Skip to main content
Log in

Comet Assay and Micronucleus Test in Circulating Erythrocytes of Ctenopharyngodon idella Exposed to Nickel Oxide Nanoparticles

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The number of pollutants released into freshwater and marine environments has increased due to the widespread use of nanoparticles. Nickel oxide nanoparticles (NiO-NPs) were tested for genotoxicity in fish fingerlings of the species Ctenopharyngodon idella. For 7, 14, and 21 days, fingerlings were exposed to NiO-NPs with each increasing concentrations of 2.25 mg/L, 4.50 mg/L, and 6.75 mg/L, respectively. The micronuclei assay and comet assay were used to evaluate the DNA damage. The experiment revealed that with the increase in nanoparticle concentration and exposure duration, the level of DNA damage also increased. The experiment resulted to be time and dose dependent, and the damage was found as follows: 6.75 mg/L > 4.50 mg/L > 2.25 mg/L against each exposure period. In terms of comet assay, the results showed that after 7 days, the level of DNA damage in all the concentrations was highly significant (P < 0.001). Increased DNA damage was calculated at the higher administered dose of 6.75 mg/L for 21 days of exposition, followed by 14 and 7 days, respectively. The second high toxic effect was observed in the fish blood at the exposure concentration of 4.50 mg/L for 21 days, followed by 14 and 7 days, respectively. The micronuclei induction in the nanoparticle’s administered blood could be detected only for a 7-day exposition period. Whereas for the exposed duration of 14 and 21 days, the entire red blood cells of the grass carp were completely destroyed demonstrating the ability of the nanoparticles to cause anomalies in aquatic life.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Shah N, upon reasonable request.

References

  1. Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    Article  CAS  PubMed  Google Scholar 

  2. Lee Y, Choi J-r, Lee KJ, Stott NE, Kim D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604

    Article  PubMed  Google Scholar 

  3. Žegura B, Filipič M (2019) The application of the comet assay in fish cell lines. Mutat Res/Gen Toxicol Environ Mutagen 842:72–84

    Article  Google Scholar 

  4. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martis RJ, Acharya UR, Mandana K, Ray AK, Chakraborty C (2012) Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl 39(14):11792–11800

    Article  Google Scholar 

  6. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 49–67

  7. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  8. Asharani P, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  PubMed  Google Scholar 

  9. Rogozea EA, Olteanu NL, Petcu AR, Lazar CA, Meghea A, Mihaly M (2016) Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles. Opt Mater 56:45–48

    Article  CAS  Google Scholar 

  10. Kot M, Major Ł, Lackner J, Chronowska-Przywara K, Janusz M, Rakowski W (2016) Mechanical and tribological properties of carbon-based graded coatings. J Nanomater 2016:51

    Article  Google Scholar 

  11. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1

    PubMed  PubMed Central  Google Scholar 

  12. Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9(5):455–459

    Google Scholar 

  13. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49(3):217–229

    Article  CAS  PubMed  Google Scholar 

  14. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. ACS Publications

    Book  Google Scholar 

  15. Huang H-C, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357

    Article  CAS  PubMed  Google Scholar 

  16. Coman V, Robotin B, Ilea P (2013) Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl 73:229–238

    Article  Google Scholar 

  17. Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA et al (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401

    Article  CAS  PubMed  Google Scholar 

  18. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101

    Article  CAS  Google Scholar 

  19. Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn E-K et al (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhalation Toxicol 19(sup1):59–65

    Article  CAS  Google Scholar 

  20. Kousar S, Javed M (2015) Diagnosis of metals induced DNA damage in fish using comet assay. Pak Vet J 35(2):168–172

    CAS  Google Scholar 

  21. Mohammadijoo M, Khorshidi ZN, Sadrnezhaad S, Mazinani V (2014) Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing. Nanosci Nanotechnol Int J 4(1):6–9

    Google Scholar 

  22. Khan MS, Jabeen F, Qureshi NA, Asghar MS, Shakeel M, Noureen A (2015) Toxicity of silver nanoparticles in fish: a critical review. J Bio Environ Sci 6(5):211–227

    Google Scholar 

  23. Shah N, Khan A, Habib Khan N, Khisroon M (2021) Genotoxic consequences in common grass carp (Ctenopharyngodon idella Valenciennes, 1844) exposed to selected toxic metals. Biol Trace Elem Res 199(1):305–314. https://doi.org/10.1007/s12011-020-02122-x

    Article  CAS  PubMed  Google Scholar 

  24. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  25. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261

    Article  CAS  PubMed  Google Scholar 

  26. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38

    Article  CAS  PubMed  Google Scholar 

  27. Karaman A, Binici DN, Melikoğlu MA (2011) Comet assay and analysis of micronucleus formation in patients with rheumatoid arthritis. Mutat Res/Gen Toxicol Environ Mutagen 721(1):1–5. https://doi.org/10.1016/j.mrgentox.2010.11.014

    Article  CAS  Google Scholar 

  28. Rocha C, Cavalcanti B, Pessoa CO, Cunha L, Pinheiro RH, Bahia M et al (2011) Comet assay and micronucleus test in circulating erythrocytes of Aequidens tetramerus exposed to methylmercury. In vivo. 25(6):929–33

    CAS  PubMed  Google Scholar 

  29. Lu Y, Morimoto K, Takeshita T, Takeuchi T, Saito T (2000) Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells. Environ Health Perspect 108(6):559–561

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferraro MVM, Fenocchio AS, Mantovani MS, Ribeiro CdO, Cestari MM (2004) Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet Mol Biol 27:103–7

    Article  CAS  Google Scholar 

  31. Grisolia CK, Rivero CL, Starling FL, da Silva IC, Barbosa AC, Dorea JG (2009) Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. Genet Mol Biol 32:138–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C et al (2004) Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization. Mutat Res/Gen Toxicol Environ Mutagen 557(2):119–129

    Article  CAS  Google Scholar 

  33. Gurr J-R, Wang AS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  34. Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136:49–59

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and data curation: KM and SN; investigation: I, KI, F, and JA; methodology: KJ; writing—original draft: SN; and supervision: KM.

Corresponding author

Correspondence to Nazish Shah.

Ethics declarations

Ethical Approval

Ethical approval for the study was taken from the Ethical Committee, University of Peshawar.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Shah, N., Dawar, F. et al. Comet Assay and Micronucleus Test in Circulating Erythrocytes of Ctenopharyngodon idella Exposed to Nickel Oxide Nanoparticles. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04208-2

Keywords

Navigation