Skip to main content

Advertisement

Log in

The Adverse Cardiac Effects of Di(2-ethylhexyl)phthalate and Bisphenol A

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The ubiquitous nature of plastics has raised concerns pertaining to continuous exposure to plastic polymers and human health risks. Of particular concern is the use of endocrine-disrupting chemicals in plastic production, including di(2-ethylhexyl)phthalate (DEHP) and bisphenol A (BPA). Widespread and continuous exposure to DEHP and BPA occurs through dietary intake, inhalation, dermal and intravenous exposure via consumer products and medical devices. This article reviews the literature examining the relationship between DEHP and BPA exposure and cardiac toxicity. In vitro and in vivo experimental reports are outlined, as well as epidemiological studies which examine the association between these chemicals and cardiovascular outcomes. Gaps in our current knowledge are also discussed, along with future investigative endeavors that may help resolve whether DEHP and/or BPA exposure has a negative impact on cardiovascular physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BPA:

Bisphenol A

DEHP:

Di(2-ethylhexyl)phthalate

EDCs:

Endocrine-disrupting chemicals

MEHP:

Mono(2-ethylhexyl)phthalate

References

  1. Halden, R. U. (2010). Plastics and health risks. Annual Review of Public Health, 31, 179–194.

    PubMed  Google Scholar 

  2. Casals-Casas, C., & Desvergne, B. (2011). Endocrine disruptors: From endocrine to metabolic disruption. Annual Review of Physiology, 73, 135–162.

    PubMed  CAS  Google Scholar 

  3. Diamanti-Kandarakis, E., et al. (2009). Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocrine Reviews, 30, 293–342.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007). Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24, 139–177.

    PubMed  CAS  Google Scholar 

  5. Wittassek, M., Koch, H. M., Angerer, J., & Brüning, T. (2011). Assessing exposure to phthalates—The human biomonitoring approach. Molecular Nutrition & Food Research, 55, 7–31.

    CAS  Google Scholar 

  6. Rubin, B. S. (2011). Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. Journal of Steroid Biochemistry and Molecular Biology, 127, 27–34.

    PubMed  CAS  Google Scholar 

  7. Schettler, T. (2006). Human exposure to phthalates via consumer products. International Journal of Andrology 29, 134–139; discussion 181–185.

  8. Calafat, A. M., Needham, L. L., Silva, M. J., & Lambert, G. (2004). Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics, 113, e429–e434.

    PubMed  Google Scholar 

  9. Silva, M. J., et al. (2004). Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environmental Health Perspectives, 112, 331–338.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Wittassek, M., et al. (2007). Internal phthalate exposure over the last two decades—A retrospective human biomonitoring study. International Journal of Hygiene and Environmental Health, 210, 319–333.

    PubMed  CAS  Google Scholar 

  11. Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environmental Health Perspectives, 116, 39–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Calafat, A. M., et al. (2009). Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environmental Health Perspectives, 117, 639–644.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Green, R., et al. (2005). Use of di(2-ethylhexyl) phthalate-containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environmental Health Perspectives, 113, 1222–1225.

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Melzer, D., Rice, N. E., Lewis, C., Henley, W. E., & Galloway, T. S. (2010). Association of urinary bisphenol a concentration with heart disease: Evidence from NHANES 2003/06. PLoS ONE, 5, e8673.

    PubMed  PubMed Central  Google Scholar 

  15. Melzer, D., et al. (2012). Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation, 125, 1482–1490.

    PubMed  CAS  Google Scholar 

  16. Shankar, A., Teppala, S., & Sabanayagam, C. (2012). Bisphenol A and peripheral arterial disease: Results from the NHANES. Environmental Health Perspectives,. doi:10.1289/ehp.1104114.

    PubMed  PubMed Central  Google Scholar 

  17. Lind, P. M., & Lind, L. (2011). Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. Atherosclerosis, 218, 207–213.

    PubMed  CAS  Google Scholar 

  18. Lang, I. A., et al. (2008). Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA, 300, 1303–1310.

    PubMed  CAS  Google Scholar 

  19. Bae, S., Kim, J. H., Lim, Y.-H., Park, H. Y., & Hong, Y.-C. (2012). Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension, 60, 786–793.

    PubMed  CAS  Google Scholar 

  20. Trasande, L. et al. (2013) Urinary phthalates are associated with higher blood pressure in childhood. The Journal of Pediatrics 163, 747–53.e1.

  21. Khalil, N. et al. (2013) Bisphenol A and cardiometabolic risk factors in obese children. Science of The Total Environment, 470–471C, 726–732.

  22. LaKind, J. S., Goodman, M., & Naiman, D. Q. (2012). Use of NHANES data to link chemical exposures to chronic diseases: A cautionary tale. PLoS ONE, 7, e51086.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Jaeger, R. J., & Rubin, R. J. (1973). Extraction, localization, and metabolism of di-2-ethylhexyl phthalate from PVC plastic medical devices. Environmental Health Perspectives, 3, 95–102.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. FDA. (2002). Safety assessment of di(2-ethylhexyl)phthalate (DEHP) released from PVC medical devices. http://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm080457.pdf.

