Skip to main content
Log in

Protective Effect of Sevoflurane Preconditioning on Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Modulating Iron Homeostasis and Ferroptosis

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

To investigate the mechanism whereby sevoflurane (Sev) protects cardiomyocytes from hypoxia/reoxygenation (H/R) injury. The rat cardiomyocyte line H9C2 was exposed to hypoxia (1% oxygen) for 24 h, followed by reoxygenation for 2 h to construct a model of H/R injury. H9C2 was exposed to 2.4% Sev for 45 min before creating a hypoxic environment to observe the effect of Sev. MTT was taken to assess the viability of each group of cells, flow cytometry to detect cell apoptosis, and qRT-PCR or western blot to detect the expression of iron metabolism-related proteins and apoptosis-related proteins in the cells. And the kit determined the levels of total Fe and Fe2+ as well as factors related to oxidative stress in the cells. Administration of Sev significantly increased the cell viability of the H/R group while decreasing the expression of apoptosis-related proteins (Bax, cleaved caspase-3). Ferroportin 1 and mitochondrial ferritin, which are associated with iron metabolism, were considerably up-regulated by Sev, while iron regulatory protein 1, divalent metal transporter 1, and transferrin receptor 1 were significantly down-regulated in H/R cells. Additionally, Sev substantially reduced the levels of total Fe and Fe2+, reactive oxygen species, malondialdehyde, and 4-hydroxynonenal in H/R cells. In conclusion, Sev relieves H/R-induced cardiomyocyte injury by regulating iron homeostasis and ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Applicable on request.

References

  1. Roger, V. L., Go, A. S., Lloyd-Jones, D. M., et al. (2012). Heart disease and stroke statistics–2012 update: a report from the American heart association. Circulation, 125(1), e2–e220. https://doi.org/10.1161/CIR.0b013e31823ac046

    Article  PubMed  Google Scholar 

  2. Assmus, B., Schachinger, V., Teupe, C., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017. https://doi.org/10.1161/01.cir.0000043246.74879.cd

    Article  PubMed  Google Scholar 

  3. Davidson, S. M., Ferdinandy, P., Andreadou, I., et al. (2019). Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. Journal of the American College of Cardiology, 73(1), 89–99. https://doi.org/10.1016/j.jacc.2018.09.086

    Article  PubMed  Google Scholar 

  4. Zuo, Z., Zuo, P. F., Sheng, Z. L., Wang, X., Ding, J. D., & Ma, G. S. (2019). Tetramethylprazine attenuates myocardial ischemia/reperfusion injury through modulation of autophagy. Life Sciences, 239, 117016. https://doi.org/10.1016/j.lfs.2019.117016

    Article  CAS  PubMed  Google Scholar 

  5. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirst, J. (2013). Mitochondrial complex I. Annual Review of Biochemistry, 82, 551–575. https://doi.org/10.1146/annurev-biochem-070511-103700

    Article  CAS  PubMed  Google Scholar 

  7. He, H., Zhang, Z. Y., Liu, D., Liao, Z. P., Yin, D., & He, M. (2017). Mitochondrial damage induced by iron overload via eNOS in vascular endothelial cells. Chin Pharmacol Bulletin, 33(10), 1457–1461. https://doi.org/10.3969/j.issn.1001-1978.2017.10.025

    Article  Google Scholar 

  8. Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular Cell, 59(2), 298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai, A. L., Fan, L. H., Zhang, F. J., et al. (2010). Effects of sevoflurane preconditioning and postconditioning on rat myocardial stunning in ischemic reperfusion injury. Journal of Zhejiang University. Science. B, 11(4), 267–274. https://doi.org/10.1631/jzus.B0900390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, Q., Wang, H., He, F., et al. (2022). Depletion of microRNA-92a enhances the role of sevoflurane treatment in reducing myocardial ischemia-reperfusion injury by upregulating KLF4. Cardiovascular Drugs and Therapy. https://doi.org/10.1007/s10557-021-07303-x

