measured using affinity-based proteomic assays. Firstly, the case–control cohort identified differential proteins associated with the occurrence and progression of CAVS. Subsequently, we delved into exploring the causal impacts of these associated proteins through Mendelian randomization. This involved utilizing genetic instruments derived from cis-protein quantitative loci identified in genome-wide association studies, encompassing a cohort of over 400,000 individuals. Finally, we investigated the gene transcription and protein expression levels of inflammatory proteins by single-cell and immunohistochemistry analysis. Multivariate logistic regression and spearman's correlation analysis showed that five proteins showed a significant positive correlation with disease severity. Mendelian randomization showed that elevated levels of two proteins, namely, matrix metallopeptidase-1 (MMP1) and sirtuin 2 (SIRT2), were associated with an increased risk of CAVS. Immunohistochemistry and single-cell transcriptomes showed that expression levels of MMP1 and SIRT2 at the tissue and cell levels were significantly higher in calcified valves than in non-calcified control valves. These findings indicate that MMP1 and SIRT2 are causally related to CAVS and open up the possibility for identifying novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The UK Biobank resource is open to legitimate researchers engaging in health-related studies for the public benefit. Researchers seeking access to this resource must register with UK Biobank by filling out the registration form available in the Access Management System (AMS-https://bbams.ndph.ox.ac.uk/ams/). The single-cell datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/, PRJNA562645. For the current study, the datasets utilized and/or analyzed are obtainable from the corresponding author upon reasonable request.

Abbreviations

CAVS:

Calcific aortic valve stenosis

GWAS:

Genome-wide association studies

MR:

Mendelian randomization

SD:

Standard deviation

IL:

Interleukin

OR:

Odds ratio

SNP:

Single nucleotide polymorphism

IVW:

Inverse variance weighted

KEGG:

Kyoto encyclopedia of genes and genomes

GO:

Gene ontology

MMP1:

Matrix metallopeptidase-1

SIRT2:

Sirtuin 2

UMAP:

Uniform manifold approximation and projection

VDSCs:

Valve-derived stromal cells

VECs:

Valve endothelial cells

VICs:

Valve interstitial cells

References

  1. Carabello, B. A., & Paulus, W. J. (2009). Aortic stenosis. Lancet (London, England), 373, 956–966. https://doi.org/10.1016/s0140-6736(09)60211-7

    Article  PubMed  Google Scholar 

  2. Yadgir, S., Johnson, C. O., Aboyans, V., Adebayo, O. M., Adedoyin, R. A., Afarideh, M., Alahdab, F., Alashi, A., Alipour, V., Arabloo, J., et al. (2020). Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation, 141, 1670–1680. https://doi.org/10.1161/circulationaha.119.043391

    Article  PubMed  Google Scholar 

  3. Otto, C. M., & Prendergast, B. (2014). Aortic-valve stenosis–from patients at risk to severe valve obstruction. New England Journal of Medicine, 371, 744–756. https://doi.org/10.1056/NEJMra1313875

    Article  CAS  PubMed  Google Scholar 

  4. Peeters, F., Meex, S. J. R., Dweck, M. R., Aikawa, E., Crijns, H., Schurgers, L. J., & Kietselaer, B. (2018). Calcific aortic valve stenosis: Hard disease in the heart: A biomolecular approach towards diagnosis and treatment. European Heart Journal, 39, 2618–2624. https://doi.org/10.1093/eurheartj/ehx653

    Article  CAS  PubMed  Google Scholar 

  5. Lindman, B. R., Bonow, R. O., & Otto, C. M. (2013). Current management of calcific aortic stenosis. Circulation Research, 113, 223–237. https://doi.org/10.1161/circresaha.111.300084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kraler, S., Blaser, M. C., Aikawa, E., Camici, G. G., & Lüscher, T. F. (2022). Calcific aortic valve disease: From molecular and cellular mechanisms to medical therapy. European Heart Journal, 43, 683–697. https://doi.org/10.1093/eurheartj/ehab757

    Article  CAS  PubMed  Google Scholar 

  7. Yutzey, K. E., Demer, L. L., Body, S. C., Huggins, G. S., Towler, D. A., Giachelli, C. M., Hofmann-Bowman, M. A., Mortlock, D. P., Rogers, M. B., Sadeghi, M. M., et al. (2014). Calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology. https://doi.org/10.1161/atvbaha.114.302523