  25. Marcel, Y. L. (1973). Determination of di-2-ethylhexyl phthalate levels in human blood plasma and cryoprecipitates. Environmental Health Perspectives, 3, 119–121.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Loff, S., et al. (2000). Polyvinylchloride infusion lines expose infants to large amounts of toxic plasticizers. Journal of Pediatric Surgery, 35, 1775–1781.

    PubMed  CAS  Google Scholar 

  27. Peck, C. C., & Albro, P. W. (1982). Toxic potential of the plasticizer Di(2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environmental Health Perspectives, 45, 11–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Rubin, R. J., & Jaeger, R. J. (1973). Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environmental Health Perspectives, 3, 53–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Latini, G., & Avery, G. B. (1999). Materials degradation in endotracheal tubes: A potential contributor to bronchopulmonary dysplasia. Acta Paediatrica, 88, 1174–1175.

    PubMed  CAS  Google Scholar 

  30. Danschutter, D., et al. (2007). Di-(2-ethylhexyl)phthalate and deep venous thrombosis in children: A clinical and experimental analysis. Pediatrics, 119, e742–e753.

    PubMed  Google Scholar 

  31. Li, L.-X., et al. (2013). Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. PLoS ONE, 8, e62526.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Latini, G., et al. (2003). Exposure to di(2-ethylhexyl)phthalate in humans during pregnancy. A preliminary report. Environmental Health Perspectives, 83, 22–24.

    CAS  Google Scholar 

  33. Zhang, Y., et al. (2009). Phthalate levels and low birth weight: A nested case-control study of Chinese newborns. Journal of Pediatrics, 155, 500–504.

    PubMed  CAS  Google Scholar 

  34. Latini, G., et al. (2003). In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environmental Health Perspectives, 111, 1783–1785.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Huang, Y., et al. (2014). Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women. PLoS ONE, 9, e87430.

    PubMed  PubMed Central  Google Scholar 

  36. Hoppin, J. A., Brock, J. W., Davis, B. J., & Baird, D. D. (2002). Reproducibility of urinary phthalate metabolites in first morning urine samples. Environmental Health Perspectives, 110, 515–518.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Yolton, K., et al. (2011). Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicology and Teratology, 33, 558–566.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Whyatt, R. M., et al. (2009). Prenatal di(2-ethylhexyl)phthalate exposure and length of gestation among an inner-city cohort. Pediatrics, 124, e1213–e1220.

    PubMed  PubMed Central  Google Scholar 

  39. Swan, S. H., et al. (2010). Prenatal phthalate exposure and reduced masculine play in boys. International Journal of Andrology, 33, 259–269.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Brock, J. W., Caudill, S. P., Silva, M. J., Needham, L. L., & Hilborn, E. D. (2002). Phthalate monoesters levels in the urine of young children. Bulletin of Environment Contamination and Toxicology, 68, 309–314.

    CAS  Google Scholar 

  41. Teitelbaum, S. L., et al. (2008). Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environmental Research, 106, 257–269.

    PubMed  CAS  Google Scholar 

  42. Barry, Y. A., Labow, R. S., Keon, W. J., Tocchi, M., & Rock, G. (1989). Perioperative exposure to plasticizers in patients undergoing cardiopulmonary bypass. Journal of Thoracic and Cardiovascular Surgery, 97, 900–905.

    PubMed  CAS  Google Scholar 

  43. Pollack, G. M., Buchanan, J. F., Slaughter, R. L., Kohli, R. K., & Shen, D. D. (1985). Circulating concentrations of di(2-ethylhexyl) phthalate and its de-esterified phthalic acid products following plasticizer exposure in patients receiving hemodialysis. Toxicology and Applied Pharmacology, 79, 257–267.

    PubMed  CAS  Google Scholar 

  44. Faouzi, M. A., et al. (1999). Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. International Journal of Pharmaceutics, 180, 113–121.

    PubMed  CAS  Google Scholar 

  45. Buchta, C., et al. (2005). Transfusion-related exposure to the plasticizer di(2-ethylhexyl)phthalate in patients receiving plateletpheresis concentrates. Transfusion, 45, 798–802.

    PubMed  CAS  Google Scholar 

  46. Weuve, J., et al. (2006). Exposure to phthalates in neonatal intensive care unit infants: Urinary concentrations of monoesters and oxidative metabolites. Environmental Health Perspectives, 114, 1424–1431.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Sjoberg, P. O., Bondesson, U. G., Sedin, E. G., & Gustafsson, J. P. (1985). Exposure of newborn infants to plasticizers. Plasma levels of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate during exchange transfusion. Transfusion, 25, 424–428.

    PubMed  CAS  Google Scholar 

  48. Plonait, S. L., Nau, H., Maier, R. F., Wittfoht, W., & Obladen, M. (1993). Exposure of newborn infants to di-(2-ethylhexyl)-phthalate and 2-ethylhexanoic acid following exchange transfusion with polyvinylchloride catheters. Transfusion, 33, 598–605.

