Skip to main content
Log in

Severe Proarrhythmic Potential of the Antiemetic Agents Ondansetron and Domperidone

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The potential of ondansetron and domperidone, both clinically established antiemetic agents, to increase the QT-interval has been described in several case reports. Therefore, the aim of the present study was to investigate whether these drugs may provoke polymorphic ventricular tachycardia in a sensitive experimental model of drug-induced proarrhythmia. In 10 female rabbits, ondansetron (1, 5 and 10 µM, n = 10) or domperidone (0.5, 1 and 2 µM, n = 8) was infused after obtaining baseline data. Eight endo- and epicardial monophasic action potentials and a simultaneously recorded 12-lead ECG reproduced the clinically observed QT-prolongation (ondansetron: 1 µM:+17 ms, 5 µM:+41 ms, 10 µM:+78 ms, p < 0.01; domperidone: 0.5 µM:+57 ms, 1 µM:+79 ms, 2 µM:+99 ms, p < 0.01). This was accompanied by a significant increase in action potential duration at 90% of repolarization. Administration of both agents also increased dispersion of repolarization (ondansetron: 1 µM:+12 ms, 5 µM:+17 ms; 10 µM:+18 ms, p < 0.05; domperidone: 0.5 µM:+19 ms, 1 µM:+27 ms; 2 µM:+23 ms p < 0.05). Lowering of potassium concentration in bradycardic AV-blocked hearts provoked early afterdepolarizations (EADs) in 9 of 10 ondansetron-treated hearts and induced polymorphic ventricular tachycardia (VT) resembling torsade de pointes in 7 of 10 ondansetron-treated hearts (86 episodes). Under the influence of domperidone, EAD and polymorphic VT occurred in 7 of 8 hearts (131 episodes). In the present study, both ondansetron and domperidone demonstrated a severe proarrhythmic potential. A significant prolongation of cardiac repolarization as well as a marked increase in spatial dispersion of repolarization represents the underlying electrophysiologic mechanisms. These results imply that application of ondansetron should be handled carefully. For regular administration, ECG monitoring should be mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Charbit, B., Albaladejo, P., Funck-Brentano, C., Legrand, M., Samain, E., & Marty, J. (2005). Prolongation of QTc interval after postoperative nausea and vomiting treatment by droperidol or ondansetron. Anesthesiology, 102, 1094–1100.

    Article  PubMed  Google Scholar 

  2. Schnell, F. M., & Coop, A. J. (2005). An evaluation of potential signals for ventricular arrhythmia and cardiac arrest with dolasetron, ondansetron, and granisetron in the FDA combined spontaneous reporting system/adverse event reporting system. Current Therapeutic Research, Clinical and Experimental, 66, 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hafermann, M. J., Namdar, R., Seibold, G. E., & Page, R. L. (2011). Effect of intravenous ondansetron on QT interval prolongation in patients with cardiovascular disease and additional risk factors for torsades: A prospective, observational study. Drug, Healthcare and Patient Safety, 3, 53–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McKechnie, K., & Froese, A. (2010). Ventricular tachycardia after ondansetron administration in a child with undiagnosed long QT syndrome. Canadian Journal of Anaesthesia, 57, 453–457.

    Article  PubMed  Google Scholar 

  5. Claassen, S., & Zunkler, B. J. (2005). Comparison of the effects of metoclopramide and domperidone on HERG channels. Pharmacology, 74, 31–36.

    Article  CAS  PubMed  Google Scholar 

  6. Rocha, C. M., & Barbosa, M. M. (2005). QT interval prolongation associated with the oral use of domperidone in an infant. Pediatric Cardiology, 26, 720–723.

    Article  CAS  PubMed  Google Scholar 

  7. Boyce, M. J., Baisley, K. J., & Warrington, S. J. (2012). Pharmacokinetic interaction between domperidone and ketoconazole leads to QT prolongation in healthy volunteers: A randomized, placebo-controlled, double-blind, crossover study. British Journal of Clinical Pharmacology, 73, 411–421.

    Article  CAS  PubMed  Google Scholar 

  8. Doggrell, S. A., & Hancox, J. C. (2014). Cardiac safety concerns for domperidone, an antiemetic and prokinetic, and galactogogue medicine. Expert Opinion on Drug Safety, 13, 131–138.

