Skip to main content
Log in

Cardiovascular Response of Rat Aorta to Di-(2-ethylhexyl) Phthalate (DEHP) Exposure

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Phthalates are one of the main constituents of plastic, reaching up to 40% of the total plastic weight, and their main function is to impart flexibility/elasticity to polymers that would otherwise be rigid. Phthalates are known as endocrine disruptors, since they can interfere with hormone homeostasis. Regarding the cardiovascular system, it was already shown the effects of di-(2-ethylhexyl) phthalate (DEHP) exposure with significant changes in several calcium-handling proteins and an increase in the blood pressure of mice offspring, suggesting that DEHP leads to vasocontraction. However, the mechanisms involved were not elucidated yet. The aim of this study is to analyse the involvement of calcium channels in the effects induced by DEHP on vascular smooth muscle cells. Endothelium-denuded aorta artery rings were prepared from male Wistar rats and incubated in an organ bath, and the whole-cell configuration of Patch Clamp technique was used to measure the activity of L-type Ca2+ channels (LTCC) in A7r5 cells. Overall, DEHP caused relaxation on KCl-induced contraction at higher concentrations and inhibited the basal and BAY K8644-stimulated calcium current, indicating that this drug blocks LTCC. These results suggest that DEHP induces relaxation on vascular smooth muscle cells due to the inhibition of calcium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Casals-Casas, C., & Desvergne, B. (2011). Endocrine disruptors: From endocrine to metabolic disruption. Annual Review of Physiology, 73, 135–162.

    Article  PubMed  CAS  Google Scholar 

  2. Wittassek, M., Koch, H. M., Angerer, J., & Bruning, T. (2011). Assessing exposure to phthalates—The human biomonitoring approach. Molecular Nutrition & Food Research, 55, 7–31.

    Article  CAS  Google Scholar 

  3. Johns, L. E., Cooper, G. S., Galizia, A., & Meeker, J. D. (2015). Exposure assessment issues in epidemiology studies of phthalates. Environment International, 85, 27–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zota, A. R., Calafat, A. M., & Woodruff, T. J. (2014). Temporal trends in phthalate exposures: Findings from the National Health and Nutrition Examination Survey, 2001–2010. Environmental Health Perspectives, 122, 235–241.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mariana, M., Feiteiro, J., Verde, I., & Cairrao, E. (2016). The effects of phthalates in the cardiovascular and reproductive systems: A review. Environment International, 94, 758–776.

    Article  PubMed  CAS  Google Scholar 

  6. Posnack, N. G. (2014). The adverse cardiac effects of di(2-ethylhexyl)phthalate and bisphenol A. Cardiovascular Toxicology, 14, 339–357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rubin, R. J., & Jaeger, R. J. (1973). Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environmental Health Perspectives, 3, 53–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Aronson, C. E., Serlick, E. R., & Preti, G. (1978). Effects of di-2-ethylhexyl phthalate on the isolated perfused rat heart. Toxicology and Applied Pharmacology, 44, 155–169.

    Article  PubMed  CAS  Google Scholar 

  9. Gillum, N., Karabekian, Z., Swift, L. M., Brown, R. P., Kay, M. W., & Sarvazyan, N. (2009). Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicology and Applied Pharmacology, 236, 25–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Posnack, N. G., Lee, N. H., Brown, R., & Sarvazyan, N. (2011). Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology, 279, 54–64.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, K. I., Chiang, C. W., Lin, H. C., Zhao, J. F., Li, C. T., Shyue, S. K., et al. (2015). Maternal exposure to di-(2-ethylhexyl) phthalate exposure deregulates blood pressure, adiposity, cholesterol metabolism and social interaction in mouse offspring. Archives of Toxicology, 90, 1211–1224.

    Article  PubMed  CAS  Google Scholar 

  12. Vanhoutte, P. M., Shimokawa, H., Tang, E. H., & Feletou, M. (2009). Endothelial dysfunction and vascular disease. Acta Psychologica, 196, 193–222.

    CAS  Google Scholar 

  13. Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109, III27–32.

    Article  PubMed  Google Scholar 

  14. Gulati, K., & Lall, S. B. (1996). Angiotensin II—Receptor subtypes characterization and pathophysiological implications. Indian Journal of Experimental Biology, 34, 91–97.

    PubMed  CAS  Google Scholar 

  15. Goldfarb, D. A. (1994). The renin-angiotensin system. New concepts in regulation of blood pressure and renal function. Urologic Clinics of North America, 21, 187–194.

    PubMed  CAS  Google Scholar 

  16. Mariana, M., Feiteiro, J., Cairrao, E., & Verde, I. (2016). Mifepristone is a vasodilator due to the inhibition of smooth muscle cells L-type Ca2+ channels. Reprod Sci, 23, 723–730.

    Article  PubMed  CAS  Google Scholar 

  17. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv European Journal of Physiology, 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  18. Stull, J. T., Gallagher, P. J., Herring, B. P., & Kamm, K. E. (1991). Vascular smooth muscle contractile elements. Cellular Regulation, Hypertension, 17, 723–732.