    Article  PubMed  PubMed Central  Google Scholar 

  8. Driscoll, K., Cruz, A. D., & Butcher, J. T. (2021). Inflammatory and biomechanical drivers of endothelial-interstitial interactions in calcific aortic valve disease. Circulation Research, 128, 1344–1370. https://doi.org/10.1161/circresaha.121.318011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Rodríguez, C., Parra-Izquierdo, I., Castaños-Mollor, I., López, J., San Román, J. A., & Sánchez, Crespo M. (2018). Toll-Like receptors, inflammation, and calcific aortic valve disease. Front Physiol, 9, 201. https://doi.org/10.3389/fphys.2018.00201

    Article  PubMed  PubMed Central  Google Scholar 

  10. Galante, A., Pietroiusti, A., Vellini, M., Piccolo, P., Possati, G., De Bonis, M., Grillo, R. L., Fontana, C., & Favalli, C. (2001). C-reactive protein is increased in patients with degenerative aortic valvular stenosis. Journal of the American College of Cardiology, 38, 1078–1082. https://doi.org/10.1016/s0735-1097(01)01484-x

    Article  CAS  PubMed  Google Scholar 

  11. Small, A., Kiss, D., Giri, J., Anwaruddin, S., Siddiqi, H., Guerraty, M., Chirinos, J. A., Ferrari, G., & Rader, D. J. (2017). Biomarkers of calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology. https://doi.org/10.1161/atvbaha.116.308615

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wallentin, L., Eriksson, N., Olszowka, M., Grammer, T. B., Hagström, E., Held, C., Kleber, M. E., Koenig, W., März, W., Stewart, R. A. H., et al. (2021). Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. PLoS Medicine, 18, e1003513. https://doi.org/10.1371/journal.pmed.1003513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Cortes, A., Koprulu, M., Wörheide, M. A., Oerton, E., Cook, J., Stewart, I. D., Kerrison, N. D., et al. (2021). Mapping the proteo-genomic convergence of human diseases. Science. https://doi.org/10.1126/science.abj1541

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, J., Dutta, D., Köttgen, A., Tin, A., Schlosser, P., Grams, M. E., Harvey, B., Yu, B., Boerwinkle, E., Coresh, J., et al. (2022). Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nature Genetics, 54, 593–602. https://doi.org/10.1038/s41588-022-01051-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Czesnikiewicz-Guzik, M., Osmenda, G., Siedlinski, M., Nosalski, R., Pelka, P., Nowakowski, D., Wilk, G., Mikolajczyk, T. P., Schramm-Luc, A., Furtak, A., et al. (2019). Causal association between periodontitis and hypertension: Evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. European Heart Journal, 40, 3459–3470. https://doi.org/10.1093/eurheartj/ehz646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henry, A., Gordillo-Marañón, M., Finan, C., Schmidt, A. F., Ferreira, J. P., Karra, R., Sundström, J., Lind, L., Ärnlöv, J., Zannad, F., et al. (2022). Therapeutic targets for heart failure identified using proteomics and mendelian randomization. Circulation, 145, 1205–1217. https://doi.org/10.1161/circulationaha.121.056663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng, K. H., Tsimikas, S., Pawade, T., Kroon, J., Jenkins, W. S. A., Doris, M. K., White, A. C., Timmers, N. K. L. M., Hjortnaes, J., Rogers, M. A., et al. (2019). Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. Journal of the American College of Cardiology, 73, 2150–2162. https://doi.org/10.1016/j.jacc.2019.01.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Otto, C. M. (2006). Valvular aortic stenosis: disease severity and timing of intervention. Journal of the American College of Cardiology, 47, 2141–2151. https://doi.org/10.1016/j.jacc.2006.03.002

    Article  PubMed  Google Scholar 

  19. Egervall, K., Rosso, A., & Elmståhl, S. (2021). Association between cardiovascular disease- and inflammation-related serum biomarkers and poor lung function in elderly. Clinical Proteomics, 18, 23. https://doi.org/10.1186/s12014-021-09329-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, J. H., Stacey, D., Eriksson, N., Macdonald-Dunlop, E., Hedman, Å. K., Kalnapenkis, A., Enroth, S., Cozzetto, D., Digby-Bell, J., Marten, J., et al. (2023). Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nature Immunology, 24, 1540–1551. https://doi.org/10.1038/s41590-023-01588-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, K., Xie, S., Huang, Y., Zhou, T., Liu, M., Zhu, P., Wang, C., Shi, J., Li, F., Sellke, F. W., et al. (2020). Cell-type transcriptome atlas of human aortic valves reveal cell heterogeneity and endothelial to mesenchymal transition involved in calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2910–2921. https://doi.org/10.1161/atvbaha.120.314789