    Article  CAS  PubMed  Google Scholar 

  9. Biewenga, J., Keung, C., Solanki, B., Natarajan, J., Leitz, G., Deleu, S., et al. (2015). Absence of QTc prolongation with domperidone: A randomized, double-blind, placebo- and positive-controlled thorough QT/QTc study in healthy volunteers. Clinical Pharmacology in Drug Development, 4, 41–48.

    Article  CAS  PubMed  Google Scholar 

  10. Frommeyer, G., Milberg, P., Witte, P., Stypmann, J., Koopmann, M., Lucke, M., et al. (2011). A new mechanism preventing proarrhythmia in chronic heart failure: Rapid phase-III repolarization explains the low proarrhythmic potential of amiodarone in contrast to sotalol in a model of pacing-induced heart failure. European Journal of Heart Failure, 13, 1060–1069.

    Article  CAS  PubMed  Google Scholar 

  11. Frommeyer, G., Fischer, C., Lange, P. S., Leitz, P., Fehr, M., Bogossian, H., et al. (2016). Divergent electrophysiologic profile of fluconazole and voriconazole in an experimental whole-heart model of proarrhythmia. European Journal of Pharmacology, 776, 185–190.

    Article  CAS  PubMed  Google Scholar 

  12. Frommeyer, G., Brucher, B., Von der Ahe, H., Kaese, S., Dechering, D. G., Kochhauser, S., et al. (2016). Low proarrhythmic potential of citalopram and escitalopram in contrast to haloperidol in an experimental whole-heart model. European Journal of Pharmacology, 788, 192–199.

    Article  CAS  PubMed  Google Scholar 

  13. Milberg, P., Eckardt, L., Bruns, H. J., Biertz, J., Ramtin, S., Reinsch, N., et al. (2002). Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. Journal of Pharmacology and Experimental Therapeutics, 303, 218–225.

    Article  CAS  PubMed  Google Scholar 

  14. Eckardt, L., Breithardt, G., & Haverkamp, W. (2002). Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsade de pointes: Low torsadogenic potential despite QT prolongation. Journal of Pharmacology and Experimental Therapeutics, 300, 64–71.

    Article  CAS  PubMed  Google Scholar 

  15. Roden, D. M. (1998). Taking the “idio” out of “idiosyncratic”: Predicting torsades de pointes. Pacing and Clinical Electrophysiology: PACE, 21, 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  16. Hondeghem, L. M., & Snyders, D. J. (1990). Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation, 81, 686–690.

    Article  CAS  PubMed  Google Scholar 

  17. Antzelevitch, C. (2008). Drug-induced spatial dispersion of repolarization. Cardiology Journal, 15, 100–121.

    PubMed  PubMed Central  Google Scholar 

  18. Verduyn, S. C., Vos, M. A., Van der Zande, J., Kulcsar, A., & Wellens, H. J. (1997). Further observations to elucidate the role of interventricular dispersion of repolarization and early afterdepolarizations in the genesis of acquired torsade de pointes arrhythmias: A comparison between almokalant and d-sotalol using the dog as its own control. Journal of the American College of Cardiology, 30, 1575–1584.

    Article  CAS  PubMed  Google Scholar 

  19. Eckardt, L., Haverkamp, W., Borggrefe, M., & Breithardt, G. (1998). Experimental models of torsade de pointes. Cardiovascular Research, 39, 178–193.

    Article  CAS  PubMed  Google Scholar 

  20. Sardi, I., La Marca, G., Cardellicchio, S., Giunti, L., Malvagia, S., Genitori, L., et al. (2013). Pharmacological modulation of blood-brain barrier increases permeability of doxorubicin into the rat brain. American Journal of Cancer Research, 3, 424–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Drolet, B., Rousseau, G., Daleau, P., Cardinal, R., & Turgeon, J. (2000). Domperidone should not be considered a no-risk alternative to cisapride in the treatment of gastrointestinal motility disorders. Circulation, 102, 1883–1885.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the German Cardiac Society (to G.F.) and the Dr. Peter Osypka Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Frommeyer.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frommeyer, G., Fischer, C., Ellermann, C. et al. Severe Proarrhythmic Potential of the Antiemetic Agents Ondansetron and Domperidone. Cardiovasc Toxicol 17, 451–457 (2017). https://doi.org/10.1007/s12012-017-9403-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9403-5

Keywords

Navigation