    PubMed  CAS  Google Scholar 

  49. Shneider, B., Schena, J., Truog, R., Jacobson, M., & Kevy, S. (1989). Exposure to di(2-ethylhexyl)phthalate in infants receiving extracorporeal membrane oxygenation. New England Journal of Medicine, 320, 1563.

    PubMed  CAS  Google Scholar 

  50. Karle, V. A., et al. (1997). Extracorporeal membrane oxygenation exposes infants to the plasticizer, di(2-ethylhexyl)phthalate. Critical Care Medicine, 25, 696–703.

    PubMed  CAS  Google Scholar 

  51. Sjoberg, P., Bondesson, U., Sedin, G., & Gustafsson, J. (1985). Dispositions of di- and mono-(2-ethylhexyl) phthalate in newborn infants subjected to exchange transfusions. European Journal of Clinical Investigation, 15, 430–436.

    PubMed  CAS  Google Scholar 

  52. Su, P.-H., et al. (2012). Exposure to di(2-ethylhexyl) phthalate in premature neonates in a neonatal intensive care unit in Taiwan. Pediatric Critical Care Medicine, 13, 671–677.

  53. Peck, C. C., et al. (1979). Di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylexyl phthalate (MEHP) accumulation in whole blood and red cell concentrates. Transfusion, 19, 137–146.

    PubMed  CAS  Google Scholar 

  54. Babich, M. (2010). Memorandum to MA Danello, U.S. Consumer Product Safety Commision. Toxicity Review of Di(2-ethylhexyl) Phthalate (DEHP). http://www.cpsc.gov//PageFiles/114514/phthalover.pdf.

  55. Swan, S. H., et al. (2005). Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives, 113, 1056–1061.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Hauser, R., Meeker, J. D., Duty, S., Silva, M. J., & Calafat, A. M. (2006). Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology, 17, 682–691.

    PubMed  Google Scholar 

  57. Duty, S. M., et al. (2003). The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environmental Health Perspectives, 111, 1164–1169.

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Joensen, U. N., et al. (2012). Phthalate excretion pattern and testicular function: A study of 881 healthy Danish men. Environmental Health Perspectives, 120, 1397–1403.

    PubMed  PubMed Central  Google Scholar 

  59. Colon, I., Caro, D., Bourdony, C. J., & Rosario, O. (2000). Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environmental Health Perspectives, 108, 895–900.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Stahlhut, R. W., van Wijngaarden, E., Dye, T. D., Cook, S., & Swan, S. H. (2007). Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environmental Health Perspectives, 115, 876–882.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Meeker, J. D., et al. (2009). Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environmental Health Perspectives, 117, 1587–1592.

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Parks, L. G., et al. (2000). The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicological Sciences, 58, 339–349.

    PubMed  CAS  Google Scholar 

  63. Sharpe, R. M. (2001). Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicology Letters, 120, 221–232.

    PubMed  CAS  Google Scholar 

  64. Braun, J. M., Sathyanarayana, S., & Hauser, R. (2013). Phthalate exposure and children’s health. Current Opinion in Pediatrics, 25, 247–254.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Centers for Disease Control and Prevention. (2005). Third national report on human exposure to environmental chemicals.

  66. Leeder, J. S., & Kearns, G. L. (1997). Pharmacogenetics in pediatrics. Implications for practice. Pediatric Clinics of North America, 44, 55–77.

    PubMed  CAS  Google Scholar 

  67. Jahnke, G. D., Iannucci, A. R., Scialli, A. R., & Shelby, M. D. (2005). Center for the evaluation of risks to human reproduction—The first five years. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 74, 1–8.

    CAS  Google Scholar 

  68. Kavlock, R., et al. (2002). NTP Center for the Evaluation of Risks to Human Reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reproductive Toxicology, 16, 529–653.

    PubMed  CAS  Google Scholar 

  69. Shea, K. M. (2003). Pediatric exposure and potential toxicity of phthalate plasticizers. Pediatrics, 111, 1467–1474.

    PubMed  Google Scholar 

  70. Von Rettberg, H., et al. (2009). Use of di(2-ethylhexyl)phthalate-containing infusion systems increases the risk for cholestasis. Pediatrics, 124, 710–716.

    Google Scholar 

  71. Gillum, N., et al. (2009). Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicology and Applied Pharmacology, 236, 25–38.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Aronson, C. E., Serlick, E. R., & Preti, G. (1978). Effects of di-2-ethylhexyl phthalate on the isolated perfused rat heart. Toxicology and Applied Pharmacology, 44, 155–169.

    PubMed  CAS  Google Scholar 

  73. Schulpen, S. H. W., Robinson, J. F., Pennings, J. L. A., van Dartel, D. A. M., & Piersma, A. H. (2013). Dose response analysis of monophthalates in the murine embryonic stem cell test assessed by cardiomyocyte differentiation and gene expression. Reproductive Toxicology, 35, 81–88.