    PubMed  CAS  Google Scholar 

  19. Cairrao, E., Alvarez, E., Carvas, J. M., Santos-Silva, A. J., & Verde, I. (2012). Non-genomic vasorelaxant effects of 17beta-estradiol and progesterone in rat aorta are mediated by L-type Ca2+ current inhibition. Acta Pharmacologica Sinica, 33, 615–624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Alvarez, E., Cairrao, E., Morgado, M., Morais, C., & Verde, I. (2010). Testosterone and cholesterol vasodilation of rat aorta involves L-type calcium channel inhibition. Advances in Pharmacological Sciences, 2010, 534184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang, Y., Hou, R., Li, P., Li, J., Yan, J., Yin, F., et al. (2004). Gene expression profiles in response to the activation of adrenoceptors in A7r5 aortic smooth muscle cells. Clinical and Experimental Pharmacology and Physiology, 31, 602–607.

    Article  PubMed  CAS  Google Scholar 

  22. Guimaraes, S., & Moura, D. (2001). Vascular adrenoceptors: an update. Pharmacological Reviews, 53, 319–356.

    PubMed  CAS  Google Scholar 

  23. Weihua, Z., Saji, S., Makinen, S., Cheng, G., Jensen, E. V., Warner, M., et al. (2000). Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proceedings of the National Academy of Sciences USA, 97, 5936–5941.

    Article  CAS  Google Scholar 

  24. Traupe, T., Stettler, C. D., Li, H., Haas, E., Bhattacharya, I., Minotti, R., et al. (2007). Distinct roles of estrogen receptors alpha and beta mediating acute vasodilation of epicardial coronary arteries. Hypertension, 49, 1364–1370.

    Article  PubMed  CAS  Google Scholar 

  25. Perusquia, M., Hernandez, R., Morales, M. A., Campos, M. G., & Villalon, C. M. (1996). Role of endothelium in the vasodilating effect of progestins and androgens on the rat thoracic aorta. General Pharmacology, 27, 181–185.

    Article  PubMed  CAS  Google Scholar 

  26. vom Saal, F. S., Akingbemi, B. T., Belcher, S. M., Birnbaum, L. S., Crain, D. A., Eriksen, M., et al. (2007). Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reproductive Toxicology, 24, 131–138.

    Article  CAS  Google Scholar 

  27. Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., et al. (2009). Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews, 30, 293–342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Welshons, W. V., Thayer, K. A., Judy, B. M., Taylor, J. A., & Curran, E. M. (2003). F.S. vom Saal, Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives, 111, 994–1006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Welshons, W. V., & Nagel, S. C. (2006). F.S. vom Saal, Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 147, S56–69.

    Article  PubMed  CAS  Google Scholar 

  30. Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annual Review of Physiology, 70, 23–49.

    Article  PubMed  CAS  Google Scholar 

  31. Posnack, N. G., Idrees, R., Ding, H., Jaimes, R., 3rd, Stybayeva, G., Karabekian, Z., et al. (2015). Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes. PLoS ONE, 10, e0121927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Philips, E. M., Jaddoe, V. W., & Trasande, L. (2017). Effects of early exposure to phthalates and bisphenols on cardiometabolic outcomes in pregnancy and childhood. Reproduction Toxicology, 68, 105–118.

    Article  CAS  Google Scholar 

  33. Parks, L. G., Ostby, J. S., Lambright, C. R., Abbott, B. D., Klinefelter, G. R., Barlow, N. J., et al. (2000). The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicological Sciences, 58, 339–349.

    Article  PubMed  CAS  Google Scholar 

  34. Howdeshell, K. L., Wilson, V. S., Furr, J., Lambright, C. R., Rider, C. V., Blystone, C. R., et al. (2008). A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicological Sciences, 105, 153–165.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson, V. S., Lambright, C., Furr, J., Ostby, J., Wood, C., Held, G., et al. (2004). Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicology Letters, 146, 207–215.

    Article  PubMed  CAS  Google Scholar 

  36. Talsness, C. E., Andrade, A. J., Kuriyama, S. N., Taylor, J. A., & vom Saal, F. S. (2009). Components of plastic: Experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364, 2079–2096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mankidy, R., Wiseman, S., Ma, H., & Giesy, J. P. (2013). Biological impact of phthalates. Toxicology Letters, 217, 50–58.

    Article  PubMed  CAS  Google Scholar 

  38. Andrade, A. J., Grande, S. W., Talsness, C. E., Grote, K., & Chahoud, I. (2006). A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): Non-monotonic dose–response and low dose effects on rat brain aromatase activity. Toxicology, 227, 185–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by FEDER funds through the POCI—COMPETE 2020—Operational Programme Competitiveness and Internationalisation in Axis I—Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491) and National Funds by FCT—Foundation for Science and Technology (Project UID/Multi/00709/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Cairrao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariana, M., Feiteiro, J. & Cairrao, E. Cardiovascular Response of Rat Aorta to Di-(2-ethylhexyl) Phthalate (DEHP) Exposure. Cardiovasc Toxicol 18, 356–364 (2018). https://doi.org/10.1007/s12012-017-9439-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9439-6

Keywords

Navigation