    Article  CAS  PubMed  Google Scholar 

  22. Xu, F., Yu, E.Y.-W., Cai, X., Yue, L., Jing, L.-p, Liang, X., Fu, Y., Miao, Z., Yang, M., Shuai, M., et al. (2023). Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility. Nature Communications. https://doi.org/10.1038/s41467-023-36491-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Võsa, U., Claringbould, A., Westra, H. J., Bonder, M. J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al. (2021). Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics, 53, 1300–1310. https://doi.org/10.1038/s41588-021-00913-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, J., Wang, Z., Bao, Q., Lei, S., You, Y., Yin, Z., & Xie, X. (2022). Global burden of calcific aortic valve disease and attributable risk factors from 1990 to 2019. Frontiers in Cardiovascular Medicine, 9, 1003233. https://doi.org/10.3389/fcvm.2022.1003233

    Article  PubMed  PubMed Central  Google Scholar 

  25. Head, S. J., Çelik, M., & Kappetein, A. P. (2017). Mechanical versus bioprosthetic aortic valve replacement. European Heart Journal, 38, 2183–2191. https://doi.org/10.1093/eurheartj/ehx141

    Article  PubMed  Google Scholar 

  26. Dhayni, K., Chabry, Y., Hénaut, L., Avondo, C., Boudot, C., Ouled-Haddou, H., Bigot-Corbel, E., Touati, G., Caus, T., Messaoudi, H., et al. (2023). Aortic valve calcification is promoted by interleukin-8 and restricted through antagonizing CXC motif chemokine receptor 2. Cardiovascular Research, 119, 2355–2367. https://doi.org/10.1093/cvr/cvad117

    Article  CAS  PubMed  Google Scholar 

  27. Yang, Z., Zhang, J., Zhu, Y., Zhang, C., Li, G., Liu, S., Du, J., Han, Y., & You, B. (2023). IL-17A induces valvular endothelial inflammation and aggravates calcif ic aortic valve disease. Biochemical and Biophysical Research Communications, 672, 145–153. https://doi.org/10.1016/j.bbrc.2023.04.079

    Article  CAS  PubMed  Google Scholar 

  28. Gollmann-Tepeköylü, C., Graber, M., Hirsch, J., Mair, S., Naschberger, A., Pölzl, L., Nägele, F., Kirchmair, E., Degenhart, G., Demetz, E., et al. (2023). Toll-Like receptor 3 mediates aortic stenosis through a conserved mechanism of calcification. Circulation, 147, 1518–1533. https://doi.org/10.1161/circulationaha.122.063481

    Article  PubMed  Google Scholar 

  29. Pohle, K., Mäffert, R., Ropers, D., Moshage, W., Stilianakis, N., Daniel, W. G., & Achenbach, S. (2001). Progression of aortic valve calcification. Circulation, 104, 1927–1932. https://doi.org/10.1161/hc4101.097527

    Article  CAS  PubMed  Google Scholar 

  30. Chang, K., Yokose, C., Tenner, C., Oh, C., Donnino, R., Choy-Shan, A., Pike, V. C., Shah, B. D., Lorin, J. D., Krasnokutsky, S., et al. (2017). Association Between Gout and Aortic Stenosis. The American Journal of Medicine, 130, 230.e231-230.e238. https://doi.org/10.1016/j.amjmed.2016.09.005

    Article  Google Scholar 

  31. Malik, M. H. A., Jury, F., Bayat, A., Ollier, W. E. R., & Kay, P. R. (2007). Genetic susceptibility to total hip arthroplasty failure: A preliminar y study on the influence of matrix metalloproteinase 1, interleukin 6 polymorphisms and vitamin D receptor. Annals of the Rheumatic Diseases, 66, 1116–1120. https://doi.org/10.1136/ard.2006.062018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller, J. D., Weiss, R. M., & Heistad, D. D. (2011). Calcific aortic valve stenosis: methods, models, and mechanisms. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.110.234138

    Article  PubMed  PubMed Central  Google Scholar 

  33. Helske, S., Syväranta, S., Lindstedt, K. A., Lappalainen, J., Öörni, K., Mäyränpää, M. I., Lommi, J., Turto, H., Werkkala, K., Kupari, M., et al. (2006). Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arteriosclerosis, Thrombosis, and Vascular Biology. https://doi.org/10.1161/01.atv.0000228824.01604.63