    PubMed  CAS  Google Scholar 

  74. Rock, G., Labow, R. S., Franklin, C., Burnett, R., & Tocchi, M. (1987). Hypotension and cardiac arrest in rats after infusion of mono(2-ethylhexyl) phthalate (MEHP), a contaminant of stored blood. New England Journal of Medicine, 316, 1218–1219.

    PubMed  CAS  Google Scholar 

  75. Barry, Y. A., Labow, R. S., Keon, W. J., & Tocchi, M. (1990). Atropine inhibition of the cardiodepressive effect of mono(2-ethylhexyl)phthalate on human myocardium. Toxicology and Applied Pharmacology, 106, 48–52.

    PubMed  CAS  Google Scholar 

  76. Hillman, L. S., Goodwin, S. L., & Sherman, W. R. (1975). Identification and measurement of plasticizer in neonatal tissues after umbilical catheters and blood products. New England Journal of Medicine, 292, 381–386.

    PubMed  CAS  Google Scholar 

  77. Martinez-Arguelles, D. B., et al. (2013). Maternal in utero exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring. Toxicology and Applied Pharmacology, 266, 95–100.

    PubMed  CAS  Google Scholar 

  78. Wei, Z., et al. (2012). Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicology Letters, 212, 212–221.

    PubMed  CAS  Google Scholar 

  79. Calley, D., Autian, J., & Guess, W. L. (1966). Toxicology of a series of phthalate esters. Journal of Pharmaceutical Sciences, 55, 158–162.

    PubMed  CAS  Google Scholar 

  80. Posnack, N. G., Lee, N. H., Brown, R., & Sarvazyan, N. (2011). Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology, 279, 54–64.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Posnack, N. G., Swift, L. M., Kay, M. W., Lee, N. H., & Sarvazyan, N. (2012). Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environmental Health Perspectives, 120, 1243–1251.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Priya, V. M., Mayilvanan, C., Akilavalli, N., Rajesh, P., & Balasubramanian, K. (2014). Lactational exposure of phthalate impairs insulin signaling in the cardiac muscle of f1 female albino rats. Cardiovascular Toxicology, 14, 10–20.

    Google Scholar 

  83. Feige, J. N., et al. (2010). The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARalpha-dependent mechanisms. Environmental Health Perspectives, 118, 234–241.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Olsén, L., Lind, L., & Lind, P. M. (2012). Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicology and Environmental Safety, 80, 179–183.

    PubMed  Google Scholar 

  85. Brotons, J. A., Olea-Serrano, M. F., Villalobos, M., Pedraza, V., & Olea, N. (1995). Xenoestrogens released from lacquer coatings in food cans. Environmental Health Perspectives, 103, 608–612.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Kang, J.-H., Kito, K., & Kondo, F. (2003). Factors influencing the migration of bisphenol A from cans. Journal of Food Protection, 66, 1444–1447.

    PubMed  CAS  Google Scholar 

  87. Calafat, A. M., et al. (2005). Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environmental Health Perspectives, 113, 391–395.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Bushnik, T., et al. (2010). Lead and bisphenol A concentrations in the Canadian population. Health Reports, 21, 7–18.

    PubMed  Google Scholar 

  89. Mendiola, J., et al. (2010). Are environmental levels of bisphenol a associated with reproductive function in fertile men? Environmental Health Perspectives, 118, 1286–1291.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Genuis, S. J., Beesoon, S., Birkholz, D., & Lobo, R. A. (2012). Human excretion of bisphenol A: Blood, urine, and sweat (BUS) study. Journal of Environmental and Public Health, 2012, 185731.

    PubMed  PubMed Central  Google Scholar 

  91. Heffernan, A. L., et al. (2013). Age-related trends in urinary excretion of bisphenol A in Australian children and adults: evidence from a pooled sample study using samples of convenience. Journal of Toxicology and Environmental Health, Part A, 76, 1039–1055.

    CAS  Google Scholar 

  92. Zhang, T., Sun, H., & Kannan, K. (2013). Blood and urinary bisphenol A concentrations in children, adults, and pregnant women from china: Partitioning between blood and urine and maternal and fetal cord blood. Environmental Science and Technology, 47, 4686–4694.

    PubMed  CAS  Google Scholar 

  93. Braun, J. M., et al. (2011). Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environmental Health Perspectives, 119, 131–137.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Morgan, M. K., et al. (2011). Assessing the quantitative relationships between preschool children’s exposures to bisphenol A by route and urinary biomonitoring. Environmental Science and Technology, 45, 5309–5316.

    PubMed  CAS  Google Scholar 

  95. Becker, K., et al. (2009). GerES IV: Phthalate metabolites and bisphenol A in urine of German children. International Journal of Hygiene and Environmental Health, 212, 685–692.

    PubMed  CAS  Google Scholar 

  96. Völkel, W., Kiranoglu, M., & Fromme, H. (2011). Determination of free and total bisphenol A in urine of infants. Environmental Research, 111, 143–148.