    Article  PubMed  Google Scholar 

  11. Lu, Y., Bu, M., & Yun, H. (2019). Sevoflurane prevents hypoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibiting PI3KC3-mediated autophagy. Human Cell, 32(2), 150–159. https://doi.org/10.1007/s13577-018-00230-4

    Article  CAS  PubMed  Google Scholar 

  12. Xing, X., Guo, S., Zhang, G., et al. (2020). miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Brazilian Journal of Medical and Biological Research, 53(2), e9106. https://doi.org/10.1590/1414-431X20199106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. (2010). Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Phys, 72, 19–44. https://doi.org/10.1146/annurev.physiol.010908.163111

    Article  CAS  Google Scholar 

  14. Dong, Y., Undyala, V. V. R., & Przyklenk, K. (2016). Inhibition of mitochondrial fission as a molecular target for cardioprotection: critical importance of the timing of treatment. Basic Research in Cardiology, 111(5), 59. https://doi.org/10.1007/s00395-016-0578-x

    Article  CAS  PubMed  Google Scholar 

  15. Wang, C., & Youle, R. J. (2009). The role of mitochondria in apoptosis*. Ann Rev Genet, 43, 95–118. https://doi.org/10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  Google Scholar 

  16. Pell, V. R., Chouchani, E. T., Frezza, C., Murphy, M. P., & Krieg, T. (2016). Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovascular Research, 111(2), 134–141. https://doi.org/10.1093/cvr/cvw100

    Article  CAS  PubMed  Google Scholar 

  17. Morciano, G., Giorgi, C., Bonora, M., et al. (2015). Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 78, 142–153. https://doi.org/10.1016/j.yjmcc.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  18. Hentze, M. W., Muckenthaler, M. U., Galy, B., & Camaschella, C. (2010). Two to tango: regulation of mammalian iron metabolism. Cell, 142(1), 24–38. https://doi.org/10.1016/j.cell.2010.06.028

    Article  CAS  PubMed  Google Scholar 

  19. Haddad, S., Wang, Y., Galy, B., et al. (2017). Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. European Heart Journal, 38(5), 362–372. https://doi.org/10.1093/eurheartj/ehw333

    Article  CAS  PubMed  Google Scholar 

  20. Tang, W. H., Wu, S., Wong, T. M., Chung, S. K., & Chung, S. S. (2008). Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radical Biology & Medicine, 45(5), 602–610. https://doi.org/10.1016/j.freeradbiomed.2008.05.003

    Article  CAS  Google Scholar 

  21. Hirschhorn, T., & Stockwell, B. R. (2018). The development of the concept of ferroptosis. Free Radical Biology & Medicine, 133, 130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043

    Article  CAS  Google Scholar 

  22. Stockwell, B. R. (2022). Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 185(14), 2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  Google Scholar 

  23. Wofford, J. D., Chakrabarti, M., & Lindahl, P. A. (2017). Mossbauer spectra of mouse hearts reveal age-dependent changes in mitochondrial and ferritin iron LEVELS. Journal of Biological Chemistry, 292(13), 5546–5554. https://doi.org/10.1074/jbc.M117.777201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., & Xia, Z. Y. (2019). Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. Journal of Diabetes Research. https://doi.org/10.1155/2019/8151836

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, X., Wang, L., Xing, Q., Li, K., Si, J., Ma, X., & Mao, L. (2021). Sevoflurane inhibits ferroptosis: A new mechanism to explain its protective role against lipopolysaccharide-induced acute lung injury. Life Sciences, 275, 119391. https://doi.org/10.1016/j.lfs.2021.119391

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

HS: Conceptualization, data analysis, reviewing final form for submission. JX: Conceptualization, Methodology, Data curation. DY: Methodology, Original draft preparation.

Corresponding author

Correspondence to Hongguang Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Ali Akbar Nekooeian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, H., Xiong, J. & Yang, D. Protective Effect of Sevoflurane Preconditioning on Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Modulating Iron Homeostasis and Ferroptosis. Cardiovasc Toxicol 23, 86–92 (2023). https://doi.org/10.1007/s12012-023-09782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09782-w

Keywords

Navigation