    Article  PubMed  Google Scholar 

  34. Di Vito, A., Donato, A., Presta, I., Mancuso, T., Brunetti, F. S., Mastroroberto, P., Amorosi, A., Malara, N., & Donato, G. (2021). Extracellular matrix in calcific aortic valve disease: architecture, dynamic and perspectives. International Journal of Molecular Sciences, 22, 913. https://doi.org/10.3390/ijms22020913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matilla, L., Roncal, C., Ibarrola, J., Arrieta, V., García-Peña, A., Fernández-Celis, A., Navarro, A., Álvarez, V., Gainza, A., Orbe, J., et al. (2020). A Role for MMP-10 (Matrix Metalloproteinase-10) in calcific aortic valve stenosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 1370–1382. https://doi.org/10.1161/atvbaha.120.314143

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Wang, X., Li, X.-K., Lv, S.-J., Wang, H.-P., Liu, Y., Zhou, J., Gong, H., Chen, X.-F., Ren, S.-C., et al. (2023). Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. European Heart Journal. https://doi.org/10.1093/eurheartj/ehad381

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, Y., Yang, J., Hong, T., Chen, X., & Cui, L. (2019). SIRT2: Controversy and multiple roles in disease and physiology. Ageing Research Reviews, 55, 100961. https://doi.org/10.1016/j.arr.2019.100961

    Article  CAS  PubMed  Google Scholar 

  38. Lynn, E. G., McLeod, C. J., Gordon, J. P., Bao, J., & Sack, M. N. (2008). SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14–3-3 zeta and BAD in H9c2 cells. FEBS Letters, 582, 2857–2862. https://doi.org/10.1016/j.febslet.2008.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amigo, I., & Kowaltowski, A. J. (2014). Dietary restriction in cerebral bioenergetics and redox state. Redox Biology, 2, 296–304. https://doi.org/10.1016/j.redox.2013.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macaulay, V. M., O’Byrne, K. J., Saunders, M. P., Braybrooke, J. P., Long, L., Gleeson, F., Mason, C. S., Harris, A. L., Brown, P., & Talbot, D. C. (1999). Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 5, 513–520.

    CAS  PubMed  Google Scholar 

  41. Vandenbroucke, R. E., & Libert, C. (2014). Is there new hope for therapeutic matrix metalloproteinase inhibition? Nature Reviews Drug Discovery, 13, 904–927. https://doi.org/10.1038/nrd4390

    Article  CAS  PubMed  Google Scholar 

  42. Guclu, E., Inan, S. Y., & Vural, H. C. (2022). The sirtuin 2 inhibitor AK-7 leads to an antidepressant-like effect in mice via upregulation of CREB1, BDNF, and NTRK2 pathways. Molecular Neurobiology, 59, 7036–7044. https://doi.org/10.1007/s12035-022-03026-8

    Article  CAS  PubMed  Google Scholar 

  43. Tomášek, A., Maňoušek, J., Kuta, J., Hlásenský, J., Křen, L., Šindler, M., Zelený, M., Kala, P., & Němec, P. (2023). Metals and trace elements in calcified valves in patients with acquire d severe aortic valve stenosis: Is there a connection with the degeneration process? Journal of Personalized Medicine, 13, 320. https://doi.org/10.3390/jpm13020320

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bondy, S. C. (2016). Metal toxicity, inflammation and oxidative stress. Springer.

    Book  Google Scholar 

  45. Flora, S. J. (2014). Toxic metals: health effects, & therapeutic measures. Journal of Biomedical Science, 1, 48–64.

    Google Scholar 

Download references

Acknowledgements

UKB is an open access resource. Bona fide researchers can apply to use the UKB dataset by registering and applying at http://ukbiobank.ac.uk/register-apply/.This research has been conducted using the UKB Resource under Application Number 68808 and we express our gratitude to the participants and those involved in building the resource

Funding

This study was supported by the National Key R&D Program of China (Grant No. 2021YFA0805100) and the National Natural Science Foundation of China (Grant Nos. 81861128025 and 81930014).

Author information

Authors and Affiliations

Authors

Contributions

RL conceptualized the study, performed the experiments, carried out the analyses, and drafted the initial manuscript. YZ performed the Mendelian randomization analysis. WC and ZW obtained samples and contributed to data collection. JD and YW participated in the study design and reviewed and revised the manuscript.

Corresponding authors

Correspondence to Yuan Wang or Jie Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Use of human samples was approved by the Medical Ethical Committee of Beijing Anzhen Hospital and in concordance with the principles outlined in the Declaration of Helsinki. Informed consent was obtained.

Additional information

Handling Editor: Lu Cai.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5821 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Zhu, Y., Chen, W. et al. Identification of Circulating Inflammatory Proteins Associated with Calcific Aortic Valve Stenosis by Multiplex Analysis. Cardiovasc Toxicol (2024). https://doi.org/10.1007/s12012-024-09854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12012-024-09854-5

Keywords

Navigation