    PubMed  Google Scholar 

  97. Sathyanarayana, S., Braun, J. M., Yolton, K., Liddy, S., & Lanphear, B. P. (2011). Case report: High prenatal bisphenol a exposure and infant neonatal neurobehavior. Environmental Health Perspectives, 119, 1170–1175.

    PubMed  PubMed Central  Google Scholar 

  98. Patel, C. J., et al. (2013). Investigation of maternal environmental exposures in association with self-reported preterm birth. Reproductive Toxicology, 45C, 1–7.

    Google Scholar 

  99. Braun, J. M., et al. (2011). Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics, 128, 873–882.

    PubMed  PubMed Central  Google Scholar 

  100. Wang, F., et al. (2012). High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occupational and Environmental Medicine,. doi:10.1136/oemed-2011-100529.

    PubMed Central  Google Scholar 

  101. Duty, S. M., et al. (2013). Potential sources of bisphenol A in the neonatal intensive care unit. Pediatrics, 131, 483–489.

    PubMed  PubMed Central  Google Scholar 

  102. Aris, A. (2013). Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reproductive Toxicology, 45C, 8–13.

    Google Scholar 

  103. Lee, Y. J., et al. (2008). Maternal and fetal exposure to bisphenol A in Korea. Reproductive Toxicology, 25, 413–419.

    PubMed  CAS  Google Scholar 

  104. Padmanabhan, V., et al. (2008). Maternal bisphenol-A levels at delivery: A looming problem? Journal of Perinatology, 28, 258–263.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Schonfelder, G., et al. (2002). Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environmental Health Perspectives, 110, A703–A707.

    PubMed  PubMed Central  Google Scholar 

  106. Vandenberg, L. N., et al. (2010). Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environmental Health Perspectives, 118, 1055–1070.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Krieter, D. H., et al. (2013). Bisphenol A in chronic kidney disease. Artificial Organs, 37, 283–290.

    PubMed  CAS  Google Scholar 

  108. Sajiki, J., et al. (2008). Determination of bisphenol A (BPA) in plasma of hemodialysis patients using three methods: LC/ECD, LC/MS, and ELISA. Toxicology Mechanisms and Methods, 18, 733–738.

    PubMed  CAS  Google Scholar 

  109. Kanno, Y., Okada, H., Kobayashi, T., Takenaka, T., & Suzuki, H. (2007). Effects of endocrine disrupting substance on estrogen receptor gene transcription in dialysis patients. Therapeutic Apheresis and Dialysis, 11, 262–265.

    PubMed  CAS  Google Scholar 

  110. Cobellis, L., Colacurci, N., Trabucco, E., Carpentiero, C., & Grumetto, L. (2009). Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomedical Chromatography, 23, 1186–1190.

    PubMed  CAS  Google Scholar 

  111. Teeguarden, J. G., & Hanson-Drury, S. (2013). A systematic review of Bisphenol A “low dose” studies in the context of human exposure: A case for establishing standards for reporting “low-dose” effects of chemicals. Food and Chemical Toxicology, 62, 935–948.

    PubMed  CAS  Google Scholar 

  112. Vandenberg, L. N., Hunt, P. A., Myers, J. P., & Vom Saal, F. S. (2013). Human exposures to bisphenol A: Mismatches between data and assumptions. Reviews on Environmental Health, 28, 37–58.

    PubMed  CAS  Google Scholar 

  113. Meeker, J. D., et al. (2010). Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reproductive Toxicology, 30, 532–539.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Yang, M., Ryu, J. H., Jeon, R., Kang, D., & Yoo, K. Y. (2009). Effects of bisphenol A on breast cancer and its risk factors. Archives of Toxicology, 83, 281–285.

    PubMed  CAS  Google Scholar 

  115. Ehrlich, S., et al. (2012). Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Human Reproduction, 27, 3583–3592.

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Hiroi, H., et al. (2004). Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocrine Journal, 51, 595–600.

    PubMed  CAS  Google Scholar 

  117. Braun, J. M., & Hauser, R. (2011). Bisphenol A and children’s health. Current Opinion in Pediatrics, 23, 233–239.

    PubMed  CAS  Google Scholar 

  118. Markey, C. M., Michaelson, C. L., Veson, E. C., Sonnenschein, C., & Soto, A. M. (2001). The mouse uterotrophic assay: A reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environmental Health Perspectives, 109, 55–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Markey, C. M., Wadia, P. R., Rubin, B. S., Sonnenschein, C., & Soto, A. M. (2005). Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biology of Reproduction, 72, 1344–1351.

    PubMed  CAS  Google Scholar 

  120. Yan, S., et al. (2011). Bisphenol A and 17beta-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS ONE, 6, e25455.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Belcher, S. M., Chen, Y., Yan, S., & Wang, H. S. (2011). Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17beta-estradiol and the environmental endocrine disruptor bisphenol A. Endocrinology,. doi:10.1210/en.2011-1772.

    PubMed  PubMed Central  Google Scholar 

  122. Yan, S., et al. (2013). Low-dose bisphenol A and estrogen increase ventricular arrhythmias following ischemia-reperfusion in female rat hearts. Food and Chemical Toxicology, 56, 75–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Posnack, N. G., et al. (2014). Bisphenol A exposure and cardiac electrical conduction in excised rat hearts. Environmental Health Perspectives,. doi:10.1289/ehp.1206157.

    PubMed  PubMed Central  Google Scholar 

  124. Schirling, M., Bohlen, A., Triebskorn, R., & Kohler, H. R. (2006). An invertebrate embryo test with the apple snail Marisa cornuarietis to assess effects of potential developmental and endocrine disruptors. Chemosphere, 64, 1730–1738.

    PubMed  CAS  Google Scholar 

  125. Lee, W., Kang, C. W., Su, C. K., Okubo, K., & Nagahama, Y. (2012). Screening estrogenic activity of environmental contaminants and water samples using a transgenic medaka embryo bioassay. Chemosphere, 88, 945–952.

    PubMed  CAS  Google Scholar 

  126. Pant, J., & Deshpande, S. B. (2012). Acute toxicity of bisphenol A in rats. Indian Journal of Experimental Biology, 50, 425–429.

    PubMed  CAS  Google Scholar 

  127. Pant, J., Ranjan, P., & Deshpande, S. B. (2011). Bisphenol A decreases atrial contractility involving NO-dependent G-cyclase signaling pathway. Journal of Applied Toxicology, 31, 698–702.

    PubMed  CAS  Google Scholar 

  128. Patel, B. B., Raad, M., Sebag, I. A., & Chalifour, L. E. (2013). Lifelong exposure to bisphenol a alters cardiac structure/function, protein expression, and DNA methylation in adult mice. Toxicological Sciences, 133, 174–185.

    PubMed  CAS  Google Scholar 

  129. Kurosawa, T., et al. (2002). The activity of bisphenol A depends on both the estrogen receptor subtype and the cell type. Endocrine Journal, 49, 465–471.

    PubMed  CAS  Google Scholar 

  130. Yan, S., et al. (2011). Bisphenol A and 17β-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS ONE, 6, e25455.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Belcher, S. M., Chen, Y., Yan, S., & Wang, H.-S. (2012). Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17β-estradiol and the environmental endocrine disruptor bisphenol A. Endocrinology, 153, 712–720.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Gao, X., Liang, Q., Chen, Y., & Wang, H.-S. (2013). Molecular mechanisms underlying the rapid arrhythmogenic action of bisphenol A in female rat hearts. Endocrinology, 154, 4607–4617.

    PubMed  CAS  Google Scholar 

  133. González, D. R., et al. (2008). Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide, 18, 157–167.

    PubMed  Google Scholar 

  134. O’Reilly, A. O., et al. (2012). Bisphenol a binds to the local anesthetic receptor site to block the human cardiac sodium channel. PLoS ONE, 7, e41667.

    PubMed  PubMed Central  Google Scholar 

  135. Deutschmann, A., Hans, M., Meyer, R., Häberlein, H., Swandulla, D. (2013). Bisphenol A inhibits voltage-activated Ca(2+) channels in vitro: Mechanisms and structural requirements. Molecular Pharmacology, 83(2), 501–511. doi:10.1124/mol.112.081372.

  136. Asano, S., Tune, J. D., & Dick, G. M. (2010). Bisphenol A activates Maxi-K (K(Ca)1.1) channels in coronary smooth muscle. British Journal of Pharmacology, 160, 160–170.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Melzer, D., et al. (2012). Urinary bisphenol a concentration and angiography-defined coronary artery stenosis. PLoS ONE, 7, e43378.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Csanady, G. A., et al. (2002). Distribution and unspecific protein binding of the xenoestrogens bisphenol A and daidzein. Archives of Toxicology, 76, 299–305.

    PubMed  CAS  Google Scholar 

  139. Teeguarden, J. G., Waechter, J. M., Jr, Clewell, H. J., 3rd, Covington, T. R., & Barton, H. A. (2005). Evaluation of oral and intravenous route pharmacokinetics, plasma protein binding, and uterine tissue dose metrics of bisphenol A: A physiologically based pharmacokinetic approach. Toxicological Sciences, 85, 823–838.

    PubMed  CAS  Google Scholar 

  140. Kurebayashi, H., Harada, R., Stewart, R. K., Numata, H., & Ohno, Y. (2002). Disposition of a low dose of bisphenol a in male and female cynomolgus monkeys. Toxicological Sciences, 68, 32–42.

    PubMed  CAS  Google Scholar 

  141. Zhang, H., & Liu, E. (2012). Binding behavior of DEHP to albumin: Spectroscopic investigation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74, 231–238.

    CAS  Google Scholar 

  142. Sasakawa, S., & Mitomi, Y. (1978). Di-2-ethylhexylphthalate (DEHP) content of blood or blood components stored in plastic bags. Vox Sanguinis, 34, 81–86.

    PubMed  CAS  Google Scholar 

  143. Albro, P. W., & Corbett, J. T. (1978). Distribution of di- and mono-(2-ethylhexyl) phthalate in human plasma. Transfusion, 18, 750–755.

    PubMed  CAS  Google Scholar 

  144. Teeguarden, J. G., et al. (2011). Twenty-four hour human urine and serum profiles of bisphenol a during high-dietary exposure. Toxicological Sciences, 123, 48–57.

    PubMed  CAS  Google Scholar 

  145. Hengstler, J. G., et al. (2011). Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Critical Reviews in Toxicology, 41, 263–291.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Saal, Vom. (2012). F. S., Prins, G. S. & Welshons, W. V. Report of very low real-world exposure to bisphenol A is unwarranted based on a lack of data and flawed assumptions. Toxicological Sciences, 125, 315–318.

    Google Scholar 

  147. Teeguarden, J., Calafat, A., & Doerge, D. (2012). Adhering to fundamental principles of biomonitoring, BPA pharmacokinetics, and mass balance is no “flaw”. Tox Sci., 125(1), 321–325.

    CAS  Google Scholar 

  148. Kambia, N. et al. (2012). Strong variability of di(2-ethylhexyl)phthalate (DEHP) plasmatic rate in infants and children undergoing 12-hour cyclic parenteral nutrition. JPEN Journal of Parenteral and Enteral Nutrition. doi:10.1177/0148607112450914.

  149. Volkel, W., Colnot, T., Csanady, G. A., Filser, J. G., & Dekant, W. (2002). Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chemical Research in Toxicology, 15, 1281–1287.

    PubMed  Google Scholar 

  150. Koch, H. M., Angerer, J., Drexler, H., Eckstein, R., & Weisbach, V. (2005). Di(2-ethylhexyl)phthalate (DEHP) exposure of voluntary plasma and platelet donors. International Journal of Hygiene and Environmental Health, 208, 489–498.

    PubMed  CAS  Google Scholar 

  151. Kessler, W., et al. (2012). Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-deuterated DEHP. Toxicology and Applied Pharmacology, 264, 284–291.

    PubMed  CAS  Google Scholar 

  152. Yang, X., Doerge, D. R., & Fisher, J. W. (2013). Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model. Toxicology and Applied Pharmacology, 270, 45–59.

    PubMed  CAS  Google Scholar 

  153. Shin, B. S., et al. (2004). Physiologically based pharmacokinetics of bisphenol A. J. Toxicol. Environ. Heal. A, 67, 1971–1985.

    CAS  Google Scholar 

  154. Koch, H. M., Preuss, R., & Angerer, J. (2006). Di(2-ethylhexyl)phthalate (DEHP): Human metabolism and internal exposure—An update and latest results. International Journal of Andrology, 29, 155.

    PubMed  CAS  Google Scholar 

  155. Sieli, P. T., et al. (2011). Comparison of serum bisphenol A concentrations in mice exposed to bisphenol A through the diet versus oral bolus exposure. Environmental Health Perspectives, 119, 1260–1265.

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Stahlhut, R. W., Welshons, W. V., & Swan, S. H. (2009). Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environmental Health Perspectives, 117, 784–789.

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Nunez, A. A., Kannan, K., Giesy, J. P., Fang, J., & Clemens, L. G. (2001). Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere, 42, 917–922.

    PubMed  CAS  Google Scholar 

  158. Fernandez, M. F., et al. (2007). Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reproductive Toxicology, 24, 259–264.

    PubMed  CAS  Google Scholar 

  159. Herreros, M. A., et al. (2010). Pregnancy-associated changes in plasma concentration of the endocrine disruptor di(2-ethylhexyl) phthalate in a sheep model. Theriogenology, 73, 141–146.

    PubMed  CAS  Google Scholar 

  160. Li, D., Fareh, S., Leung, T. K., & Nattel, S. (1999). Promotion of atrial fibrillation by heart failure in dogs: Atrial remodeling of a different sort. Circulation, 100, 87–95.

    PubMed  CAS  Google Scholar 

  161. Ellison, K. E., Stevenson, W. G., Sweeney, M. O., Epstein, L. M., & Maisel, W. H. (2003). Management of arrhythmias in heart failure. Congestive Heart Failure, 9, 91–99.

    PubMed  Google Scholar 

  162. Maisel, W. H., & Stevenson, L. W. (2003). Atrial fibrillation in heart failure: Epidemiology, pathophysiology, and rationale for therapy. American Journal of Cardiology, 91, 2D–8D.

    PubMed  Google Scholar 

  163. Pogwizd, S. M., & Bers, D. M. (2004). Cellular basis of triggered arrhythmias in heart failure. Trends in Cardiovascular Medicine, 14, 61–66.

    PubMed  CAS  Google Scholar 

  164. Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W., & Bers, D. M. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circulation Research, 88, 1159–1167.

    PubMed  CAS  Google Scholar 

  165. Baicu, C. F., Zile, M. R., Aurigemma, G. P., & Gaasch, W. H. (2005). Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation, 111, 2306–2312.

    PubMed  Google Scholar 

  166. Dean, J. W., & Lab, M. J. (1989). Arrhythmia in heart failure: Role of mechanically induced changes in electrophysiology. Lancet, 1, 1309–1312.

    PubMed  CAS  Google Scholar 

  167. Col, J. J., & Weinberg, S. L. (1972). The incidence and mortality of intraventricular conduction defects in acute myocardial infarction. American Journal of Cardiology, 29, 344–350.

    PubMed  CAS  Google Scholar 

  168. Nattel, S., Maguy, A., Le Bouter, S., & Yeh, Y. H. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87, 425–456.

    PubMed  CAS  Google Scholar 

  169. Biernacka, A., & Frangogiannis, N. G. (2011). Aging and cardiac fibrosis. Aging and Disease, 2, 158–173.

    PubMed  PubMed Central  Google Scholar 

  170. De Jong, S., van Veen, T. A. B., van Rijen, H. V. M., & de Bakker, J. M. T. (2011). Fibrosis and cardiac arrhythmias. Journal of Cardiovascular Pharmacology, 57, 630–638.

    PubMed  Google Scholar 

  171. Spach, M. S. (2007). Mounting evidence that fibrosis generates a major mechanism for atrial fibrillation. Circulation Research, 101, 743–745.

    PubMed  CAS  Google Scholar 

  172. Rudy, Y., et al. (2008). Systems approach to understanding electromechanical activity in the human heart: A national heart, lung, and blood institute workshop summary. Circulation, 118, 1202–1211.

    PubMed  PubMed Central  Google Scholar 

  173. Loiselle, D. S., & Gibbs, C. L. (1979). Species differences in cardiac energetics. American Journal of Physiology, 237, H90–H98.

    PubMed  CAS  Google Scholar 

  174. Harding, S. E. (2011). Human stem cell-derived cardiomyocytes for pharmacological and toxicological modeling. Annals of the New York Academy of Sciences, 1245, 48–49.

    PubMed  CAS  Google Scholar 

  175. Zeevi-Levin, N., Itskovitz-Eldor, J., & Binah, O. (2012). Cardiomyocytes derived from human pluripotent stem cells for drug screening. Pharmacology & Therapeutics, 134, 180–188.

    CAS  Google Scholar 

  176. Itzhaki, I., et al. (2011). Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS ONE, 6, e18037.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Guo, L., et al. (2011). Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicological Sciences, 123, 281–289.

    PubMed  CAS  Google Scholar 

  178. Caspi, O., et al. (2009). In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev., 18, 161–172.

    PubMed  CAS  Google Scholar 

  179. Braam, S. R., & Mummery, C. L. (2010). Human stem cell models for predictive cardiac safety pharmacology. Stem Cell Res., 4, 155–156.

    PubMed  Google Scholar 

  180. Posnack, N., et al. (2014). The effect of endocrine-disrupting chemicals on human stem cell-derived cardiomyocytes. In Proceedings of the 53rd Annual Meeting of the Society of Toxicology, March 23–27, Phoenix, AZ.

  181. Van Vliet, E. D. S., Reitano, E. M., Chhabra, J. S., Bergen, G. P., & Whyatt, R. M. (2011). A review of alternatives to di (2-ethylhexyl) phthalate-containing medical devices in the neonatal intensive care unit. Journal of Perinatology, 31, 551–560.

    PubMed  PubMed Central  Google Scholar 

  182. Rosenmai, A. K., et al. (2014). Are structural analogues to bisphenol A safe alternatives? Toxicological Sciences,. doi:10.1093/toxsci/kfu030.

    PubMed  Google Scholar 

  183. Simmchen, J., Ventura, R., & Segura, J. (2012). Progress in the removal of di-[2-ethylhexyl]-phthalate as plasticizer in blood bags. Transfusion Medicine Reviews, 26, 27–37.

    PubMed  Google Scholar 

  184. Mathapati, S., Verma, R. S., Cherian, K. M., & Guhathakurta, S. (2010). Inflammatory responses of tissue-engineered xenografts in a clinical scenario. Interactive CardioVascular and Thoracic Surgery,. doi:10.1510/icvts.2010.256719.

    PubMed  Google Scholar 

  185. Scientific Committee on Emerging and Newly Identified Health Risks. (2008). Opinion on the safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_q_035.pdf.

  186. Genay, S., et al. (2011). Experimental study on infusion devices containing polyvinyl chloride: To what extent are they di(2-ethylhexyl)phthalate-free? International Journal of Pharmaceutics, 412, 47–51.

    PubMed  CAS  Google Scholar 

  187. Cooper, J. E., Kendig, E. L., & Belcher, S. M. (2011). Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere, 85, 943–947.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Narine Sarvazyan and Dr. Matthew Kay for helpful discussions. This work was supported by the National Institutes of Health (F32ES019057) and (K99ES023477).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Gillum Posnack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posnack, N.G. The Adverse Cardiac Effects of Di(2-ethylhexyl)phthalate and Bisphenol A. Cardiovasc Toxicol 14, 339–357 (2014). https://doi.org/10.1007/s12012-014-9258-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9258-y

Keywords

Navigation